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I. General Questions

1. What is shape?

»> “Shape” for us means “what is left when the
effects associated with translation, scaling and
rotation are filtered away”. D.G. Kendall (1977)
, H. Le and D. G. Kendall (1993, Ann. Stat., Vol.
21, No.3, 1225-1271.)

2. Size-and-shape
» Geometrical information that remains when
location and rotational effects are filtered out
from an object. I.L. Dryden and K.V. Mardia
(1998, Wiley book)
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I. General Questions: Statistical Shape Analysis

o Landmarks: Points of correspondence on each object that
matches between and within populations.

* Three types:

— Anatomical landmarks: by experts which correspond between
organisms in some biologically meaningful way, e.g.
homologous parts

— Mathematical landmarks: according to some math/geomtical
property of the figure, e.g. high curvature, extreme points

— Pseudo-landmarks: constructed points around the outline and
between anatomical or mathematical landmarks, e.g.
continuous curves or surfaces by a large number of equally
spaced points
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e Traditional methods: multivariate morphometrics using

multivariate statistics (e.g. C.R. Rao’s work, Mahalanobis
distance)

 (Geometrical methods: deformation and transformation,

shape 1s inherently non-Euclidean-----first proposed by D’Arcy
Thompson (1917).

— Geometrical shape analysis in 70s: D.G. Kendall, F.L. Bookstein, mainly
on landmark data

— Pattern theory since the 70s: developed by Ulf Grenander and colleagues
using deformable templates, algebraic groups (Lie Groups), Markov
graphs, metric theory, and stochastic process simulation. Latest advances
such as computational anatomy summarized in: Pattern Theory, from
Representation to Inference (with Michael Miller, 2007, OUP)
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II. Current practice (cs approach)

 Feature extraction:

— Representation of the infinite-dimensional shape
space by decomposition using some orthogonal
basis (spherical harmonics, PCA, wavelets) with a
few numbers.

* Define distance on vectors: dissimilarity or
similarity measures

* Clustering and classification: data mining,
statistical learning, or retrieval
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=== What “Distance” Metrics to Choose

Distribution Functions: To impose a distance metric on
high-dimensional multinomial distributions: (w;y, ..., 7)),
1=1,2. For example,

P

g(r,,7,) = é_z (7711'_7721')2

: : , : i=1
—Diversity connection: this

distance may seem very naive, but p

it is related to the Gini-Simpson 1 — E T ,2
index: probability of mismatching, l
but......

— Is this Euclidean distance
appropriate? Composional Data
Analysis?

—Generalizations due to C.R. Rao
(1982) and others
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Differential metrics on distributions

* Geodesic distance between two probabilities

_—

for multinomial distribution: 7,7,
_ -1
g(7w,,7,)=2cos (Z \/72'1172'21 )

e Information metrics: Kullback-Leibler distance:

- _ = - X,
d(x,7)=KL(y| %)+ KL(|p)=D (xl-—mlog;
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Statistical Issues in Shape Inference

1. How to define the “mean shape”, and how to
quantify uncertainty on shape measurements

2. How to test whether two shapes are same
within measurement errors, or comparable/
interoperable

1. How to define the mean curve?
2. How to decide significance?

3. ANOVA to establish repeatability/reproducibility
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General regression model

* Relating a single attribute to high-dimensional
inputs, predictors, or measurands

Y=m(X)+¢

then try to fit this model to a set of measured data
(X,Y), i=1,2,...n.

e No assumption of m, except that m 1s a smooth
function of X.

* What about the accuracy (consistency) of
estimating m?
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Kernel regression:

* Smoothing as “local averages”: kernel
estimation:

« Kernel regression: Nadaraya (1964), Watson
(1964)

m (x)=%; -, K(IX; -x|| /h) Y; /
2; 1" K(||X;- x|| / h)
* Reasoning: weighting function i1s a monotone

function of distance between predictor data vectors:
usually Euclidean distance
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B A New Kind of Theory

 In order to accommodate high-dimensional
data, need the concept of “intrinsic dimension™:
the most important features lie a much lower
dimension than data space

» A singular design model: predictor variables do
not have a “joint density”.
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Singular design model

A theoretical setup for singular design: no design
density exsiting: singular design measure

Notion of mtrinsic dimensionality: e.g. number of
independent variables, pointwise fractal dimension:

P(||X-x [[<=h) ~ h4 ash— 0
where d = p (d<<p very likely)

First proposed in Z.Q. Lu (1999): Nonparametric with
Singular Design, Journal of Multivariate Analysis

Morale: no matter how many number of variables,
as long as the underlying intrinsic dimension is low,
the statistical accuracy is still good.
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Princeton Shape Retrieval and Analysis Group

Prolkalil ity

Shape distribution

Distance
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A Statistical Testing Problem

Volume 111, Mumber 5, September-October 2006

Journal of Research of the National Institute of Standards and Technology

[7. Res. Matl. Inst. Stand Technol. 111, 373-384 (2006)]

Form-Profiling of Optics Using the Geometry
Measuring Machine and the M-48 CMM

at NIST
Compare GEMM and CMM Statistical test of significance
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III. Curvature as a Shape Descriptor

There are three types of

Curvature for curves 1n 2D
curvature definitions for a surface

space
lying in 3D
Avi)
zZ Z & 22
K — XX )Yy Xy
29
k(x) = 1/R 2 2
: (1 +z,+z, )

1 (1+Z§)Zyy -2z z z —|—(1+Z§)Zxx

Xy Xy
b 2 (1+z +ZJ2})3/2

X

3

2 277 1 1 2

ddy(zx) _ k(x){1+ (dyd(x)j }2 kL2 :E(Zxx +zyy)i\/z(zxx —zyy) +z§y.
X X
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Phase - measuring interferometers are the most accurate metrology tools for measuring the surface
form of flats and spheres with low spatial frequency content. Uncertainty ~ 1nm.

@ . o

- = @
Firrfrals
Laser ’1| Test Arm

Beam Splitter

Light fields reflected by test- and reference surfaces are observed. Deviation of test part form from
reference part form is calculated form the interference of the two fields.

Reference %l 4
Surface =

Test Surface — @
Flat measurement Sphere measurement
Two set ups of the Extremely Accurate Calibration Interferometer (XCALIBIR)
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The Asphere Interferometry Problem

Metrology of Optical Free-Form and Asphere Surface using full aperture
Interferometers have problems :

- Insufficient dynamic range,

- Impossible to realize common path condition.

Example:

i

Non-zero fringe density Insufficient dynamic range

XCALIBIR interferogram for the X-ray mirror
against flat reference.

@)

An ellipical torus or free form surfaced X-ray optic,
which is used in a Kirkpatrick- Baez imaging
system.
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The NIST-Geometry Measuring Machine (GEMM)

—6-axis stage moves

—curvature sensor and
—orients it normal to
—test surface.

—A compact interferometer
—Is used as the sensor.

—Compressed Gas

—Duster
—Test part

—and moun
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==, Measurements of GEMM: local #7
topographic 1mages

p(”"’):%(Xll'Nu2+2X12-Nuv+x“-sz)+
1 3 3 3
—(8X3-Nu3+3—?X -Nu2v+3—a X2 N uv?
6 Ou 0 "uodv ouod - v
0’ x ;
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Image 20 Image 25
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More display of GEMM data

Sare s - Overlaying three images:
. . 05, 10, 15

sample 20
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2D Topography by GEMM

Gold mirror test Differential equation )p roach

ddx{x} K(} 1+ “1’”:' s

When the curvature K[x:l 1z measured, Eq. (1) must be
salved to determine the profile. This can be accom-
plished using one of the standard methods for solving
differential equations. Alternatively, an integration pro-
cedure described by Elster et al. [16] can be used to
solve Eq. (1), which is now briefly reviewed.

Let Pix) = ={(x).

Then P'(x)} = K)[1 + PP

B0 - : - Thus L{),: = E{x).
—— GEMM J (1+Px)*)
OO L L i
S i o f% = | K(x)dx.

3000 \ / 1 (1+P(x)" )
= 2000 ! - :
3 \ / .. dP M- P(x) _
§ 1000 ks 1 (1+Px)? )" 1+ P@)
-E .._\.. -...
e 0 Lo F ¥ Now let y (x) = [E{x)dx.

1000 3 4 . ] P(x)

" . We then have ————==W1(x).
2000} S 1 N1+ P(x)
-3000 - - - And finally P(x)=—23 __ _ rx). &)

40 -20 0 20 40 p———
Hmni s
Volume 111, Mumber 5, Saptamber-Octobaer 2006

Re Constructe d pro ﬁles Journal of Research of the National Institute of Standards and Technology
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" 3D Topography: Curvature Estimation

We propose to use local polynomial regression: e.g, for local quadratic fit, we
minimize:
T -
z gl X X _l X=X\ (A 2h, | x—x, K(xi —X, ’)’i -, j,
; Yi=Vo) 2\, 0 h, \oi—) h h

for a,b, h;’s, where b and h;’s estimate the partial derivatives at (x,y,).

Related References: Fan and Gijbel (1996), Ruppert and Wand (1994) on
regression

Lu (1994, 1996, Journal of Multivariate Analysis) on first-order partial
derivative estimation

However, if there is strong nonlinearity, we need to use higher order polynomial
such as 4t order polynomial be used.
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3D Topography: Reconstruction

1. The need for smoothing in curvature measurements
(typically noiser than data)

2. 3D reconstruction based on PDE may not be the best
solution

3.  We propose to use a statistical approach which
handles noise data better, via smoothing
spline/reproducing kernel (adapting Grace Wahba
approach, 1990)
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Summary

I wish to convey that there are many
interesting problems, at least to me,
in 3d and 2d shape analysis, cuttmg
across many disciplines, which raise
interesting metrology challenges,
and standard developments demand
novel and challenging high-
dimensional statistical research.

GEMM for topographic
measurements of aspheric objects
with nanoscale precision,
comparable to CMM, but avoids
contact

Interdisciplinary research takes time,

energy, patience, and 1s rewarding
for the mitiated participants.
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Thanks!

Nadia Machkour-Deshayes,
CNRS, France,

Charles Hagwood (NIST/ITL),
Johannes Soons (NIST/MEL)
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