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3D CAD data has become the currency of the modern
engineering enterprise. As the industry has matured, CAD
models have become ubiquitous artifacts that provide high-
fidelity descriptions of engineered objects as well as capture

e Integration of CAD search with database and PLM
systems

e Applications, prototypes, and fielded systems

¢ Empirical studies, scalability results and benchmarks

For this special i1ssue, the Computer-Aided Design and
the guest editors strongly encourage potential authors to use
models and datasets that are publicly available. Addition-
ally, authors may provide online links to models they use in
their papers and experiments. Results presented must be
independently verifiable or reproducible. Datasets appro-
priate to this issue include those noted in the CAD
“Information for Authors™ such as the Design Repository
(http://www.designrepository.org), the Princeton Shape
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Goal of the Talk:
Generate Discussion

What are the challenges for modern engineering
record keeping & data management?

What is the current state of the art in engineering
record keeping & data management?

What is the role of 3D search in engineering
data management?

What are the emerging challenges and
limitations of current technologies?
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Arsenale di Venezia

Name “Arsenale” from the
arabic Dar al Sina’a

By 1104 it had:

— An assembly line
— Mass production facilities
— Standardized parts

— Developed frame-first ship
construction methods

— Repair and refit techniques
Employed ~16,000 people

Could build a ship from
scratch in less than 1 day




Fast Forward 800 years... Pratt &
Whitney R-2800 Double Wasp

e An 18-cylinder two-row radial
engine providing up to 2,500
horsepower. An important
factor of Allied air supremacy
iIn World War Il, the Double
Wasp remained in production
until 1960.

— Displacement: 2,804 cubic
inches

— Revolutions per minute: 2,250-
2,800

— Weight: 2,360 pounds

— First run: 1937

— First flight: 1939

— Production years: 1939-1960
— Engines produced: 125,334

 Over 10,000 parts




The Kansas City Plant










Traditional Design Record
Keeping as Art Appreciation




Traditional (Current)
Design Record Keeping

Paper-based
workflow Process e mmm .
For Human-to-Human -~ 2= ml
exchange I\l

CAD is fancy drafting

CAD does not
capture design
semantics
(beyond geometry)

De3|gned N 1959



CAD Databases

e Aperture
cards

e Physical
files
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Modern History

1963
lvan Sutherland’s
Sketchpad

Modified oscilloscope
for drawing

The original CAD
system

Sidenote: His advisor
was Claude Shannon

Courtesy Marc Levoy @ Stanford U
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° Some Of the Original SHAPE CL!\SSIFICAT.IUN IN  COMPUTER-AIDED DESIGH
work on Features was e |
for Shape g
Classification

— Kyprianou 1980

e Goal: Creation and
Search of CAD
Databases

July 1980

P.0.Box 1745,
NiCOS1A,

CYFRUS. Copyright {(€) 1900 L.K. Kyprianou



Kyprianou’s Sy

{ ) = data structure
-

| i

7/ \ ====+= |nternal data flow
- - | : '.!‘va;::u;ud 4-_——-’- external Interaction
Classifier | — |
| ' \‘A
| bracict 54 P e N
System 1 B ~
« Based on a set of | \ | T
! ’
i 5 ~

morphological | o | i

features | .

e Used a grammar to - v
parse features from E L i
solid model brep l N TR

| Identification
Scheme

Required only fcr parts catz base generation

Filg. 1.1l _An Automatic Parts Classification System

=23 -

e % Sl el . bgpi P T s R e e -
e ity - Wt R FETEERErer BT L 0% Ak



As we may think,
Atlantic Monthly, July 1945

Proposed fantastic device:
The Memex

Article predicted

— Digital photography & storage
— Hyertext

— Speech recognition

— Personal computers, Internet

Influenced many, still today
— E.g. Google




Vision of Memex: Digitization of the
Totality of Human Knowledge!

Everything!
Recorded

Yotta

« Soon everything can be
recorded and indexed

[ a4\

« Most data never be seen by humans

e The Precious Resource:

Human Attention!
Auto-Summarization
Auto-Search

IS key technology:.

www.lesk.com/mlesk/ksg97/ksqg.html

24 Yecto, 21 zepto, 18 atto, 15 femto, 12 pico, 9 nano, 6 micro, 3 milli

(From the Turning Award Lecture of Dr. James Gray, Microsoft)



Future Design Repositories

* Design Knowledge

— capture, index and
archive, reuse

— models, simulations,
analysis, revisions,
maintenance and |
performance, alternatives |

and dead-ends, process Designed in 1949-52
and workflow, rationale

and history Expected Service Lifespan:
— capturing the “Why?” 1954-2045
91 Years!




Consider a contemporary example:
UK AWE Amber 2 Part

« Partner: Kansas City Plant
— 50 year history

— Primary manufacturing facility for
the DOE & NNSA

— Expertise in discrete parts,
electronics, MEMS, ...

« The Amber 2 part
— High-precision machined part
— Designed in the UK

— Analysis at both UK AWE and
KCP

— Fabricated at KCP




UK AWE Amber 2 Part Data

2D CAD Drawings

— TIFF images « Manufacturing data
3D CAD data — Features
— Parasolid, Pro/E, STEP, ACIS, — Process plans
— Manufacturing plan simulations
Shape data « Fabrication data

— Mesh & point cloud

Tolerance data

— ASME Y14.5 tolerances and
tolerance features robotic simulation

— Tolerance analysis Documentation

Analysis data — MS Word files
— FEA parameters and output — AVIs. MPGs

— Other files

— Tooling, cost, time
Inspection data
— Inspection plan,



Current Format of Record
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Missing Information

I O I e ral I C e S Part Yiew - AmberTwoFinal.SAT:1 M [=] 3| | B# Manufacturing F =[O x|
E nuFackuring Definition
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Manufacturing :
Planning -
An alysis _ 2 e
Inspection

Fabrication

— Okuma LH35-N
CNC lathe

Reverse Engineering F

Raouting Plans




Limitations of Current Technology

« Technologies such as GT Coding are pre-digital

« Matching gross shape doesn’t often help answer
meaningful engineering questions

e Important attributes are quasi-geometric and hard to
represent
— Tolerances, material, surface finish, mfg plans etc

* Important features vary by application (and are ill defined)

— Machining, SFF, cost estimation, etc.
— Feature Recognition is challenging

« We are still determining the questions that can be
answered by CAD search

— How to query Design Repositories and for what purpose?
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Challenges for 3D Search

CAD objects are different than “shape” objects
Focus is on the “query by example” paradigm
Technigues limited to individual, discrete, objects
Lack of well defined object semantics beyond shape
Lack of use cases for applications

No accepted procedures for how to measure
performance of techniques
Most use their own datasets for testing
Evaluation procedures are sometimes opaque
Metrics for “success” are not standardized



What Makes CAD
Objects Different?

 Different fundamental underlying
representation from graphical objects



CAD vs Shape Representation

CAD Representation

Topologically and
geometrically consistent

Implicit and analytic surfaces,
NURBS, etc

Produced using CAD packages
and solid modelers

Shape Representation

Approximate representation,
error prone

Mesh or point cloud

Produced using animation tools,
laser scanners



Compare Features
Scale Space !I' CAD/CAM
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d4: cutout 4 f4:  slot, depth 20mm
11 d5: blind hole f5:  slot, depth 20mm

11 d6: thru hole f6: face mill, depth 10mm



Solid-Based / Shape Based
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What Makes CAD
Objects Different?

 Different fundamental underlying
representation from graphical objects

 Engineering objects (CAD objects)
have a physical realization



Artifacts are Physmally Reallzable

e Assoclated with them are
— Tolerances

— Manufacturing, Inspection
and Analysis Plans

— Fabrication parameters

e Okuma LH35-N
CNC lathe




What Makes CAD
Objects Different?

 Different fundamental underlying
representation from graphical objects

« Engineering objects (CAD objects)
have a physical realization

 Object “tags” and classifications are
not subjective



Consider a set of “Vehicles”




Land-Air Classification




Com-Mil Classification

Commercial Military



USSR-USA Classification

Russian

American



CAD Classifications are not Subjective

S

e Shape matching
shares kinship with
Image interpretation

e CAD shares kinship
with medical imaging
or vision

 Attributes are
rigid and
unambiguous



What Makes CAD
Objects Different?

Different fundamental underlying
representation from graphical objects
Engineering objects (CAD objects)
have a physical realization

Object “tags” and classifications are not
subjective

Need to support multiple classification
schemes depending on the end-user
application



Multiple Classifications

 The same parts can be Functional
classified according to Brackets
different classifications.

 Example:
— Functional:

* Brackets vs Housings

— Manufacturing:
« Machined vs

Manufacturing
Machined

Cast-then-Machined Husings



Question

Or /And

Cold chamber die casting machine

3-axis machine center
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Challenges for 3D Search

CAD objects are different than “shape” objects
Focus is on the “query by example” paradigm
Technigues limited to individual, discrete, objects
Lack of well defined object semantics beyond shape
Lack of use cases for applications

No accepted procedures for how to measure
performance of techniques
Most use their own datasets for testing
Evaluation procedures are sometimes opaque
Metrics for “success” are not standardized



Querying Design Repositories

* Find duplicates or
near duplicates

— Query-by-Example
* Applications
— part count reduction

— platform
standardization
_ 2 parts, exactly the same
— redesign for different location
consolidation different orientation

— cost estimation No easy way to tell A==B



Querying Design Repositories

o Extract part families g'_4
or design patterns “s’fl{‘{ﬂ
— similar to knowledge i%" 2
discovery in large '

Oy l/ %
ey Y L‘
databases 'g.l’l‘lv ||l\.‘\J 'l:‘{f
« Applications @ %
. ' 74
— part count reduction ‘0“ H ~ Z/
— platform standardization E.'l' ‘ \’k‘l’

— redesign for consolidation @
— cost estimation (1o g

a family of brackets



Querying Design Repositories

 |dentify Manufacturing
Clusters
— group artifacts with similar
manufacturing semantics
« Applications :

— variant
process planning

— cost estimation

— manufacturing process & all holes have same d
factory optimization




e Variational Process

Querying Design Repositories
« Variational Design

Planning

e Access to corporate
and institutional
memory




Querying Design Repositories

e Mating,
geometric fit or
assembly
relationships

* Inverse relationships
e Constraining criteria




Querying Design Repositories

e Process Selection

— Cluster parts based on
manufacturing process
criteria

— ldentify the right
process for prototyping
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Challenges for 3D Search

CAD objects are different than “shape” objects
Focus is on the “query by example” paradigm
Technigues limited to individual, discrete, objects
Lack of well defined object semantics beyond shape
Lack of use cases for applications

No accepted procedures for how to measure
performance of techniques
Most use their own datasets for testing
Evaluation procedures are sometimes opaque
Metrics for “success” are not standardized



Querying Design Repositories

 Assembly structure,
behavior and function
(SBF)

 This will be much
more common and
economically
iImportant

« How to do the
knowledge markup?

3 Lego models of a wiper assembly



Slide Rocker Windshield Wiper Design Formalised as NIST Function Flow Diagram

Windshield |
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Challenges for 3D Search

CAD objects are different than “shape” objects
Focus is on the “query by example” paradigm
Technigues limited to individual, discrete, objects
Lack of well defined object semantics beyond shape
Lack of use cases for applications

No accepted procedures for how to measure
performance of techniques
Most use their own datasets for testing
Evaluation procedures are sometimes opaque
Metrics for “success” are not standardized



Lack of Use Cases

* Definition: “Use cases allow description of
sequences of events that, taken together,
lead to a system doing something useful.”

e For 3D CAD search, there is not a rich set
of use cases

e Systems and business processes are
already In place; new capabilities need to
be inserted into existing workflow
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Challenges for 3D Search

CAD objects are different than “shape” objects
Focus is on the “query by example” paradigm
Technigues limited to individual, discrete, objects
Lack of well defined object semantics beyond shape
Lack of use cases for applications

No accepted procedures for how to measure
performance of techniques
Most use their own datasets for testing
Evaluation procedures are sometimes opaque
Metrics for “success” are not standardized



Statistical natural language processing and
corpus-based computational linguistics: An
annotated list of resources




Example:

Comparing Existing Techniques
Consider the matching techniques:

© 0N R wWDE

==

Scale Space [this SM03 paper]

Scale Space w/ Decomposition Control [ASME JCISEOS3]
Shape Distributions [Osada et al ACM ToG 2002, SMI01]
Enhanced Shape Distributions [Ip et al SM02]

Learning Shape Classifiers [Ip et al SM03] (poster)
Matching with Reeb Graphs [Hilaga et al, SIGGRAPH 01]
Invariant Topology Vectors [McWherter et al, SM01]
Design Feature-based Matching [Cicirello et al, SM99]

Machining Feature-based Matching
[Cicirello et al, SMI01, AIEDAM 2003]

nich 1s best? When Is It best?
Yy IS It best?




ldea #1: The Retrieval Task

Given

A dataset D

* An object d (possibly from D)
e An algorithm A

he Question:
Are the objects “returned” by A as being
“similar” to d “really similar”?




To Measure Success: Borrow

ldeas from Information Science

 Treat each object as a “document”
 Perform “Query by Example”

 Measure recall and precision

— Recall: % of relevant documents retrieved
relative to the entire set of relevant documents

— Precision: % of relevant documents retrieved
relative to all those retrieved

 |deal: 100% recall, 100% precision



Problems with this Approach

Really intended for document retrieval
— Text searching

Requires an a priori labeling scheme

— Such a labeling is nearly always done by humans and
can be highly subjective

Assumes an absolute labeling scheme

— If the document contains the keyword “Spline” it has
to do with Splines

Labeling are cumulative

— Documents might be about “graphics + Spline” or
“shipbuilding + spline” etc, the fact they share spline
will make them similar



Further IR doesn’t work for
CAD-based Engineering Data

CAD models are not consistent documents

— “Text” Is in the eye of the beholder

— E.g. manufacturing view different from design view
No agreed upon labeling scheme

— Features vary by domain, can’t manually classify
1,000,000 parts! (this was GT’s problem...)

Labeling schemes are not absolute

— At the geometry level, similar shape features could
still have different functionally or mfg. properties

Labeling are not cumulative

— Labels are orthogonal; objects under “housing + hole”
are not going to be at all similar to “bolt + hole”



Note: IR doesn’t seem to work
for shape models either..

e EXisting results are
the opposite of what

one wants /’ ; \\
» What we want \

 What we get

\




Precision

Minor Topological Variation Dataset: Cubes
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Precision

LEGO Dataset

I I Reeb
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Retrieval may be the wrong
problem to solve...

 These matching algorithms actually implicitly
encode shape classifiers (Kyprianou’s goal)

e Classification
— Assess the gquality of the classification achieved
— against the desired (a priori) classification

e There Is a scientific justification & motivation

for this idea In statistical learning theory and
machine learning




ldea #2: The Classification Task

Given
e a dataset D

 a classification of D
C={c,c,C;...C}
— ¢;'s are a partition of D
e an algorithm A

The Question:
How well does A do in reproducing
classification C ?



The Classification Task:

Algorithm Selection

Given
e a dataset D

 a classification of D
C={c,c,C;...C}
— ¢;'s are a partition of D

« a set of algorithms A, A,, ... A,

The Question:
Which A, Is best at reproducing this
classification?



To Measure Success: Borrow
ldeas from Machine Learning

Treating

the data set as unseen data

the algorithms, A, A,, ... A,,, as pre-
trained classifiers

the classification as the error function

And using information gain and error
measures to calculate which is best for the
dataset



An Example

Compare

1.
2.

3.

4.
5.
6.

"

Scale Space [this SM03 paper]

Scale Space w/ Decomposition Control [ASME
JCISEQ3]

Shape Distributions [Osada et al ACM ToG 2002,
SMIO01]

Enhanced Shape Distributions [Ip et al SM02]
Learning Shape Classifiers [Ip et al SM03] (poster)

Matching with Reeb Graphs [Hilaga et al,
SIGGRAPH 01]

Invariant Topology Vectors [McWherter et al, SMO1]

On CAD_40 dataset



G =Group
FP = False-Positives

Shape Classification Quality

Scale-Space

Total Errors: 15

. Gl: FP:0, FN:3 G6: FP: 1, FN: 1
FN = False-Negatives G2: FP:0, FN:2 G7: FP:1, FN: 2
G3: FP:1, FN:1 G8: FP:2, FN: 1
G4: FP:1, FN:1 G9: FP:5, FN: 1
G5: FP:1, FN:3 G10:FP: 3, FN: 0
Scale-Space with automated Multi-resolution Original shape

feature extraction Reeb Graphs distributions

Total Errors: 12 Total Error: 13 Total Errors: 11
Gl: FP:0, FN:3 G6: FP: 0, FN: 1 Gl: FP:0, FN:3 G6: FP:3, FN: 1 Gl: FP: 0, FN: 2 G6: FP: 0, FN: 1
G2: FP:0, FN:1 G7: FP: 1, FN: 1 G2: FP:0, FN:1 G7: FP: 1, FN: 1 G2: FP:0, FN:2 G7: FP:1, FN: 1
G3: FP:2, FN:1 GS8: FP:0, FN: 1 G3: FP:0, FN:1 GS8: FP:0, FN: 1 G3: FP:1, FN:1 G8: FP:3, FN: 1
G4: FP:1, FN:1 G9: FP:4, FN: 1 G4: FP:0, FN: 2 G9: FP: 4, FN: 1 G4: FP:3, FN:1 G9: FP:1, FN: 1
G5: FP: 1, FN: 2 G10:FP: 3, FN: 0O G5: FP: 1, FN: 2 G10:FP: 4, FN: 0 G5: FP:0, FN:1 G10:FP: 2, FN: 0

Enhanced distributions Enhanced ITV topology

distributions + Learning

Total Errors: 14 Total Errors: 13 Total Errors: 15
G1: FP:0, FN:5 G6: FP: 0, FN: 2 Gl: FP:0, FN:4 G6: FP:0, FN: 1 G1l: FP:0, FN:2 G6: FP:1, FN: 2
G2: FP:0, FN:1 G7: FP:0, FN: 1 G2: FP:0, FN:2 G7: FP:0, FN: 1 G2: FP:0, FN:2 G7: FP:1, FN: 1
G3: FP:1, FN:1 G8: FP:1, FN: 1 G3: FP:1, FN:1 G8: FP:2, FN: 1 G3: FP:1, FN:1 G8: FP:2, FN: 1
G4: FP: 6, FN:1  G9: FP: 2, FN: 1 G4: FP:5, FN:1  G9: FP: 1, FN: 1 G4: FP: 1, FN:1  G9: FP: 7, FN: 2
G5: FP: 0, FN:1  G10:FP: 4, EN: 0 G5: FP:1, FN:1  G10:FP: 3, FN: 0 G5: FP: 0, FN: 3  G10:FP: 2, FN: 0




Comparison Results

Finding best performance (by model group):

G1:
G2:
G3:
G4.
G5:

Reeb Graph and ITV
Scale-Space, Orig. and Enh. Dist.
Reeb Graph

Scale-Space, Reeb Graph, ITV
Orig. and Enh. Dist.

G6:
G7:
G8:
G9:

Scale-Space, Orig. and Learn. Dist.
Enh. and Learn. Dist.

Scale-Space and Reeb Graph

Orig. and Learn. Dist.

G10: Orig. Dist and ITV




Comparison Results

Finding best performance (by model group):

G1:
G2:
G3:
G4.
G5:

Reeb Graph and ITV

Scale-Space, Orig. and Enh. Dist.

eeb Graph

Saale-Space, Reeb Graph, ITV

ori§. and EnNst.

G6: Scale-Space, Orig. and Learn. Dist.
G7:
G8jJ Scale.Space and Reeb Graph

G9. Orig. anRd Learn. Dist.
0: Orig. Digt and ITV

nh. and Learn. Dist.

PART (2)

TEAM (4)

/ \

SPRINGS (6) SPACER (8)

Why?: feature decompositions create
nearly identical trees.




Comparison Results

Finding best performance (by model group):

Gl: Reeb Graph and ITV G6: Scale-Space, Orig. and Learn. Dist.
G2. Scale-Space, O nd Enh. Dist. G7: Enh. and Learn. Dist.

G3:. Reeb Graph G8. Scale-Space and Reeb Graph

G4: Scale-Spade, Reeb Graph, ITV

: Orig. and Learn. Dist.

G5: Orig. and Bnh. Dist. G10: Dist and ITV
\ 4 SHAFTS (1)
LINKAGE-ARMS (3

&
G
o
%A

Why?: Classes are topologically
homogeneous.

MM@ ?
-

D Yl




Comparison Results

Finding best performance (by model group):

G1l: Reeb Graph and ITV G6: Scale-Space, Orig. and Learn. Dist.
G2. Scale-Space, Orig. and Enh. Dist. G7: Enh. and Learn. Dist.

G3:. Reeb Graph G8. Scale-Space and Reeb Graph

G4. Scale-Space, Reeb Graph, ITV G9: Orig. and Learn. Dist.

G5: Orig. and Enh. Dist. ‘yrig. Dist and ITV

Why?: Models have strong
GOODPARTS (5) HOUSINGS (10) .
= geometric
T regularities.

/"
5




Comparison Results

Finding best performance (by model group):

G1:
G2:
G3:
G4.
G5:

Reeb Graph and ITV

Scale-Space, Orig. and Enh. Dist.

Reeb Graph

Scale-Space, Reeb Graph, ITV

Orig. and Enh. Dist.

G6: Scale-Space, Orig. and Learn. Dist.
G7: Enh. and Learn. Dist.

. Scale-Space and Reeb Graph

: Orig. and Learn. Dist.

G10: Orig. Dist and ITV

P4

% G

SWIVEL (7)

¢

Why?: Class identification
requires factoring
geometry,
topology and
dimension.



Discussion of
Comparison Results

e Interesting, but .....

— Any differences in overall error rates are not
statistically significant (e.g. 11-15 False Positives)

— We need several datasets with more (>30) classes
and (perhaps) larger (>30) numbers of classes

— We need standard data sets and test cases!

 Observations:
— Data quality can influence the results

— Performance varied greatly by model class...
But some are clearly better for certain classes

— No one technigque is better overall



The General Classification
Algorithm Selection Task

Given
e arepresentative training dataset D

 a classification of D
C={c,c,C;...C}
— ¢;'s are a partition of D

* A set of algorithms A, A,, ... A

The Question:
Which A, Is best at classifying unseen
objects (probably from a class like D) in a
manner consistent with C ?

n



Discussion Points...

No technique is clearly better; most perform poorly
Is there something better than Precision-Recall?
More work needed on how to better use:

— Boundary representations
— Feature-based techniques

Which engineering guestions to answer?
Answering engineering gquestions is challenging

— Manufacturing classifications & functional classifications
— We need better specifications on engineering questions

Datasets need to be bigger and more widely available



A CAD Search Frontier:
Partial Matching of Acquired Data



Experimental Results — Scanned Data

From Exact
Representation

360° Scan Single Scan




Experimental Results — Scanned Data

From Exact
Representation

360° Scan Single Scan

An example of one-to-many correspondence



Experimental Results — Scanned Data

From Exact
Representation

360° Scan Single Scan

An example of one-to-one correspondence



Experimental Results — Scanned Data

From Exact
Representation

360° Scan Single Scan

An example of one-to-one correspondence



Experimental Results — Scanned Data

From Exact
Representation

360° Scan Single Scan

An example of many-to-many correspondence



Experimental Results — Scanned Data

From Exact
Representation

360° Scan Single Scan

An example of one-to-many correspondence



Experimental Results — Scanned Data

From Exact
Representation

360° Scan Single Scan

An example of one-to-one correspondence



Retrieval Using Functional
Classification

e Techniques used:
— Reeb graph comparison (Reeb)
— Global Scale-Space (Scale-Space)
— Local Scale-Space (Local Scale-Space)

FUNCTIONAL
CLASSIFI-
CATION




Precision

Retrieval Using Functional
Classification

Reeb
Local Scale-Space
Scale-Space

Recall



Retrieval on Partial and Scanned Data

From Exact Partial Data From

360" Scan Single Scan Representation Exact Representation




Retrieval on Partial and Scanned Data

1

Local Scale-Space with s.g. iso.

0.8

0.6

Precision

0.4

0.2

0 0.2 04 0.6 0.8 1
Recall



Design Repositories:
Dlgltal lerarles for Englneerlng

7, = M(0)-0+V(0,0) + G(0) + F(0,0)

Engineering Digital Libraries with CAD
models, assemblies, process plans, revisions,
S-B-F models, project information and workflows, deS|gn
rationale, design history, records of collaborative activity...



Q&A

For more information
http://gicl.cs.drexel .edu

http://www.designrepository.org

National Science Foundation (NSF)
Digital Archiving and Long-Term Preservation (DIGARCH) Award NSF CISE/IIS-0456001
Cyber-Infrastructure Teams Awards OCI-0636235, OCI-0636273, SCI-0537125 and SCI-0537370

B v.- Digitalrrestauanion

The LIBRARY of CONGRESS
Washington, [.C.
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Observations

No technique is clearly better; most perform poorly
Is there something better than Precision-Recall?

More work needed on how to better use:
— Boundary representations
— Feature-based techniques

Answering engineering questions is challenging
— Manufacturing classifications & functional classifications
— We need better specifications on engineering questions

Work in this paper is completely reproducible
— http://ledge.mcs.drexel.edu/repository/datasets/
— If you think you can do better, go for it!

Datasets need to be bigger



Conclusions

o Establish datasets for
evaluating retrieval
technigues on realistic
CAD/CAM artifacts

e Describe general
benchmarking procedure

— This procedure can be
followed by others

* Please suggest
improvements!

 Benchmarked nine
different 3D shape and
solid model matching
technigues




An Approach to the General
Algorithm Selection Task

First:

e Glven
— a shape matching algorithm, A
— a dataset D
— a classification, C, of D

« Compute the intrinsic classifier for A

« Use the Iintrinsic classifier to compute the
optimal classification possible for D, C,

* Find correspondence between C and C,

 Compute total typel and type2 errors between
CandC,



An Approach to the General
Algorithm Selection Task

Second:

* Do this over all your candidate algorithms,
AL A, LA

 Compute relative error rates (information
gain) among these algorithms

o Select the algorithm with highest
information content



Observations

This is an objective approach
— No biases

It will work for any matching algorithm or
classification scheme, including those
based on subjective human labels

It will work regardless of the type of data

— CAD data, shape data, bio-med data, legos,
etc.

Pending submission to SM04



1945
Design
studies

1955

Consider the B-52

1962

Service life begins  Production ends

Early 1970s
24,000Ibs of additional
subsystems incorporated
1 1 1 1

2005
Congress funds upgrades
toward 2040 service life
1 ]

B-52

T
1952
Flight testing

1958--1965
New mission profiles necessitate
120 significant structural retrofits

1 J T T
Late 1970s-1980s

Significant structural retrofits

for changing mission profiles

1 1
2001
Analysis puts most
airframe lifetimes at 2045

2002

Second STEP Release
1 ]

CAD

1963
SKETCHPAD

Early 1970s 1984
First CAD Companies STEP Starts
I I f t
Early 1980s

First solid modellers

First STEP Release



