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Importance of Subcellular
Location

 Eukaryotic cells are highly compartmentalized, and proper
localization of proteins is critical to normal cell behavior

 Systems biology promises
understanding of origins and
consequences of cell
behaviors

 Need systematic information on
high-resolution subcellular location
 Eventually, for every expressed

protein for all cell types under all
conditions

 Providing this information is the
goal of Location Proteomics



Subcellular Location in Drug
Development
 A number of markers reflect (or cause!)

changes in cell state (e.g., disease) by
changing subcellular location

 These can be used to identify drugs
that might treat or prevent disease

 Automated microscopes can be used
to perform screening of a library of
drugs
 High-content screening

Lans Taylor



High-Content Screening and
Location Proteomics
 Identification of targets for drug

development assays typically very slow
process driven by traditional biological
experiments

 Alternative is to use proteome-wide
approach to identify the locations of all
proteins, including those that are
candidates for disease-specific changes



Automated Interpretation
 Traditional analysis of fluorescence

microscope images has occurred by
visual inspection

 Our goal over the past eleven years has
to been to automate interpretation with
the ultimate goal of fully automated
learning of protein location from images
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Classification Results:
Computer vs. Human
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Supervised vs. Unsupervised
Learning
 This work demonstrates the feasibility of

using classification methods to assign
all proteins to known major classes

 Similar approach being taken in location
prediction from sequence

 Do we know all locations? Are
assignments to major classes enough?

 Need approach to discover classes



Location Proteomics
 Tag many proteins

 We have used CD-tagging
(developed by Jonathan Jarvik and
Peter Berget): Infect population of
cells with a retrovirus carrying DNA
sequence that will “tag” in a random gene in each cell



Principles of CD-Tagging (Jarvik &
Berget) (CD = Central Dogma)
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Location Proteomics
 Tag many proteins

 We have used CD-tagging
(developed by Jonathan Jarvik and
Peter Berget): Infect population of
cells with a retrovirus carrying DNA
sequence that will “tag” in a random gene in each cell

 Isolate separate clones, each of which produces express one
tagged protein

 Use RT-PCR to identify tagged gene in each clone
 Collect many live cell images for each clone using spinning

disk confocal fluorescence microscopy

Jarvik
et al
2002



What
Now?
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Solution: Group them
automatically

 How?
 Features can be used to measure similarity of

protein patterns
 Build Subcellular Location Tree
 Have multiple images per protein
 Sample repeatedly from available images,

build cluster tree for each subsample, and
form consensus tree

Chen et al 2003;
Chen and Murphy 2005



Need
 How do we communicate results of

clustering patterns?
 Show all images from a given cluster?

 Long download
 No ability to generalize

 Proposal: Use generative models
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Nuclear Shape - Medial Axis Model
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Synthetic Nuclear Shapes



Synthetic nuclei generated by
learned model



Cell Shape
Description: Distance Ratio
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Capture variation in the
model



Examples of natural variation
in cell shape



Modeling Vesicular Organelles

Original Filtered Fitted Gaussians



Object Positions
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Synthesized Images

Lysosomes Endosomes



Evaluation of synthesized
images

Classification of synthesized images by a classifier
trained on real images. Classification based on
features that made 94% of real images distinguishable



Model Distribution
 Generative models provide better way of

distributing what is known about
“subcellular location families” (or other
imaging results, such as illustrating
change due to drug addition)

 Have initial XML design for capturing the
models for distribution

 Have portable tool for generating
images from the model



Generation Process

Protein
Cell Shape

Nuclear Model

XML



Generating Multiple
Distributions for Simulations
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Combining Models for Cell
Simulations
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PSLID: Protein
Subcellular Location Image Database

 Publicly accessible image database at
http://pslid.cbi.cmu.edu
 Version 3 released February 2, 2007
 2D and 3D images (single cell regions defined)
 Two cell types, HeLa and 3T3
 Over 120,000 images/

3000 unique fields/14,000 cells
 111 classes; 55 known proteins;

11 targeting mutants of one protein
 Programmatic search via URL

Huang et al 2002; Huang et al 2007
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The future of subcellular
location analysis

Protein (Order 104 )

Condition
(Order 102)

Cell Type
(Order 102)

Plus: Time scale from subsecond
to years



Other subcellular location
projects

 Pepperkok group - human (MCF7 cells)
 GFP-tagged cDNAs
 GFP and DNA images

 Uhlen group (Protein Atlas) - human
 Immunohistochemistry with monospecific antibodies
 DAB and hematoxylin images
 Fixed tissues

 Schubert group (MELK technology)
 Cycles of immunofluorescence, imaging and bleaching
 Fixed tissues



How do we really analyze
subcellular location?
 Scope of problem argues for

cooperation on grand scale: Human
Cytome Project?

 Need intelligent (optimized) data
collection: probabilistic methods to
integrate available data, make
predictions, suggest experiments and
iterate
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