Candidate cellular and molecular mechanisms of epileptogenesis

Helen E. Scharfman, PhD

Departments of Pharmacology & Neurology Columbia University and Helen Hayes Hospital New York State Dept. of Health

An alternative and accessible version of this presentation is available at 3:10 pm in the Videocast of Day One

Acknowledgements: NIH NS37562, NS16102

I. Introduction

Evaluating cellular and molecular mechanisms of epileptogenesis

- II. Stages of epileptogenesis
 - A. Minutes/hours
 - B. Days
 - C. Weeks/months
- III. Translational approaches
 - A. Laboratory animals → Human
 - B. Laboratory animals Human
- IV. Summary and Conclusions

I. Introduction Evaluating cellular and molecular mechanisms of epileptogenesis

Timeline of epileptogenesis

Timeline of epileptogenesis --simplified --

Does epileptogenesis "stop" ?

II. Stages of epileptogenesis
A. Minutes/hours
B. Days
C. Weeks/months

Secondary changes - Days

Excitotoxic cell death Apotosis Inflammation Glial response Vascular response Seizure induced gene expression Growth Plasticity Compensatory

Tertiary changes - Weeks

Functional Classification of Individual Genes 16 datasets - TBI and status models

Lukasiuk et al. (2006)

Changes that are critical to epileptogenesis

Inflammation

Jung et al. (2006) Neurobiol. Dis.

COX-2 inhibition reduces epileptogenesis

Changes that are critical to epileptogenesis

Growth

Neurotrophins

Brain-derived neurotrophic factor (BDNF)

Changes that are critical to epileptogenesis

Animals can not kindle

He et al. (2004) Neuron

TrkB inhibition reduces epileptogenesis

Summary- critical changes

Inflammation

Kanemoto et al. Epilepsia (2003)

Increased frequency of interleukin-1 β -511T allele in patients with temporal lobe epilepsy, hippocampal sclerosis, and prolonged febrile convulsion.

Jin et al. Epilepsia (2003)

Association analysis of a polymorphism of interleukin 1β gene with temporal lobe epilepsy in a chinese population.

Translationalresearch: Laboratory animal ------Human

Dube et al. Ann. Neurol. (2005)

Interleukin 1β contributes to the generation of experimental febrile seizures

Dentate gyrus Rodent ----- D

Dentate gyrus Human

Translational research: Laboratory animal ------ Human

Growth

RAT HUMAN Scharfman et al (2002) J Comp Neurol Murray et al (2000) J Comp Neurol

Evidence for **BDNF** in patients with epilepsy

Conclusions

I. Epileptogenesis as a complex process

II. Data from animal models of epileptogenesis provide insight into the clinical condition and vice-versa

III. New opportunities for therapeutic targets for antiepileptogenic agents

A. Immune response, Inflammation - COX-2, interleukin 1 β B. Growth - BDNF/trkB

GABARα1, Calcineurin, K⁺Cl⁻ cotransporter, CB1

Raol et al (2006) Sanchez et al (2005) Dzhala et al (2005) Schuchmann et al (2006) Chen et al (2007)

Acknowledgements

Frances Jensen Shlomo Shinnar Asla Pitkanen Pete Engel Nico Moshe Ed Dudek John Swann Margaret Jacobs