
GENETICS, GENOMICS AND EPILEPSY

An alternative and accessible version of this presentation is available at 9:30 am in the Videocast of Day One

GENETIC VARIATION IN HUMANS

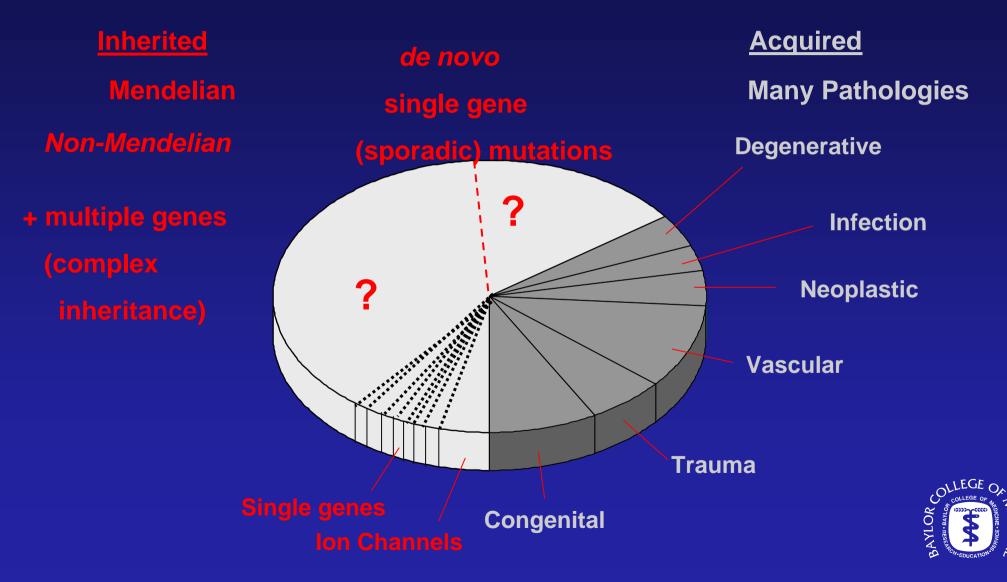
Variation is measured by single nucleotide polymorphisms (SNPs).

>75 Genes Linked to Monogenic Epilepsy

SCN1A	
SCN2A1	
SCN1B	
KCNA1	
KCNC2	
KCNQ2	
KCNQ3	
KCNMA	
KCNMB4	
CACNA1A	
CACNB4	
CACNG4	
CACNA2D2	
CICN2	
HCN2	
GABRA1	
GABRB3	
GABRG2	
CHRNA4	
CHRNB2	
HTR2C	
GRIA2	

SLC9A1 SLC1A2 SLC2A1 KCC2 ATP1A2 NPY GAD2 ITPR1 CAMK2A PLCB1 SYN1+2 SV2A BSN AP3D1 DCX BSN AP3D1 DCX DCLX1 OTX EMX2 SOX1 FCN2 UPAR ARX	
SLC2A1 KCC2 ATP1A2 NPY GAD2 ITPR1 CAMK2A PLCB1 SYN1+2 SV2A BSN AP3D1 DCX DCLX1 OTX EMX2 SOX1 FCN2 UPAR	SLC9A1
KCC2 ATP1A2 NPY GAD2 ITPR1 CAMK2A PLCB1 SYN1+2 SV2A BSN AP3D1 DCX DCLX1 OTX EMX2 SOX1 FCN2 UPAR	SLC1A2
ATP1A2 NPY GAD2 ITPR1 CAMK2A PLCB1 SYN1+2 SV2A BSN AP3D1 DCX DCLX1 OTX EMX2 SOX1 FCN2 UPAR	SLC2A1
NPY GAD2 ITPR1 CAMK2A PLCB1 SYN1+2 SV2A BSN AP3D1 DCX DCLX1 OTX EMX2 SOX1 FCN2 UPAR	KCC2
GAD2 ITPR1 CAMK2A PLCB1 SYN1+2 SV2A BSN AP3D1 DCX DCLX1 OTX EMX2 SOX1 FCN2 UPAR	ATP1A2
ITPR1 CAMK2A PLCB1 SYN1+2 SV2A BSN AP3D1 DCX DCLX1 OTX EMX2 SOX1 FCN2 UPAR	NPY
CAMK2A PLCB1 SYN1+2 SV2A BSN AP3D1 DCX DCLX1 OTX EMX2 SOX1 FCN2 UPAR	GAD2
PLCB1 SYN1+2 SV2A BSN AP3D1 DCX DCLX1 OTX EMX2 SOX1 FCN2 UPAR	ITPR1
SYN1+2 SV2A BSN AP3D1 DCX DCLX1 OTX EMX2 SOX1 FCN2 UPAR	CAMK2A
SV2A BSN AP3D1 DCX DCLX1 OTX EMX2 SOX1 FCN2 UPAR	PLCB1
BSN AP3D1 DCX DCLX1 OTX EMX2 SOX1 FCN2 UPAR	SYN1+2
AP3D1 DCX DCLX1 OTX EMX2 SOX1 FCN2 UPAR	SV2A
DCX DCLX1 OTX EMX2 SOX1 FCN2 UPAR	BSN
DCLX1 OTX EMX2 SOX1 FCN2 UPAR	AP3D1
OTX EMX2 SOX1 FCN2 UPAR	DCX
EMX2 SOX1 FCN2 UPAR	DCLX1
SOX1 FCN2 UPAR	ΟΤΧ
FCN2 UPAR	EMX2
UPAR	SOX1
	FCN2
ARX	UPAR
	ARX

KCNJ6 NEUROD1 **MECP2** EPM2A FLN1 PPT1 ALPL TRK1 LAMR1P11 RORA PTEN CBP-B AMT UBE3a CIT **CYSTB** MYO5A **TSC1, 2** NHLRC1 LGi1 Caspr2


GABBR1

Human

Mouse

Both

Etiology of Epilepsy

(HETEROZYGOUS) MUTATION DETECTION

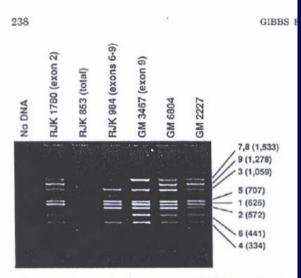
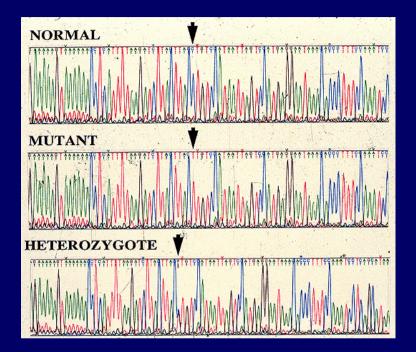
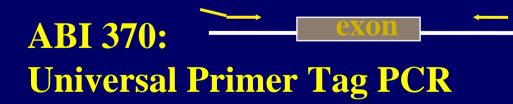




FIG. 2. Multiplex amplification of the HPRT locus. All nine exons of the human HPRT gene were amplified on eight separate DNA fragments using 16 oligonucleotide primers in a single PCR.

Complete Gene Ascertainment!

THE FINISHED HGP 1991-2004: Lessons

Finishing the euchromatic sequence of the human genome

The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about

International Human Genome Sequencing Consortium*

*A list of authors and their affiliations appears in the Supplementary Information

The DNA sequence of the human X chromosome

LETTERS

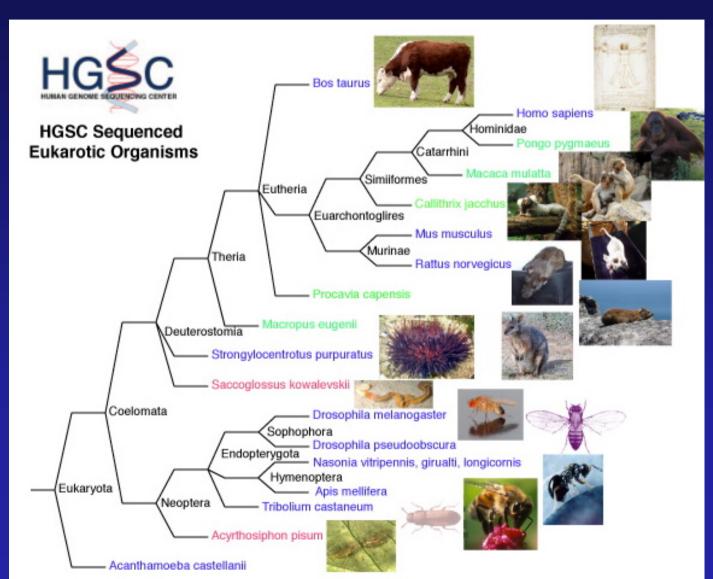
articles

The DNA sequence, annotation and analysis of human chromosome 3

Donna M. Muzny¹, Steven E. Scherer¹, Rajinder Kaul², Jing Wang³, Jun Yu³, Ralf Sudbrak^{4,5}, Christian J. Buhay¹, Rui Chen¹, Andrew Cree¹, Yan Ding¹, Shannon Dugan-Rocha¹, Rachel Gill¹, Preethi Gunaratne¹, R. Alan Harris¹, Alicia C. Hawes¹, Judith Hernandez¹, Anne V. Hodgson¹, Jennifer Hume¹, Andrew Jackson¹, Ziad Mohid Khan¹, Cheidith Keurs Smith¹, Less P. Lewit¹, Dura H. Lewit¹, Jensel L. Mathue¹, Alakamater Milaculaid¹

The finished DNA sequence of human chromosome 12

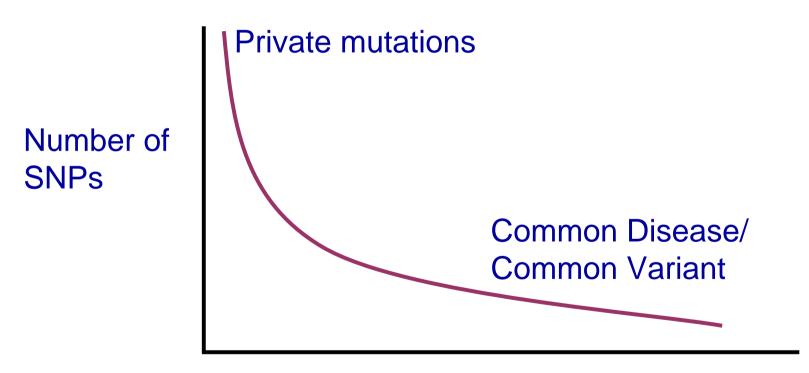
Steven E. Scherer¹, Donna M. Muzny¹, Christian J. Buhay¹, Rui Chen¹, Andrew Cree¹, Yan Ding¹, Shannon Dugan-Rocha¹, Rachel Gill¹, Preethi Gunaratne¹, R. Alan Harris¹, Alicia C. Hawes¹, Judith Hernandez¹, Anne V. Hodgson¹, Jennifer Hume¹, Andrew Jackson¹, Ziad Mohid Khan¹, Christie Kovar-Smith¹, Lora R. Lewis¹, Ryan J. Lozado¹, Michael L. Metzker¹, Aleksandar Milosavljevic¹, George R. Miner¹, Kate T. Montgomery², Margaret B. Morgan¹, Lynne V. Nazareth¹, Graham Scott¹, Erica Sodergren¹, Xing-Zhi Song¹, David Steffen¹, Ruth C. Lovering³, David A. Wheeler¹, Kim C. Worley¹, Yi Yuan¹, Zhengdong Zhang¹, Charles Q. Adams¹, M. Ali Ansari-Lari¹, Mulu Ayele¹, Mary J. Brown¹, Guan Chen¹, Zhijian Chen¹, Kerstin P. Clerc-Blankenburg¹, Clay Davis¹, Oliver Delgado¹, Huyen H. Dinh¹, Heather Draper¹, Manuel L. Gonzalez-Garay¹, Paul Havlak¹, Laronda R. Jackson¹, Leni S. Jacob¹, Susan H. Kelly¹, Li Li², Zhangwan Li¹, Jing Liu¹, Wen Liu¹, Jing Lu¹, Manjula Maheshwari¹, Bao-Viet Nguyen¹, Geoffrey O. Okwuonu¹, Shiran Pasternak¹, Lesette M. Perez¹, Farah J. H. Plopper¹, Jireh Santibanez¹, Hua Shen¹, Paul E. Tabor¹, Daniel Verduzco¹, Lenee Waldron¹, Qiaoyan Wang¹, Gabrielle A. Williams¹, JingKun Zhang¹, Jianling Zhou¹, Baylor College of Medicine Human Genome Sequencing Center Sequence Production Team^{*}, David Nelson¹, Raju Kucherlapati², George Weinstock¹ & Richard A. Gibbs¹ <section-header>


Image: Additional and the product of th

Immediate Findings:
Even Less genes? (~22,000)
Segmental duplication polymorphisms
Publicly available data is important.

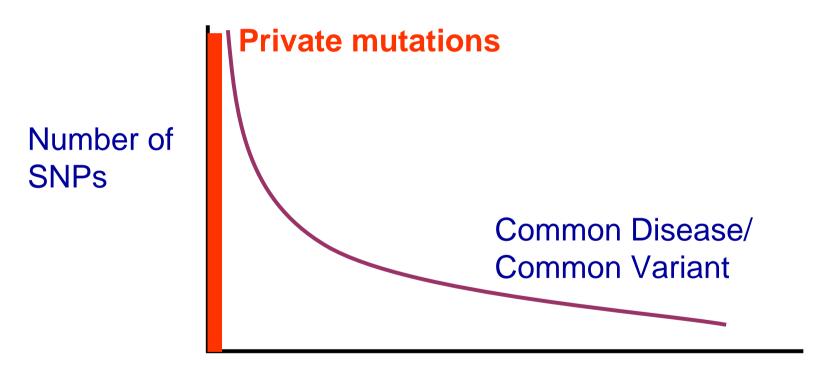
Feb '96, 97, 98 Bermuda Meetings

'Genomes -> Mutation Discovery

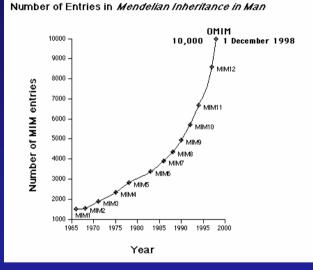


Dolphin Armadillo **Kangaroo Rat** Gibbon And soon ?? **Baboon Y-Chromosomes**

Overall Distribution of Variation

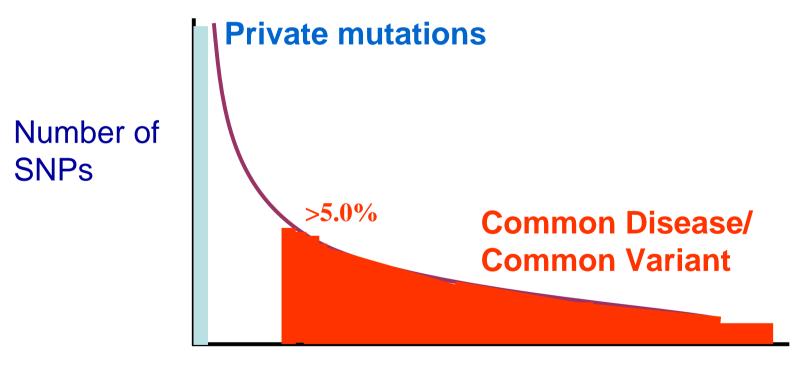


Rare \leftarrow SNPs \rightarrow Common

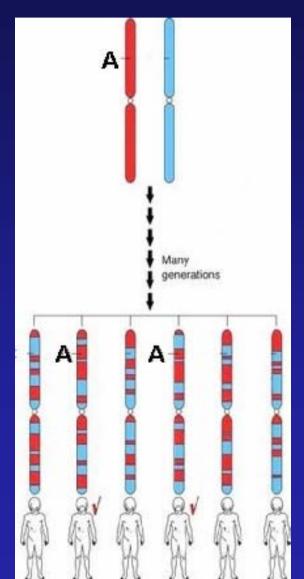

Overall Distribution of Variation

Rare \leftarrow SNPs \rightarrow Common

OMIM - 13,000 Entries

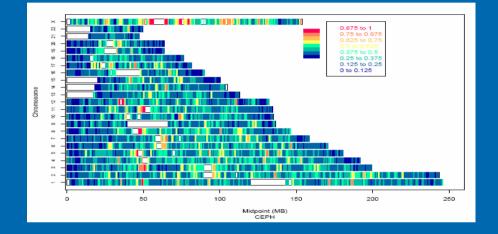

> 6,000 Mendelian Traits,
~ 1,800 solved
All possible by large scale
Re-sequencing

Focusing on Mendelian Traits is Guaranteed High Yield!!


Overall Distribution of Variation

Rare \leftarrow SNPs \rightarrow Common

Common Disease/Common Variant


The human population is young enough that disease causing mutations Will be linked to common variants: Also – can 'Tag'.

HapMap Shows the Landscape: e.g. Genomic Distribution of LD (CEU)

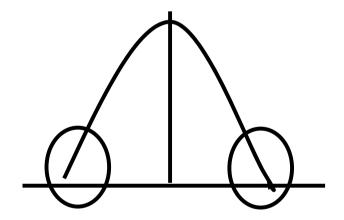


Expected r² at 30kb Bright Red > 0.88 Dark Blue < 0.12

Some early disease successes and many WGA maturing in the next few months

Overall Distribution of Variation

Rare \leftarrow SNPs \rightarrow Common


Contribution of multiple rare alleles

"Nonsynonymous variants, although individually rare, are cumulatively frequent and influence

Multiple Rare Alleles Contribute to Low Plasma Levels of HDL Cholesterol

Jonathan C. Cohen,^{1,2,3}[†] Robert S. Kiss,⁵^{*} Alexander Pertsemlidis,¹ Yves L. Marcel,^{5†} Ruth McPherson,⁵ Helen H. Hobbs^{1,3,4}

Science 305:869-72 (2004)

Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels

(cholesterol absorption | complex trait | genetic architecture | mutation | plant sterol)

Jonathan C. Cohen *1th, Alexander Pertsemlidis [‡], Saleemah Fahmi *, Sophie Esmail ¶, Gloria L. Vega *[†], Scott M. Grundy *[†], and Helen H. Hobbs *[‡]¶|| PNAS 103:1810-1815 (2006)

Backer College of Medicine

Medical Resequencing Pipeline

IRB Recruitment DNA Diagnosis	Olię	gonucleotide primers	Gene Models Primer Design Primer Testing
Samples	Set-	up and cycling	
DNA extraction	PCR Posi	itive and Negation itrols	ve
Integration with	Rea	ction clean-up	
existing production Accuracy Run-times	Sequencing	Heterozygote In/Dels	
Base Calling	SNP Detection	Algorithm Dev SNP Detector v	r elopment 2 (Jinghui Zhang)
Integration	•	False Positive	/ False Negative
Accessibility Security/Privacy	Data mining and display	Validation	Throughput Cost Reduction
Data Relationships	5		Tracking (LIMS)

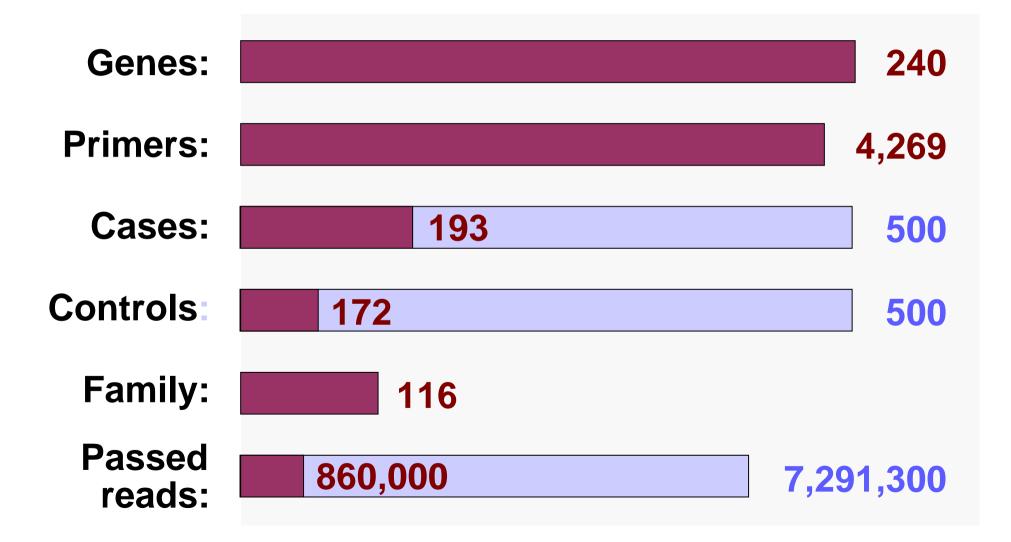
Medical Resequencing at BCM-HGSC

- HPRT (1988)
- CCR2, Noonans Syndrome,
- MGC clone validation
- West Nile Virus susceptibility
- Schizophrenia (2 studies)
- HapMap ENCODE regions
- Bipolar (50 genes)
- Parkinson's Disease
- Premature birth
- Idiopathic Generalized Epilepsy (IGE)

- Juvenile rheumatoid arthritis
- Prostate cancer
- NSC lung cancer (TSP)
- Bladder cancer
- Pediatric cancer
- Brain cancer
- Alpha1 anti-trypsin deficiency
- Juvenile obesity
- Leber's congenital amaurosis
- Mouse (ENU)

~1,000 genes in play in all current projects

Baylor Human Channelopathy Project


NINDS (Jeff Noebels) and NHGRI (HGSC)

Baylor Human Channelopathy Project

Goals:


- Sequence ~250 ion channel genes in 1000 individuals (500 IGE patients and 500 matched controls)
- Develop tools for large scale medical sequencing and build a public database of human ion channel SNPs
- Test hypotheses on role of ion channel gene variation in sporadic epilepsy: common allele -vs- rare variant models, oligogenic and *de novo* mutations
- Use clinical genomics to develop individualized information on risk, clinical outcome, and response to therapy in common single index cases.

Progress (January 2007)

Interim Results

A lot of Variation!!

Top 10 nsSNP

		0		0	
iene	nsSNP	Gene	nsSNP/kb	Gene	nsSNP/kb/person
RYR3	35	KCNJ12	21.51	CLCNKB	0.19
CACNA1H	33	KCNE1	10.03	KCNJ12	0.19
RYR1	32	HTR3D	9.52	CLCNKA	0.15
KCNJ12	28	CLCNKB	7.75	CHRNA3	0.13
ANK2	27	KCNA10	7.16	KCNE1L	0.11
SCN10A	20	KCNMB1	6.94	KCNJ4	0.10
RYR2	19	CLCNKA	6.78	KCNC2	0.09
CACNA1G	17	KCNJ1	6.63	KCNG1	0.08
CLCNKB	16	KCNG4	6.35	DRD4	0.08
GRIN3A	16	HTR3B	6.03	SCN1B	0.08
CACNA1A	14	KCNK16	5.38	KCNE1	0.08
CLCNKA	14	KCNE2	5.38	KCNG4	0.07
CACNA1E	13	KCNK6	5.31	CACNG2	0.07
SCN5A	13	HTR1B	5.12	SCN4B	0.07
CACNA1I	12	GRIN3A	4.78	KCNE2	0.07
CACNA1S	12	KCNA1	4.70	CHRNA2	0.06
GRM5	12	CACNA1H	4.67	GABRA6	0.06
KCNH6	12	HTR5A	4.66	DRD3	0.06
SCN2A2	12	GRINL1A	4.52	CHRNA5	0.06
SCN4A	12	HTR3A	4.51	CACNB2	0.06
SCN9A	12	KCNJ15	4.43	CACNG1	0.06
CACNA1D	11	KCNA7	4.38	DRD1	0.06
KCNA10	11	KCNV2	4.27	CACNG4	0.05
CACNA1F	10	KCNJ11	4.26	GLRB	0.05

raw count

normalized gene len

normalized gene len & people

Top 10 genes

Gene	AII	Gene	cSNP	Gene	nsSNP
RYR1	199	RYR1	87	RYR1	32
RYR3	151	KCNJ12	57	KCNJ12	28
RYR2	125	CACNA1H	53	CACNA1H	26
CACNA1H	102	RYR3	41	ANK2	19
GABRA4	79	RYR2	37	RYR2	19
KCNT1	76	ANK2	30	CLCNKB	16
KCNQ2	70	CACNA1G	28	CACNA1G	15
CACNA2D3	66	KCNH6	27	CLCNKA	14
KCNJ12	66	SCN10A	26	RYR3	14
KCNJ5	63	CACNA1A	25	SCN10A	14

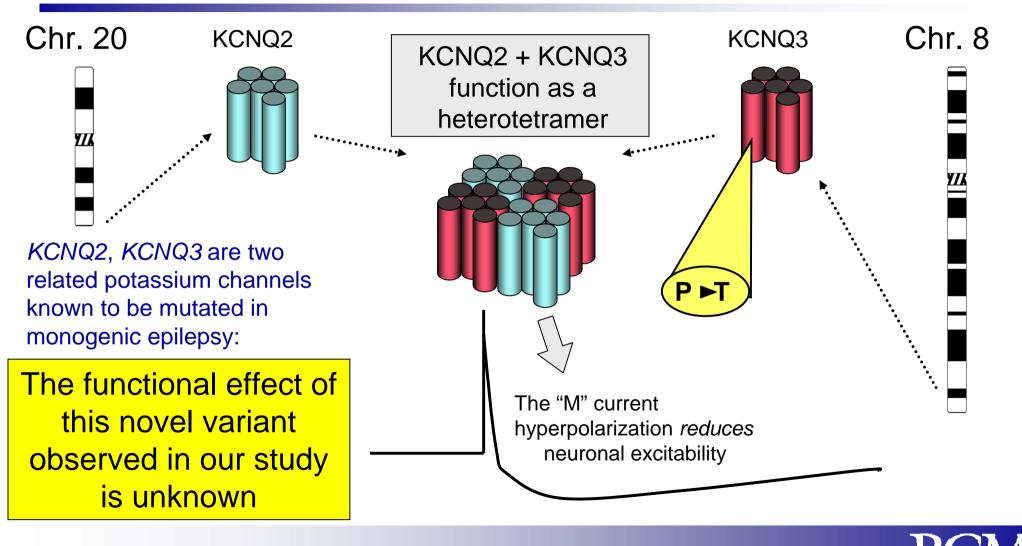
Novel nonsense mutations

Gene	Chr	Exon	АА	Codon	Alle	le Frequency	,	АА	Codon	Phenotype
KCNH2	chr7	13	W	T G G	GG.25	AG.1	AA.0	Term	T A G	Control
CLCN1	chr7	24	R	CGA	CC.58	CT.1	TT.0	Term	TGA	Proband
CLCN2	chr3	15	W	тG G	GG.60	AG.1	AA.0	Term	TG A	Proband
GABRR1	chr6	10	E	G AG	GG.49	GT.1	TT.0	Term	TAG	Proband
GRIN2A	chr16	14	С	тG С	CC.50	AC.1	AA.0	Term	TG A	Proband
HTR3A	chr11	2	L	т т G	TT.128	AT.1	AA.0	Term	T A G	Control
KCNK16	chr6	6	Q	CAG	CC.122	CT.1	TT.0	Term	TAG	Proband
KCNK7	chr11	3	Q	CAG	CC.128	CT.1	TT.0	Term	TAG	Control
KCNQ3	chr8	9	E	GAA	GG.116	GT.3	TT.0	Term	ΤΑΑ	N/A
KCNT1	chr9	13	R	CGA	CC.133	CT.1	TT.0	Term	TGA	Proband
KCNV2	chr9	2	S	т с G	CC.18	AC.1	AA.0	Term	T A G	Proband
RYR1	chr19	35	Q	CAG	CC.29	CT.0	<u>TT.1</u>	Term	TAG	Control
SCN10A	chr3	15	R	CGA	CC.44	CT.2	TT.0	Term	TGA	Proband
SCN10A	chr3	27	R	CGA	CC.45	CT.1	TT.0	Term	TGA	Proband
SCN1A	chr2	11	E	G AG	GG.17	GT.1	TT.0	Term	TAG	Proband
SCN2A2	chr2	14	R	AGA	AA.40	AT.1	TT.0	Term	TGA	Proband

Novel, NS variants were found in ion channel genes associated with several disorders

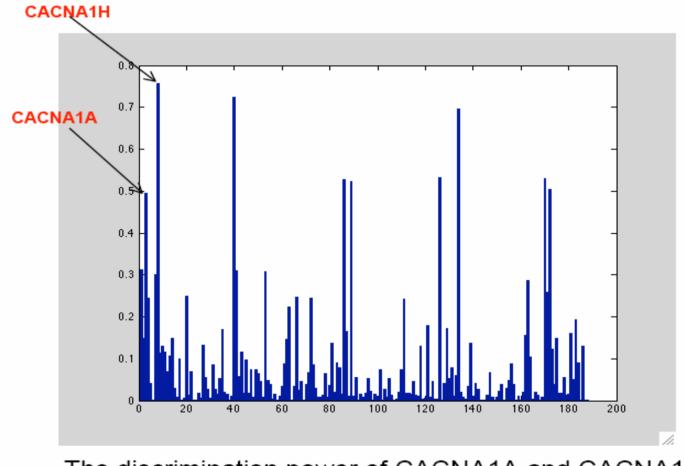
<u>Brain</u> Epilepsy Cerebellar ataxia Familial Migraine

<u>Heart</u> Long QT syndrome, types 2, 3, 4 Ventricular tachycardia


<u>Eye, Ear</u>

Congenital stationary night blindness Nonsyndromic sensorineural hearing loss

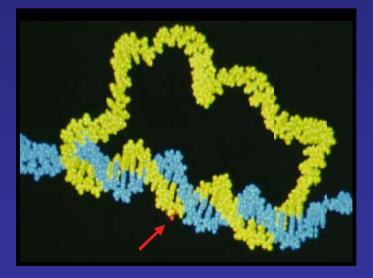
Skeletal Muscle Myotonia Malignant hyperthermia Hypokalemic periodic paralysis Slow-channel myasthenic syndrome Kidney Bartter syndrome, types 3 & 4 Bartter syndrome with deafness Multisysytem Infantile malignant osteopetrosis

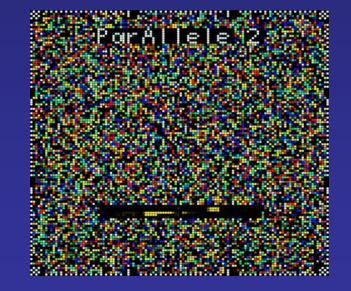

Functional Variants?

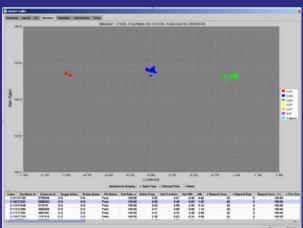
Human Genome Sequencing Center

Baylor College of Medicine

Statistical Power Not Yet Adequate:

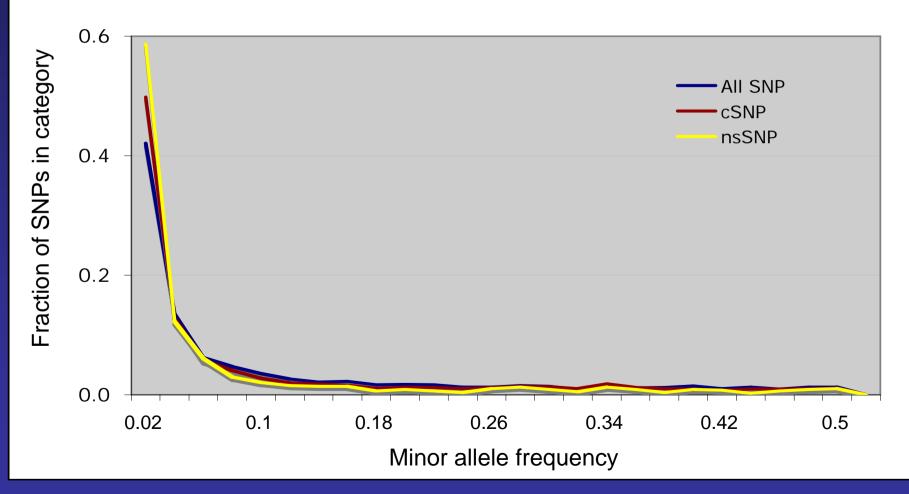


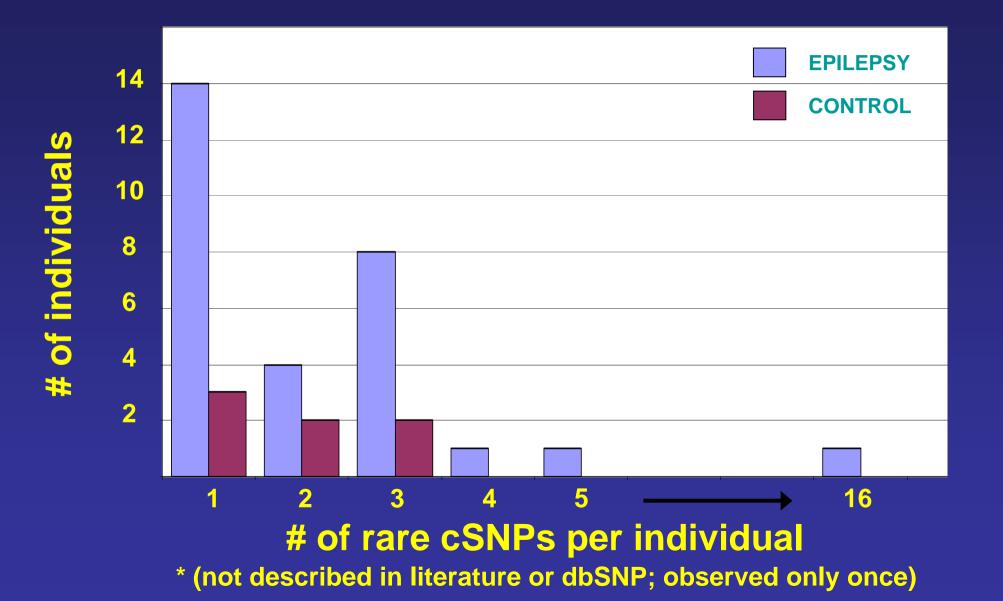

The discrimination power of CACNA1A and CACNA1H


The Validation Cycle:

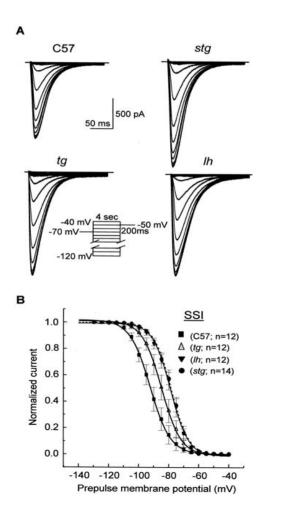
Pyro- Sequencing OR

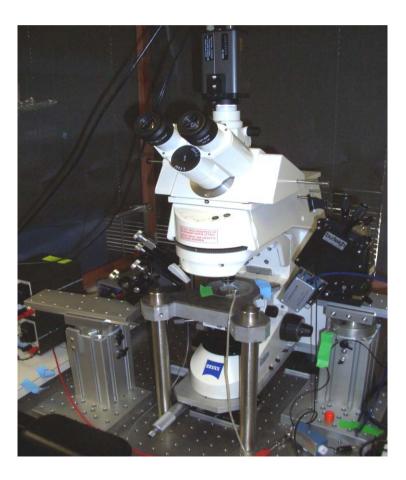
Molecular Inversion Probes (1.5 – 10K-plex)





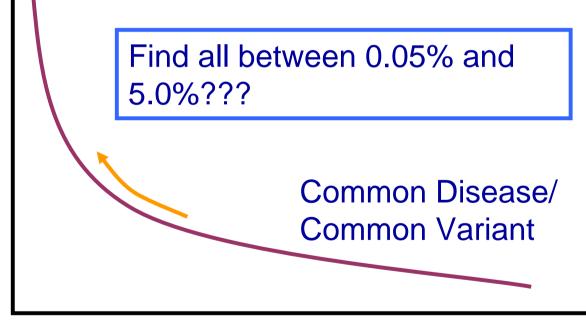
Minor allele frequency distribution


IGE SNP MAF distribution



Co-inheritance of Rare* Ion Channel cSNPs

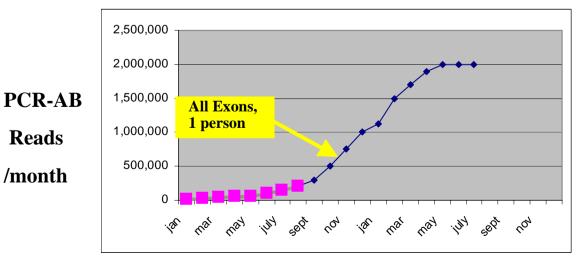
Functional Analysis – High Throughput?

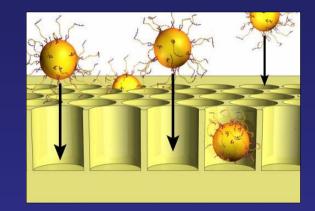


Detecting all rare variants

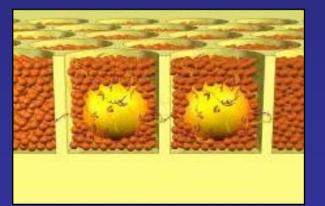
Number of SNPs

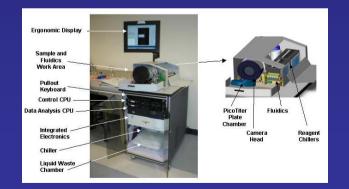
Rare \leftarrow SNPs \rightarrow Common


Technology drives the realities ...

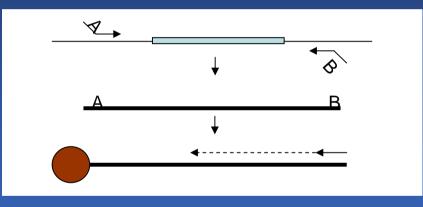

AB Cost ~0.55/kb One 10x genome ~ \$18M OR All exons by PCR ~ \$400,000

Personalized genomes - expensive!!

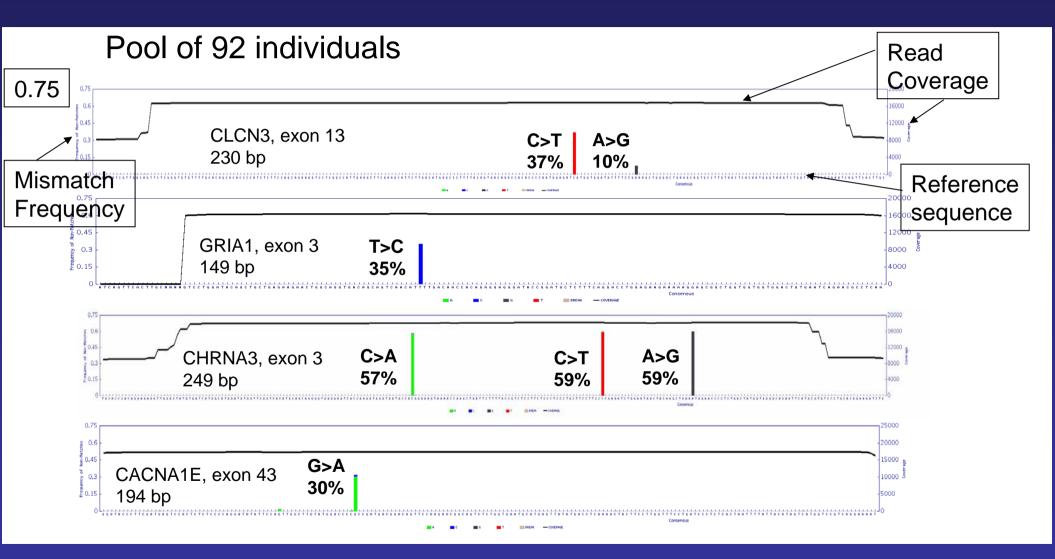



454 DNA Sequencing:

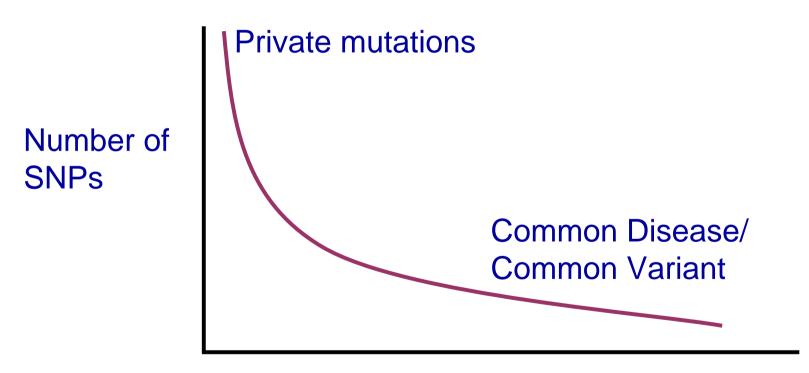
12 h	5	E	1999
1	12	a for	- Alexandre
12	Ser al	AL.	N. C.
ET.	S	K	


[RG is a member of the454 Life Sciences SAB.This conflict is managedby the BCM COI policies.]

454 Mutation Discovery Pipeline

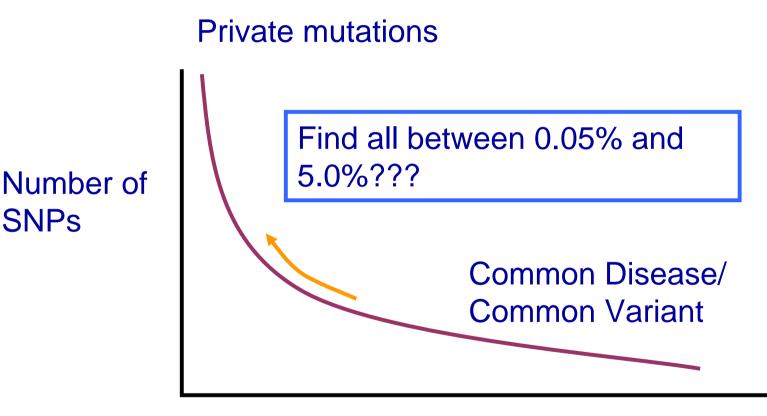

Testing 50,000 haplicons at a time??

Best for Pooled PCR Products....


5 – 10 times less cost than current AB methods

Medical Resequencing using the GS20

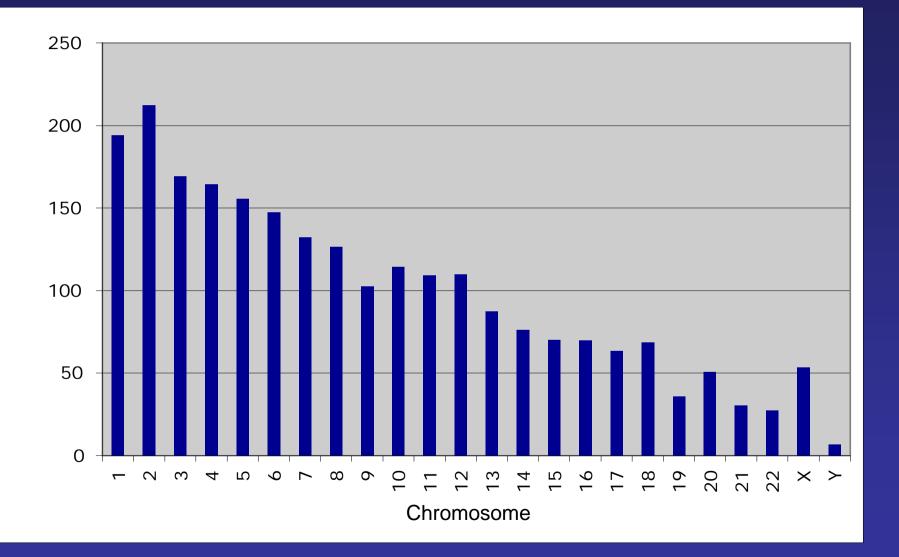
Overall Distribution of Variation



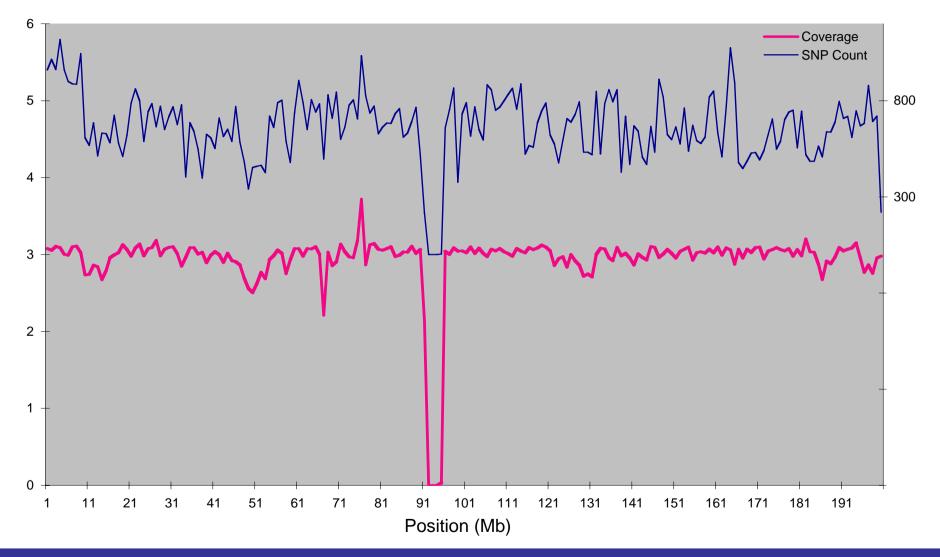
Rare \leftarrow SNPs \rightarrow Common

Why Not 'Discover' all Rare Variants???

Rare \leftarrow SNPs \rightarrow Common



Genome Genome Genome


- Proof of concept
 - What can we learn from a single genome?
 - Can we get unbiased sequence?
 - What analytical issues arise?
- 454 Timeline
 - Dec 15 '06 10 million reads, ~2.5 Gbases
 - Jan 15 '07 20 million reads, ~5.0 Gbases
 - Jan 30 '07 40 million reads, ~10 Gbases

Distribution of Non-Repetitive Matches

Watson: Chromosome 3 Base Coverage

SNP Density (SNP/Mb)

Functional Alleles

- 50 SNPs match to database of human (disease) phenotypes
- 32 are recognized polymorphisms
- 18 of the 50 are "associated" with the phenotype base on population studies

> Get 6x coverage and deliver data to JW for releas

Conclusions:

Determined many 'interesting' ion channel mutations,

• Ready for large scale functional analysis

Poised for 'personal genomes'

HGSC Acknowledgements:

BCM-HGSC George Weinstock Donna Muzny

John McPherson Erica Sodergren Lynne Nazareth Steve Scherer Mike Metzker Rui Chen David Parker

All other 180 staff!

MHG John Belmont David Nelson

BIOINFORMATICS

David Wheeler Caleb Davis Kim Worley Jerry Fowler

Ion Channel Jeff Noebels Dan Burgess Alicia Goldman Suzanne Leal

GENBOREE Aleks Milosavljevic Andrew Jackson Alan Harris

RESXNING GROUP

Ming Shen Traci Bergman Donna Villasana

and.....

Acknowledgements

