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Metal–Insulator–Semiconductor Transmission Lines
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Abstract— This paper investigates the one-dimensional
metal–insulator–semiconductor transmission line. It develops
closed-form expressions for equivalent-circuit parameters,
compares them to exact calculations, and explores their
limitations. It also investigates the usual assumption of single-
mode propagation and shows that, in certain fairly common
circumstances, the fundamental mode of propagation becomes
so lossy that it can no longer be considered to be the dominant
propagating mode.

Index Terms— Equivalent circuit, metal–insulator–semicon-
ductor transmission line, microstrip, silicon.

I. INTRODUCTION

T HIS PAPER investigates the transverse magnetic (TM)
modes of the one-dimensional metal–insulator–semicon-

ductor (MIS) transmission line of Fig. 1. The transmission
line consists of a metal film bounded on its upper surface
by a perfect magnetic wall and separated by an insulator or
a depletion region from a semiconducting substrate backed
with a perfectly conducting wall. While this transmission
line has no fringing fields, it approximates wide microstrip
lines fabricated on silicon substrates backed by thick
metal films of high conductivity. Here, the magnetic wall
approximates the nearly open-circuit condition at the air–metal
interface on top of the signal line, while the electric wall
approximates the boundary condition due to the highly
conductive metal film on the back of the substrate. Its
solutions, when reflected through the magnetic wall, also
correspond to those of the even modes of symmetric infinitely
wide metal–semiconductor–insulator–metal–insulator–semi-
conductor–metal striplines.

Guckel et al. [1], Hasegawaet al. [2], and J̈ager [3]
first investigated the one-dimensional MIS transmission line.
Guckel et al. observed that when the substrate conductivity

is greater than a specific conductivity , the MIS line
will be dominated by series loss, and that whenis less than

, the MIS line will be dominated by shunt loss. They used
to define two distinct regions of operation. They treated

these two regions of operation independently and developed
different equivalent-circuit descriptions for each of them.

Hasegawaet al. carried these concepts further in [2]. This
work discussed three MIS regions of operation, each separated
from the others by a transition region and described by its own
distinct equivalent-circuit model.

In [3], Jäger focused on what he called the “slow wave”
region of propagation of the MIS line. Jäger deviated sig-
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Fig. 1. The one-dimensional MIS transmission line.

nificantly from the treatments of [1] and [2] by proposing
an equivalent-circuit model in which the resistance of the
substrate is connected in parallel with the resistances of the
metal and insulator, rather than in series with them.

These three investigations of the one-dimensional MIS lines
have played a crucial role in shaping our understanding of the
broader class of MIS transmission lines; almost all subsequent
investigations of more complex MIS lines with fringing fields
have focused on extensions of the basic circuit models they
described.

This paper will report on single unified equivalent-circuit
descriptions for the dominant mode of the one-
dimensional MIS line valid over all its regions of operation. It
will also present the first application of the integral expressions
of [4] and [5] for a transmission line’s equivalent-circuit
parameters to the development of a closed-form equivalent-
circuit model for a transmission line. Finally, this paper will
investigate the common assumption that the mode of
the MIS line is always dominant and examine its properties
when it becomes so lossy that it can no longer be considered
dominant.

II. EXACT MODAL SOLUTIONS

It is customary to refer to the th TM mode of a trans-
mission line, where refers to the order of the mode, as the

mode. When the transmission line is lossless,refers
to the number of nulls in TM field, and higher values of
correspond to higher spatial variation in the transverse fields.
When the transmission line is lossy, the modes are ordered so
that the transverse variation in the transverse fields increases
with increasing .

Reference [6] outlines a method of solving exactly for the
propagation constant and fields of any mode of the one-
dimensional transmission line of Fig. 1. Define the complex
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dielectric constant of the metal to be , where
is the permittivity of free space, is the conductivity of the
metal, and is the angular frequency, the dielectric constant

of the insulator to be , where is the relative dielectric
constant of the insulator, and the complex dielectric constant

of the semiconductor to be , where is its
relative dielectric constant and is its conductivity. Then the
longitudinal electric field of a TM mode of propagation in the
MIS line of Fig. 1 can be written as [6]

(1)

and its tangential magnetic field as

(2)
Here, , , and , where

, , and are the thicknesses of the metal, insulator, and
semiconducting substrate. In addition, ,
the fields have been normalized so that at ;
the implicit dependence , where is the modal
propagation constant, has been suppressed throughout, and the
mode’s tangential electric field is

(3)

The constants , , and are defined by

(4)

where takes the values , , or as appropriate, and is
the permeability of free space. The describe the variation
of the fields in the -direction and are usually complex. At
low frequencies, is small and the currents in the metal
are nearly uniform. For good conductors at high frequencies,

approaches , where is the skin depth in the
metal. This forces the fields to decay with distance from the
metal–insulator interface, in keeping with the skin effect. The
fields discussed here are special cases of those presented in [3].

Continuity of and at the metal–insulator interface
( ) requires that and in (1) and (2) satisfy

(5)

and

(6)

Continuity of and at the insulator–semiconductor
interface ( ) yields two conditions for that must
be satisfied simultaneously. They are

(7)

and

(8)

Since the modal propagation constantmust allow (7) and
(8) to be satisfied simultaneously, the fields of a mode may
be found by altering until both (7) and (8) are satisfied
simultaneously, at which point the modal fields of (1)–(3)
will satisfy Maxwell’s equations everywhere in the line. This
procedure can be used to determine the fields and propagation
constant of any of the TM modes of the MIS line.

The usual definitions for the modal voltageand the modal
current per unit width are

(9)

and

(10)

Here, the modal voltage corresponds to the integral of
the tangential electric field across the transmission-line cross
section from the electric wall at and the magnetic wall
at . The modal current corresponds to the current
in the metal film, determined here by integrating the magnetic
field around a path enclosing the metal. The modal power
per unit width, equal to the integral of the Poynting vector
over , is

(11)

In accordance with [4] and [5], the power–voltage definition
of the characteristic impedance is and the
power–current definition of characteristic impedance is

. We determine the inductance, capacitance ,
resistance , and conductance per unit length and width
of the line from and .
Figs. 3–5 plot exact solutions for these quantities for the
current–power definition of in solid lines for a substrate
thickness m. The figures illustrate the strong
frequency dependence of, , , and .

III. CONVENTIONAL MODEL

We will first investigate a simple equivalent-circuit model
for the mode of the MIS line based on classic surface-
impedance and parallel-plate-capacitor approximations. While
this model cannot be found in the literature, it is composed
of various elements of the models found in [1]–[3]. For this
reason, we will call it the “conventional model.”

Fig. 2 shows the model elements and their relationships to
the standard parameters, , , and . The obvious analogy
of the MIS line with a parallel-plate capacitor suggests setting

and in the model of Fig. 2 to
and . The model reproduces the exact values ofand

on thin substrates extremely accurately.
However, the conventional model breaks down on thicker

substrates. Figs. 3–5 illustrate this. They compare the exact
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Fig. 2. An equivalent-circuit model for theTM0 mode of the MIS trans-
mission line of Fig. 1. The formulas at the bottom of the figure can be used
to transform between the model parameters and the line’s standard circuit
parametersR, L, G, andC plotted in Figs. 3–5. The inductance attributed to
the insulating region in the model is�0ti.

Fig. 3. Exact and modeled values ofR, L, G, andC for theTM0 mode
of an MIS transmission line withtm = ti = 1 �m, �m = 3 � 107 S/m,
�0
i
= 3:9; �0s = 11:7; �s = 100 
 � cm, andts = 100 �m. The integral

model agrees so well with the exact results that the differences shown in
the figure are indistinguishable. The exact values are calculated from the
power–current definition of characteristic impedance.

Fig. 4. Exact and modeled values ofR, L, G, andC for theTM0 mode
of an MIS transmission line withtm = ti = 1 �m, �m = 3 � 107 S/m,
�0
i
= 3:9; �0s = 11:7; �s = 0:1 
 � cm, andts = 100 �m. The integral

model agrees so well with the exact results that the differences shown in the
figure are, for the most part, indistinguishable. The exact values are calculated
from the power–current definition of characteristic impedance.

Fig. 5. Exact and modeled values ofR, L, G, andC for theTM0 mode
of an MIS transmission line withtm = ti = 1 �m, �m = 3 � 107 S/m,
�0
i
= 3:9; �0s = 11:7; �s = 0:001 
 � cm, andts = 100 �m. The models

agree so well with the exact results that the differences shown in the figure
are, for the most part, indistinguishable. The exact values are calculated from
the power–current definition of characteristic impedance.

values of and for a 100- m-thick substrate of various
conductivities to those calculated from this model, which is
labeled conventional model and marked with short dashed
lines in the figures. Fig. 5 shows that the conventional model
overestimates significantly at high frequencies on thick
highly conductive substrates.

The classic surface-impedance formulation approximates
and by the surface impedance of a plane wave

impinging on the finite metal film backed by a magnetic wall,
and and by the surface impedance of a plane wave
impinging on the finite thickness semiconducting substrate
backed by a perfectly conducting ground plane. The resulting
expression for and in the model of Fig. 2 is

(12)

and for and is

(13)

where the [1]. These expressions may be
derived by setting in (4) and substituting the resulting
into (1) and (2) to determine the surface impedances
at the metal and semiconductor surfaces.

The surface-impedance approximation, like its counterpart
for and , works extremely well for thin substrates,
but breaks down for thick substrates. This is illustrated in
Figs. 3–5, which compare the exact values of and
(solid lines) to those calculated from this surface-impedance
approximation, which are also labeled conventional model
and marked with short dashed lines. Fig. 3 shows that the
conventional model overestimates and significantly at
high frequencies on thick highly resistive substrates.

Thus, while the conventional model always gives good
results for thin substrates, at high frequencies and on thick
substrates, it overestimates and when the substrate
conductivity is high and overestimates and when the
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substrate conductivity is low. This is not surprising given
that the approximations for and evolved from ideas
based on insulting substrates and the approximations for
and evolved from a surface impedance developed for good
conductors.

IV. V OLUME INTEGRAL EXPRESSIONS

While the approximations described above are good, we can
do better with the new and exact integral expressions for,

, , and found in [4] and [5]. For the TM modes of the
one-dimensional MIS line, these integral equations reduce to

(14)

and

(15)

While (14) and (15) are exact, we can develop good closed-
form approximations by evaluating , , and the integrals
only in the semiconducting substrate. Thus, we substitute
the integration limit at the silicon surface for , at
the semiconductor surface ( ) for in (14),

for in (15), and for , where

(16)

The expression for comes from substituting derived from
approximate equivalent-circuit parameters into (4) evaluated in
the silicon substrate. This results in the approximations

(17)

and

(18)

where and are the real and imaginary parts of .
Figs. 3–5 plot the results of this approximation with long
dashed lines and label them “integral models.” These volume
integral models are so good that they usually cannot be
distinguished from the exact results on the figures, although
Fig. 5 shows that (18) overestimates somewhat on thick
highly conductive substrates at high frequencies.

V. HIGH-LOSS REGION OF OPERATION

Up to this point we have examined only the mode.
When the substrate is thin, the loss of the mode is
always small compared to those of the higher order modes of
propagation, and it can be considered to be “dominant.” That

Fig. 6. The attenuation constant� and normalized phase constant�=�0 of
the TM0 andTM1 modes at�s = 0:1 
 � cm for an MIS transmission line
with tm = ti = 1 �m, �m = 3 � 107 S/m, �0

i
= 3:9; �0s = 11:7, and

ts = 100 �m. The quantities� and� are defined from � �+ j� and�0
is the phase constant of a plane wave propagating in free space.

is to say, its loss is so low that all higher order modes created
at a discontinuity in the line die away quickly enough to be
ignored at small distances from the discontinuity. When the

mode is dominant, it is the only mode that carries power
between well separated sources, discontinuities, and receivers
in the line.

The exact method can be used to find the propagation con-
stant and fields of any mode. Fig. 6 plots the attenuation
constants of the and modes as a function of
frequency when cm for a substrate thickness
of m. The figure shows that at low frequencies,
the attenuation of the mode remains small compared
to that of the mode. At these frequencies, the is
dominant, has fairly low attenuation, and is thus well suited
for propagating electrical signals.

However, the attenuation constant of the modes grows
rapidly at high frequencies, making it poorly suited for prop-
agating high-frequency signals. Figs. 7 and 8 show that this
high-loss region is limited to high frequencies and a limited
band of substrate resistivities near cm.

Fig. 6 shows that in its high-loss region of propagation, the
attenuation constant of the mode becomes comparable
to that of the mode. Here, we can no longer say that the

mode is dominant and an accurate description of the line
will require consideration of multiple modes of propagation,
a considerable design complication. There are other design
complications in this high-loss region as well.

Figs. 7 and 8 plot , a measure of the
significance of the modal cross powers [7], where

(19)

and and are the fields of the mode. They show
that becomes large when the propagation constants of the
two modes become comparable. When is large, the total
power in the transmission line can no longer be calculated as a
sum of the powers carried individually by the and
modes [8]. This emphasizes the complexity and multimodal
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Fig. 7. The ratio of attenuation constants of theTM0 and TM1 modes,
�, and &01 at �s = 0:1 
 � cm for an MIS transmission line with
tm = ti = 1 �m, �m = 3 � 107 S/m, �0

i
= 3:9; �0s = 11:7, and

ts = 100 �m.

Fig. 8. The ratio of attenuation constants of theTM0 andTM1 modes,�,
and &01 at 30 GHz for an MIS transmission line withtm = ti = 1 �m,
�m = 3� 107 S/m, �0

i
= 3:9; �0s = 11:7, andts = 100 �m.

character of the transmission line in its high-loss region of
operation.

Figs. 7 and 8 also plot , a measure of
the fidelity with which the power carried by the mode
is determined by the product of its modal voltage and
the conjugate of its modal current. The figures show that the
usual relationship between the conventionally defined modal
voltage and current and the actual power carried in the line
fails in the high-loss region.

MIS lines with high-loss regions of operation may be used to
propagate low-frequency signals over moderate distances and
high-frequency signals over very short distances. However,
even though the integral-based equivalent-circuit model still
provides an accurate description of the propagation character-
istics of the mode in its high-loss region, the preceding
discussion paints a complex picture of the electromagnetic
behavior of the MIS line there. Accurate high-frequency circuit
design in this high-loss region will require accounting for
the multimodal character of the transmission line, high modal
cross powers, and unconventional relationships between the
modal voltage, current, and power.

Fig. 9. Exact values ofR, L, G, and C for the TM0 mode of
the one-dimensional MIS transmission line withtm = ti = 1 �m,
�m = 3 � 107 S/m, �0

i
= 3:9; �0s = 11:7; �s = 0:1 
 � cm, and

ts = 100 �m are compared to results for microstrip calculated with the
full-wave method of [9]. The parameterw is the width of the microstrip
center conductor and the casew =1 refers to the one-dimensional results.

VI. M ICROSTRIP

While we made no attempt to account for the fringing fields
of a finite-width microstrip in the one-dimensional analysis
presented here, it is reasonable to ask whether the one-
dimensional MIS line will provide an accurate model for a
finite-width microstrip line. In fact, the model works well
for larger than . Calculations show, for example, that
wider microstrip reflects the qualitative behavior of the one-
dimensional MIS line and still exhibit, for example, a high-loss
region near cm.

However, the one-dimensional model breaks down when
becomes much smaller than. This breakdown is illustrated
by Fig. 9, which compares the equivalent-circuit parameters
of a microstrip line of center conductor widths
determined with the full-wave method of [9] to those of
the one-dimensional MIS line. Here, the equivalent-circuit
parameters of the microstrip line has been normalized by,
so as to be directly comparable to the one-dimensional results.
That is, and for the microstrip line has been multiplied by

, whereas and have been divided by . In each case, the
metal, insulator, and substrate parameters were all identical.

Fig. 9 shows that the fringing fields cannot be ignored
when is much smaller than and the one-dimensional
MIS results cannot be used for practical circuit design. It
indicates, for example, that the microstrip-line inductance
cannot be predicted by simply dividing the inductance of
the one-dimensional MIS line by the conductor width.
The figure also shows that the effect of the substrate on
weakens as the center conductor width shrinks, suggesting
that narrow microstrips on silicon substrates may avoid the
high-loss region of operation discussed above.

VII. CONCLUSION

This paper presented accurate closed-form models for the
equivalent-circuit parameters of the mode of the one-
dimensional MIS transmission line. In contrast to previous
treatments, only a single set of expressions and model topol-
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ogy are required to describe the line over its entire range
of operating conditions. This simplification creates a clear
physical picture of the MIS line, in which the impedances and
admittances of each layer may be calculated independently
and then added together in a simple and intuitive way to
predict overall transmission-line behavior. In this picture, the
series impedance of each layer is determined by its surface
impedance and its admittance by a parallel-plate capacitance
model.

The accuracy of the conventional model was improved with
the aid of the integral expressions of [4] and [5]. This improve-
ment did not require adding elements to the model or adjusting
the model topology. This is the first time, to the author’s
knowledge, that these integral equations have been used to
estimate equivalent-circuit parameters. The success of this
approach here suggests a new methodology for constructing
equivalent circuits for more complex transmission lines. This
methodology would use field approximations and the integral
expressions of [4] and [5] to estimate the contributions of each
layer or physical region of the transmission line to the total
transmission-line impedance and admittance per unit length.

This paper has also shown that the MIS line has a high-loss
region of operation in which its electrical behavior becomes
complicated and multimodal in nature. It explored the prop-
erties of the mode in this high-loss region of operation,
showing that the conventional relationships between its modal
voltage, current, and power do not hold there, and that the
total power in the line is no longer a simple sum of the powers
carried by each mode of propagation individually. From this
last observation, we can conclude that accurate treatments of
MIS lines in this high-loss region will require consideration
not only of multiple modes of operation, but also of the modal
cross powers, as is done in [8].
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