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Abstract- This paper examines modal cross power in electromagnetic transmission lines.

It shows that the cross powers of nearly degenerate modes may be large in quasi-TEM

multiconductor transmission lines typical of modern electronic circuits at moderate and low

microwave frequencies. The paper develops simple expressions to estimate the magnitude

of these cross powers from the “power-normalized” conductor impedance and admittance

matrices of the lines.

INTRODUCTION

This paper examines modal cross power in multiconductor transmission lines typical of

modern electronic circuits and presents expressions useful for estimating their importance.

The total electric field E and magnetic field H in a closed transmission line uniform in z and

constructed of linear isotropic materials can be written as  and

, where c  are the forward and reverse excitation coefficients of then
±

nth mode, �  is its propagation constant, and its transverse modal electric and magnetic fields en             tn

and h  and its longitudinal modal electric and magnetic fields e  and h  are functions only of thetn         zn  zn

transverse coordinates x and y [1]. Here z is the unit vector in the z direction, which coincides

with the direction of propagation, and the time harmonic dependence e , where 7 is the real+j7t
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angular frequency, has been suppressed. In open guides we must add a continuous spectrum of

modes to this discrete set [2].

When only a finite number of the discrete modes are excited in the line, the total complex

power p there is

���

where the sum is taken over all the excited modes, , and the integrals are

performed over the transmission-line cross section. We will call the P  for ngm the modal crossnm

powers and will use the unitless scalars �  � P P /(P P ) to quantify their significance.nm  nm mn nn mm

Lossless modes are power orthogonal when they are not degenerate; that is, their modal cross

powers are 0 (i.e. � =0) when � g�  [1]. Most equivalent circuit theories for multimodenm   n m
2 2

transmission lines begin with assumptions of power-orthogonal modes.

When �  is nonzero, which is only possible in lossy guides, the total power in the line can nonm

longer be calculated as a simple sum of the powers carried by each pair of forward and backward

modes and, in the terminology of [3], we would say that the modes are coupled. In these cases

equivalent-circuit theories for multimode transmission lines based on assumptions of power-

orthogonal modes would not apply.

Modal symmetries eliminate the cross powers of the modes of low-loss circular and coaxial

waveguides [3]. The cross powers of low-loss rectangular waveguide modes are generally small

except at frequencies where the modes are nearly degenerate. At these frequencies the modes

couple and the field patterns of each of the lossy coupled modes can be represented to first order

as linear combinations of the field patterns of lossless uncoupled modal solutions, which gives rise

to large modal cross powers [3], [4]. While [3] and [4] use perturbation theories to construct the

actual modal fields from superpositions of lossless solutions, this theory cannot be applied to

highly lossy lines typical of modern circuits. In any case, since these near degeneracies in

rectangular waveguides are limited to narrow bands of frequencies above the conventional upper

frequency limit of the guide they may often be ignored in practice.
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)LJXUH �� 7KH FRXSOHG PLFURVWULS WUDQVPLVVLRQ OLQHV RI >�@�

Reference [5] remarked that the cross

powers of the two dominant quasi-TEM

modes of the multiconductor transmission

line structure of Figure 1 are large at useful

frequencies and illustrated the importance of

accounting for them in thermal noise

calculations. Faché and De Zutter have

constructed an equivalent circuit theory based on power-normalized “conductor” voltages and

currents that accounts rigorously for modal cross powers even when losses are large [6]. This

theory has been clarified and extended in [7], [8], and [9]. However these works do not discuss

the mechanisms and conditions that give rise to large modal cross powers.

The high resistive losses of the small printed multiconductor transmission lines typical of

modern electronic circuits complicate their modal dispersion relations and often create near

degeneracies over broad ranges of useful frequencies. In this work we will investigate the cross

powers of the modes of some typical lossy multiconductor transmission lines and show that these

near degeneracies often result in large � . We will illustrate this with the coupled asymmetricnm

microstrip lines of Figure 1 and will develop useful expressions for �  in terms of the “power-nm

normalized” transmission-line impedances and admittances per unit length of [6], which may often

be estimated from static analyses [10].

QUASI-TEM ILLUSTRATION

The coupled lines of Figure 1 support two dominant quasi-TEM modes, which are commonly

called the c and % modes, and which correspond to the even and the odd mode of the symmetric

case, respectively. We verified that these modes were quasi-TEM by calculating the

ratios  and  with the full-wave method of [11], and found

that they approached 0 at low frequencies and were less than 0.001 below 10 GHz.

At high frequency the metal losses in the coupled lines of Figure 1 can be neglected and the

propagation constant of the c mode, which concentrates energy in the dielectric substrate, is
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)LJXUH �� 7KH VTXDUH URRW RI � IRU WKH DV\PPHWULF
F%

FRXSOHG PLFURVWULS OLQHV RI )LJXUH �� 7KH VROLG OLQHV

FRUUHVSRQG WR YDOXHV FDOFXODWHG GLUHFWO\ IURP PRGDO

HOHFWURPDJQHWLF ILHOGV GHWHUPLQHG E\ WKH IXOO�ZDYH PHWKRG

RI >��@� 7KH GDVKHG OLQH FRUUHVSRQG WR YDOXHV IRU W ���

�P FDOFXODWHG IURP ��� DQG HVWLPDWHV RI WKH WUDQVPLVVLRQ�

OLQH FLUFXLW SDUDPHWHUV�

substantially larger than that of the % mode,

which has significant energy in the air region

above the dielectric substrate. However the

higher loss of the % mode forces its

propagation constant to rise more rapidly at

low frequencies than the propagation

constant of the c mode, inevitably causing �c

and �  to become nearly degenerate at some
%

intermediate frequencies.

Figure 2 plots the square root of �c%

calculated directly from the fields determined

by the full-wave method of [11] in solid lines,

values which we verified with a method based

on that of [12]. Although �  is always 0 duec%

to the even/odd symmetry of the fields when the conductor widths are equal, �  for thec%

asymmetric case shown in the figure rises when �  and �  become nearly degenerate [5], anc  %

observation consistent with similar phenomena observed in rectangular waveguides [3], [4]. For

the line of Figure 1 with 0.5 µm thick conductor metal, for example, �  and �  become close inc  %

the frequency range 300 MHz-5 GHz, while �  peaks at about 1 GHz.c%

ALGEBRAIC EXPRESSIONS FOR �nm

The P  fix relations between the modal and the power-normalized “circuit” voltages andnm

currents of [6] and can be determined from products of the matrices relating those quantities. The

unitless measure �  can be determined solely from the matrices of power-normalized conductornm

impedances per unit length Z�R+j7L and admittances per unit length Y�G+j7C of the line

without detailed knowledge of how the modal and circuit quantities in the theory of [6] are

normalized. �  is found from Z and Y bynm
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���

where superscript “†” signifies Hermitian conjugate (conjugate transpose), a(� ) and a(� ) are then   m

eigenvectors of ��Z Y with eigenvalues � =�  and � =� , and b(� ) and b(� ) are then n   m m   n   m
2  2

eigenvectors of ��Y Z with eigenvalues �  and �  [6].n  m

Reference [9] shows for the c and % modes of Figure 1 that G is nearly 0 when there are no

dielectric losses, that C is nearly constant with frequency, and that L rises only slightly at the low

frequencies while R increases only moderately at the high frequencies in a fashion consistent with

the effects of field-penetration into the thin metal conductors, making them easy to estimate.

Figure 2 shows in dashed lines �  for the metal thickness t=0.5 µm calculated from (2) usingc%

static estimates of L and C from the method of [10], G=0, and the low frequency limit of R, which

we determined from the dc resistances of the conductors. It compares it to the direct calculation

from the modal electromagnetic fields determined by the full-wave method of [11] (solid lines)

and shows that the estimate is accurate enough to determine when the modal cross powers are

significant. We found similar agreement for the other metal thicknesses of Figure 2.

When Z and Y are diagonal then (2) shows that � =0, as �=� are also diagonal and theirnm

eigenvectors can be taken to be the columns of the identity matrix.

When Z and Y are symmetric, which we found to be a very good approximation for the c and

% modes of Figure 1 and which [13] argues is true for all quasi-TEM modes, then �=� , wheret

superscript “t” signifies transpose. This implies that b(� ) a(� )=b(� ) a(� )=0, and we see fromm n n m
t t

(2) that � =0 whenever the eigenvectors of � and � can be taken real.nm

Since for the c and % modes of Figure 1 G is nearly 0 and C, L, and R depend only weakly on

frequency [9], � becomes purely real at very high frequencies (7L »R ) and purely imaginaryij ij

at very low frequencies (7L «R ). Z and Y are positive definite, which [13] argues is alwaysij ij

true for quasi-TEM modes, with the consequence that the eigenvectors of � are also nearly real at

the two frequency extremes. This explains the tendency seen in Figure 2 of �  to approach 0 atc%

these extremes.
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If G=0 and R, L, and C are independent of frequency, which are reasonable approximations

for the case studied here [9], scaling R and 7 by a constant real factor s scales � by s . This leaves2

the eigenvectors of �, and thus the value of � , constant and explains the shift of the maximum ofnm

�  in Figure 2 to lower frequencies when the conductor losses are reduced by increasing metalc%

thickness. It also explains why the maximum value and shape of �  does not change greatly as thec%

metal thickness is varied.

For two modes the eigenvalue/eigenvector problem can be solved explicitly in terms of the

elements of � and �. When �=�  then (2) becomest

���

where q(�)�(�-� )/� =� /(�-� ) is the ratio of the second to the first element of the11 12 21 22

eigenvector associated with the eigenvalue . Equation (3)

shows that �  is real and less than or equal to 1.12

An equivalent form for (3) is

���

where '=±(� -� ) and )=±� /� =±� /�  or )=±� /� =±� /� .  Im(')) will be11 22   12 12 12 12  21 21 21 21
*   *

small when losses are low, so �  may remain small even quite near the degeneracies of low-loss12

modes. However when Im(')) differs significantly from 0, which will usually be the case in lossy

structures, equation (4) shows that �  will approach 1 as two modes become degenerate. This12

shows that nearly degenerate lossy modes will often have large cross powers and explains the

observed rise of �  in Figure 2 where �  and �  were close.c%     c  %
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>�@ 5� (� &ROOLQ� )LHOG 7KHRU\ RI *XLGHG :DYHV� 1HZ <RUN� 0F*UDZ�+LOO� �����

>�@ *� *RXEDX� ´2Q WKH H[FLWDWLRQ RI VXUIDFH ZDYHV�µ 3URF� ,�5�(�� SS� �������� -XO\ �����

>�@ 5� (� &ROOLQ� )RXQGDWLRQV RI 0LFURZDYH (QJLQHHULQJ� 1HZ <RUN� 0F*UDZ�+LOO� �����

>�@ 9� 0� 3DSDGRSRXORV� ´3URSDJDWLRQ RI HOHFWURPDJQHWLF ZDYHV LQ F\OLQGULFDO ZDYH�JXLGHV

ZLWK LPSHUIHFWO\ FRQGXFWLQJ ZDOOV�µ 4XDUW� -� 0HFK� $SSO� 0DWK�� YRO� 9,,� SS� ��������

6HSWHPEHU �����

>�@ '� )� :LOOLDPV� ´7KHUPDO QRLVH LQ ORVV\ ZDYHJXLGHV�µ ,((( 7UDQV� 0LFURZDYH 7KHRU\

7HFK�� -XO\ �����

>�@ 1� )DFKp DQG '� 'H =XWWHU� ´1HZ KLJK�IUHTXHQF\ FLUFXLW PRGHO IRU FRXSOHG ORVVOHVV DQG

ORVV\ ZDYHJXLGH VWUXFWXUHV�µ ,((( 7UDQV� 0LFURZDYH 7KHRU\ 7HFK�� SS� �������� 0DUFK

�����

CONCLUSION

Both full-wave field calculations and static estimates show that large modal cross powers are

not limited to exotic or highly lossy structures, but occur between nearly degenerate modes of

practical planar quasi-TEM multiconductor transmission lines in common use in modern

electronic circuits. The cross-power levels can be determined from the power-normalized

equivalent-circuit parameters of the transmission line, which have a weak dependance on

frequency and are easily estimated. The results show that the modal description can have a

complicated dependance on frequency even when the equivalent-circuit description does not and

argue that equivalent circuit theories such as those described in [6], [7], [8], and [9], which

rigorously account for modal cross powers, are required to treat these common circuit elements.

ACKNOWLEDGMENTS

We appreciate the contributions of Wolfgang Heinrich and Olivier Vanbesian to this work.

REFERENCES



8

>�@ 1� )DFKp� )� 2O\VODJHU� DQG '� 'H =XWWHU� (OHFWURPDJQHWLF DQG &LUFXLW 0RGHOLQJ RI

0XOWLFRQGXFWRU 7UDQVPLVVLRQ /LQHV� 2[IRUG� &ODUHQGRQ 3UHVV� �����

>�@ )� 2O\VODJHU� '� 'H =XWWHU� DQG $� 7� GH +RRS� ´1HZ UHFLSURFDO FLUFXLW PRGHO IRU ORVV\

ZDYHJXLGH VWUXFWXUHV EDVHG RQ WKH RUWKRJRQDOLW\ RI WKH HLJHQPRGHV�µ ,((( 7UDQV� 0LFURZDYH

7KHRU\ 7HFK�� SS� ���������� 'HF� �����

>�@ '� )� :LOOLDPV� /� $� +D\GHQ� DQG 5� %� 0DUNV� ´$ FRPSOHWH PXOWLPRGH HTXLYDOHQW�

FLUFXLW WKHRU\ IRU HOHFWULFDO GHVLJQ�µ VXEPLWWHG WR -� 5HV� 1DWO� ,QVW� 6WDQG� 7HFKQRO�

>��@ )� 2O\VODJHU� 1� )DFKp� DQG '� 'H =XWWHU� ´1HZ IDVW DQG DFFXUDWH OLQH SDUDPHWHU

FDOFXODWLRQ RI JHQHUDO PXOWLFRQGXFWRU OLQHV LQ PXOWLOD\HUHG PHGLD�µ,((( 7UDQV� 0LFURZDYH

7KHRU\ 7HFK�� SS� �������� -XQH �����

>��@ :� +HLQULFK� ´)XOO�ZDYH DQDO\VLV RI FRQGXFWRU ORVVHV RQ 00,& WUDQVPLVVLRQ OLQHV�µ

,((( 7UDQV� 0LFURZDYH 7KHRU\ 7HFK�� SS� ���������� 2FW� �����

>��@ 7� ,WRK DQG 5� 0LWWUD� ´6SHFWUDO�GRPDLQ DSSURDFK IRU FDOFXODWLQJ WKH GLVSHUVLRQ

FKDUDFWHULVWLFV RI PLFURVWULS OLQHV�µ ,((( 0LFURZDYH 7KHRU\ 7HFK�� SS� �������� -XO\ �����

>��@ )� 2O\VODJHU DQG '� 'H =XWWHU� &LUFXLW 5HSUHVHQWDWLRQ RI +LJK�)UHTXHQF\

(OHFWURPDJQHWLF 6WUXFWXUHV� 8.� &ODUHQGRQ 3UHVV� �����


