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Abstract- This work rigorously treats thermal electromagnetic noise in lossy waveguides and develops

explicit modal equivalent-circuit representations for the noise generated by arbitrary passive networks

embedded in them. The results show that the formulations in common use are limited to lossless

transmission media.

INTRODUCTION

Here we will place the theory of electrical noise in electromagnetic waveguides on firm theoretical ground,

developing explicit expressions for the spectral densities and the correlations of modal Thevenin-equivalent voltage

sources describing the electrical noise generated by arbitrary passive circuits embedded in lossy guides.

In 1928 Nyquist [1] explained Johnson’s measurements of the electrical noise voltage of a resistor [2] by

examining the interaction between the resistor and a lossless transmission line supporting a single dominant mode

of propagation. Nyquist’s arguments were based on the assumption that the modes of an electromagnetic resonator

form a closed system to which the second law of thermodynamics may be applied; maximizing the entropy of this

system shows that the average energy per unit bandwidth of each mode of the resonator is , where

f is the frequency, k is the Boltzmann constant, h is the Planck constant, and T is the absolute temperature of the

system. By applying this result to resonators formed from increasingly long sections of lossless transmission line,

Nyquist was able to determine the power spectral density of the electromagnetic energy of a single lossless mode
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Figure 1. A passive but otherwise arbitrary multiport
network embedded in the lossless transmission lines
connected to a lossy waveguide and its equivalent
circuit.

in an infinite transmission line in thermal equilibrium with its

environment. He then examined the interaction between a

resistor and the line; the requirement that the average power

flow between them be balanced in thermal equilibrium fixed

the electromagnetic energy radiated by the resistor into the

lossless mode of the line. This determined the spectral density

of the resistor’s Thevenin-equivalent voltage describing its

electromagnetic noise.

Strictly speaking, Nyquist’s Thevenin-equivalent voltage

was not actually a property of the resistor itself, but of the

electromagnetic radiation emitted by the resistor into a mode of a lossless transmission line. Discussions of

Nyquist’s results are found in [3] and [4], and in numerous modern quantum-mechanical treatments of thermal

electrical noise.

From Nyquist’s results Schremp [5] developed Thevenin-equivalent representations for the electromagnetic

noise generated by reciprocal and passive but otherwise arbitrary multiport networks embedded in lossless

transmission lines. Twiss [6] extended these results to arbitrary passive multiport networks embedded in those

lines. Bosma [7] discusses their wave representations.

Nyquist’s arguments cannot be extended directly to lossy waveguides because, when he applies the second law

of thermodynamics to a waveguide mode, he assumes that it forms a closed system. In fact, a mode of a lossy

waveguide does not form a closed system, as it is coupled to and dissipated by the materials composing the guide.

Here we determine the thermal noise generated by arbitrary passive networks by considering how thermal energy

is transferred from passive networks embedded in lossless transmission lines, the special case where the results

of Nyquist and Twiss can be applied directly, to lossy waveguides.

Figure 1 illustrates the argument. It shows a passive multiport network at the left embedded in a set of lossless

transmission lines (for clarity only two are shown in the figure). To simplify the arguments, we will assume that

the lossless lines support only a single propagating mode and that all the other modes of the lines have decayed

away at z=-l; this allows us to apply in a straightforward manner the results of Twiss [6] to characterize the noise

there. The lossless transmission lines are connected to the lossy waveguide by a transition that is composed

entirely of lossless materials, begins at z=-l, and abruptly terminates in the lossy waveguide at z=0. We will

account for all of the modes in the lossy waveguide; by this full accounting we will eliminate sources of
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electromagnetic noise in the transition due to the excitation of high-order modes in the lossy guide. This and the

restriction that the transition is constructed only of lossless materials will allow us to treat it in the context of the

theory of [8] as truly lossless and sourceless. The simplest such transition is formed by continuing the lossless

transmission lines to z=0 and abruptly connecting them to the lossy guide there.

In what follows we will use the general waveguide circuit theory of [8] to examine the flow of the noise from

the passive network of Figure 1, which can be characterized using the results of [6], through the lossless and

sourceless transition to the lossy waveguide. This will allow us to develop expressions for the noise generated by

the network to the left of z=0 in the lossy guide, which we will express in terms of the spectral densities of modal

Thevenin-equivalent voltage sources and their correlations. Since we place no restrictions on the passive network,

we will conclude that the expression is general, valid for any passive network embedded in the lossy guide.

MODAL VOLTAGES AND CURRENTS

 We require that the lossless transmission lines and lossy guide of Figure 1 be closed, uniform in z, and

constructed entirely of materials with isotropic permittivity and permeability. These restrictions ensure that the

electromagnetic eigenvalue problem is separable and that the lines and guide support discrete and complete sets

of forward and backward modes [8,9]; the continuous spectrum of radiation modes supported by open structures

are neglected here. As outlined in the introduction, we also assume only a single dominant mode in each of the

lossless lines at z=-l. We can now apply the general waveguide theory of [8], and express the total transverse

electric field E  and total transverse magnetic field H  in the nth lossless line with a single modal voltage vptn      ptn           pn

and modal current i  defined bypn

���

where e  and h  are the transverse fields of the forward propagating dominant mode and v  and i  areptn  ptn            p0n  p0n

normalizing factors. We define the modal voltages and currents in the lossy waveguide in an analogous manner,

writing the total transverse electric field E  and magnetic field H  there in terms of the modal voltages v  andwt    wt        wm

modal currents i  aswm
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where e  and h  are the transverse fields of the mth forward propagating mode of the lossy waveguide, vwtm  wtm               w0m

and i  are normalizing factors, and the sums over m span the set of all modes in the guide, typically infinite inw0m

number. This assignment of discrete modal voltages and currents to each mode cannot be made in open guides,

which support in addition a continuous spectrum of radiation modes, necessitating the restriction here to closed

guides.

 In accordance with [8] and [10], we place the restrictions  and

, where “*” indicates the complex conjugate, on the normalizing factors v , i ,p0n  p0n

v , and i : this restriction assures that, when only one mode is present, the power transmitted across aw0m   w0m

reference plane by that mode alone is  or , as appropriate. If we choose v  to be thew0m

integral of e  over a given path in the transverse plane of the lossy guide, then v  will correspond to the integralwtm              wm

of E  over that same path when only the mth mode is present. Likewise, if we choose i  to be the integral of hwt                w0m      wtm

around a given closed path in the transverse plane of the lossy guide, then i  will correspond to the integral ofwm

H  around that same path when only the mth mode is present. However, choosing either v  or i  fixes thewt               w0m  w0m

other. These considerations also apply in the lossless transmission lines.

Denoting the vectors of voltages v  and currents i  by v  and i , respectively, the total real power crossing thepn   pn  p  p

reference plane at z=-l is , where the superscript “ ” indicates the Hermitian adjoint

(conjugate transpose). The total real power transferred across the reference plane at z=0  in the lossy guide is

���

Defining the elements of the cross-power matrix X to be

we

���
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can compactly express equation (3) as

���

The diagonal elements of X are equal to 1; in the presence of loss, the off-diagonal terms of X will generally differ

from 0.

IMPEDANCE MATRICES AND THEVENIN-EQUIVALENT SOURCES

We will represent the electromagnetic noise of thermal origin generated in the passive network of Figure 1 at

z=-l by the vector  of modal Thevenin-equivalent voltage sources. The vector  is defined by

���

where Z  is the impedance matrix of the passive network embedded in the lossless transmission lines. The negativep

sign in (6) accounts for the fact that Z  is defined with respect to currents which enter the passive network,p

whereas the modal currents i  are associated with the forward modes in the transmission lines.p

We will represent the electromagnetic noise of thermal origin generated in the passive network of Figure 1 at

z=0 by the vector   of modal Thevenin-equivalent voltage sources. The vector  is defined by

���

where Z  is the impedance matrix of the passive network and the lossless transition embedded in the lossy guide.w

Again, the negative sign in (7) accounts for the fact that Z  is defined with respect to currents which enter thew

lossless transition, whereas the modal currents i  are associated with the forward modes in the lossy guide.w

 We define the impedance matrix of the lossless transition connecting the embedded network to the lossy guide

by

���
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Because we have accounted for all modes in the problem, we can speak of this transition as lossless, which

explains the absence of source terms in (8). The negative sign in (8) accounts for the fact that the modal currents

i  are associated with the forward modes in the lossy guide, which leave, rather than enter, the transition.w

NOISE CORRELATION MATRIX

The noise properties of the passive network at z=-l are conveniently expressed in the frequency domain by the

matrix , where the overbar indicates the spectral density of the quantity below it [11]. The nth diagonal

element of  is the spectral density  of . The nmth element of  is the spectral density of

. These off-diagonal elements of  contain the correlations between the elements of .

Twiss [6] shows that when the passive circuit is in thermal equilibrium,  is given by

���

This result is obtained directly from Nyquist’s expression for the spectral density of the Thevenin-equivalent

voltage source that describes the noise of a resistor in a lossless line and arguments of thermal equilibrium. In

what follows, we will try to develop an expression comparable to (9) for the noise behavior of the network in the

lossy guide at the reference plane z=0.

We can determine the Thevenin-equivalent voltage sources  in terms of their counterparts  by applying the

boundary condition i  = 0 in (7) and (8), in which case . Substituting (6) into (8) to eliminate v  andw                 p

i  gives the desired resultp

����

Thus the matrix  is

����

Substitution of (9) into (11) results in
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PROPERTIES OF THE LOSSLESS TRANSITION

We will now use the lossless property of the transition to simplify (12), eventually expressing the factors on the

right involving Z , Z , and Z  in terms of Z  and the cross-power matrix X. Appendix 1 shows that the impedancep  11   21    w

matrix Z  of a passive and lossless circuit satisfiesL

����

where X  is defined in accordance with (4). When we apply (13) to the impedance matrix of our transition, weL

obtain the condition

����

which is really the four conditions

����

Using the condition  from (15), we can now write the term    in (12) as

. Substitution into (12) gives

����
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Using the condition  from (15), we can now write (16) as

����

We can write Z  in terms of Z  by using the fact that Z  is defined by the relation v  = Z  (-i ) when   and p    w      w      w  w w

are set to 0. Then equation (6) gives v  = -Z  i , while (8) gives v  = Z  i  - Z  i . Combining the two gives i  =p  p p     p  11 p  12 w      p

(Z  + Z )  Z  i . Substitution into (8) yields v  = Z  (Z  + Z )  Z  i  - Z  i , which leads us to deduce thep  11  12 w      w  21 p  11  12 w  22 w
-1            -1

expression for Z  in terms of Z :w    p

����

This expression can be used to replace the terms  Z  (Z  + Z )  Z  in (17) with -(Z -Z ):21 p  11  12    w 22
-1

����

Now the condition  from (15) eliminates the terms involving Z  in (19), giving the desired result22

����

This is a concise expression for the modal Thevenin-equivalent voltage sources describing the noise of a passive

circuit embedded in the lossy waveguide. Appendix 2 gives the Norton-equivalent current and scattering-parameter

forms of (20).

DISCUSSION

Since we placed no restrictions on the embedded network other than it be passive and no restriction on the

intervening transmission lines and transition other than that they are lossless, relation (20) is a very general result

that must be satisfied by any passive network embedded in the lossy waveguide. There are a number of interesting

applications and special cases.
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Figure 2. Extension to multiport network. Only two
guides are shown for clarity.

Lossless Networks: Substitution of the lossless condition

(13), derived in Appendix 1, into (20) shows that 

for lossless networks.

Multi-port Networks: Since no restriction was placed on the

lossy waveguide except that it be closed and be constructed

only of isotropic materials, we can replace the single lossy

waveguide with multiple lossy guides, as illustrated in Figure

2. Equation (20) is still applicable, except that X is given by

the block-diagonal matrix

����

and  by the vector

����

where    and X  refer to the source vector and cross-power matrix of the nth guide, respectively.n

Alternate Form: The general waveguide theory of [8] determines the symmetry of the impedance matrix of a

waveguide junction composed only of passive reciprocal materials. The result is that the impedance matrix of

these waveguide junctions satisfy , where superscript “t” indicates the transpose,

 is the diagonal reciprocity matrix, and the K  are then

reciprocity factors of [12] for each mode. Appendix 3 shows that these reciprocity factors are related to the cross-

power matrix X through . Thus (20) may be written as
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Dominant Modes: When the first N modes contain at least all of the dominant ones and the circuit is embedded

in a length of waveguide sufficiently long to damp out all of the modes except the dominant ones, then Z  takesw

the form

����

where Z  is an N by N matrix and Z  is a diagonal matrix containing the characteristic impedances of all butwd        w0

the first N modes. Now (20) gives

����

where  is the subvector of   containing its first N elements and Q is the upper left-hand N by N submatrix

of . Equation (23) and appendix 3 show that , where X  and W  are the upper left-d  d

hand N by N submatrices of X and W, respectively. This last relation is useful when not all of the elements of X,

which is generally infinite in dimension, are known.

Power-Normalized Conductor Representation: The “conductor” voltages and currents of [13] are linear

transformations of the modal voltages and currents v  and i . By analogy with [13] we define the “power-w  w

normalized” conductor voltages v  and currents i  byc   c

����

where v  and i  are generally infinite in dimension and M  and M  are invertible and satisfy : this latterc  c       v  i

restriction ensures that the total power is given by . Equation (20) becomes [6]

����
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Figure 3. Asymmetric coupled microstrip lines on a lossless
substrate.

Figure 4. The magnitudes of the elements of the matrix Q for
the coupled lines of Figure 3. The frequencies where the
imaginary parts of �  and �  cross and the quantity � -� /�c  %     c % 0

reaches a broad minimum define the frequency range labeled
� ��  in the figure.c %

in this representation, where Z , the impedancec

matrix in the conductor representation, is defined by

.

ILLUSTRATION

In low-loss circular, rectangular, and coaxial

waveguides the off-diagonal elements of the cross-

power matrix X linking the dominant waveguide

mode to other modes in the guide are generally small

except at frequencies where the modes are nearly

degenerate (i.e. when their propagation constants are nearly equal). At these frequencies the modes couple and

the field patterns of each of the lossy coupled modes can be represented to first order as linear combinations of

the field patterns of lossless uncoupled modal solutions [9], [14]. While this results in large off-diagonal elements

of X, this coupling phenomena is limited to narrow bands of frequencies at or above the upper frequency limit of

the guide, and so may usually be ignored in practice.

However large off-diagonal elements of X linking dominant modes often do occur in multiconductor

transmission lines over broad ranges of useful frequencies. The lossy asymmetric coupled microstrip lines of

Figure 3 illustrate this phenomena. This transmission line structure supports two quasi-TEM dominant modes,

commonly referred to as the c and % modes, which correspond to the even and the odd mode of the symmetric

case, respectively. The propagation constants of the c

and % modes of the structure of Figure 3 become close

in the frequency range 300 MHz - 5 GHz. While the

low-loss assumptions of [9] and [14] are not met by

this high-loss guide, our calculations based on the full-

wave method of Heinrich [15] show that this near

degeneracy is accompanied by large off-diagonal

elements of X.

Since the c and % modes are the dominant ones the

impedance of a termination embedded in a sufficiently
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long length of line will take the form (24), where Z  is the two-by-two c-mode/%-mode impedance matrix. Wewd

can calculate the two-by-two matrix  of c-mode and %-mode Thevenin-equivalent sources from  Z  andwd

Q using equation (25).

Figure 4 plots magnitudes of the elements of the matrix Q calculated with the method of [15]. It shows that Q

differs significantly from the identity matrix in the region where the modes couple; the conventional formulation,

in which Q is absent in the expression relating  to Z , will fail there.wd

While beyond the scope of this work, [13] shows for the case of Figure 3 that the expression for , the

Thevenin-equivalent voltage sources in the power-normalized dominant-mode conductor representation, assumes

the conventional form , where Z  is the impedance matrix in that representation.cd

CONCLUSION

We have developed a rigorous representation for the thermal electromagnetic noise of circuits embedded in lossy

waveguides based on modal Thevenin-equivalent voltage sources and derived explicit expressions describing the

noise generated by passive networks. The results form a firm foundation for the theory of electrical noise in lossy

waveguides and show that the spectral densities of the modal Thevenin-equivalent voltage sources depend on the

cross-power matrix X, a result that cannot be predicted directly from Nyquist’s theory. We illustrated the results

with a practical example in which the off-diagonal elements of X are large and the conventional formulation fails.

APPENDIX 1

LOSSLESS CONDITION

The net power P entering a lossless circuit with impedance matrix Z is

����

The quantity  is a scalar and so is equal to its transpose. Therefore (28) is

����
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Since the circuit is lossless, P must equal 0 for all current vectors , which implies that lossless networks satisfy

the relation .

APPENDIX 2

OTHER REPRESENTATIONS OF THERMAL NOISE

The Norton-equivalent current sources , defined analogously to the Thevenin-equivalent voltage sources,

satisfy

����

where Y  = Z  is the admittance matrix of the circuit. We can relate  to  byw  w
-1

����

so, using (20),

����

We can also express (20) in terms of the pseudo-wave parameters of [8] in the lossy guide. The pseudo-waves

correspond to traveling waves when their reference impedance is set equal to the characteristic impedance of the

mode. They correspond to the waves conventionally used in microwave design when their reference impedance

is set real. The vectors of forward pseudo-waves a  and backward pseudo-waves b  with reference impedancesw    w

Z  are related to the voltages and currents by [8]ref
n

����

and

����
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where the diagonal matrices Z  and U are defined by Z  = diag(Z ) andref      ref  ref
n

����

The Thevenin-equivalent voltage is

The
����

forward wave sources  and pseudo-wave reflection coefficient matrix 
  are defined by [8]w

����

which implies that

����

Now we can express    in terms of :

����

Substituting (20) into (39) gives

����

The relation   from Appendix E of [8] shows that (40) is

����

where
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Figure 5. Abrupt connection of lossless transmission
line to a lossy waveguide.

����

As explained in the text, these results are also applicable to multiport networks. In that case, the pseudo-wave

scattering-parameter matrix replaces 
  in (41).w

APPENDIX 3

RELATIONS BETWEEN X AND W

Figure 5 shows the abrupt connection of a lossless line to

a lossy waveguide. The transition is again defined to begin at

z=-l and to terminate at z=0 and contains only lossless and

reciprocal materials. If we account for all of the modes at the

two reference planes at z=-l and z=0, we can say, from the

preceding arguments, that its impedance matrix satisfies (15).

Since the materials comprising the transition are reciprocal,

we can also apply the condition  of [8] and

[12], where , to its

impedance matrix (8). The result is

����

where W is the reciprocity matrix for the lossy waveguide (the reciprocity matrix for the lossless guide is the

identity matrix [12]).

Now, combing the lower-left conditions of (15) and (43) gives

����

The upper-right condition of (15) gives
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>�@ +� 1\TXLVW� ´7KHUPDO DJLWDWLRQ RI HOHFWULF FKDUJH LQ FRQGXFWRUV�µ 3K\VLFDO 5HYLHZ� YRO� ��� SS�

�������� -XO\ �����

>�@ -� %� -RKQVRQ� ´7KHUPDO DJLWDWLRQ RI HOHFWULFLW\ LQ FRQGXFWRUV�µ 3K\VLFDO 5HYLHZ� YRO� ��� SS�

������� -XO\ �����

>�@ )� 5HLI� )XQGDPHQWDOV RI 6WDWLVWLFV DQG 7KHUPDO 3K\VLFV� 0F*UDZ�+LOO� 1HZ <RUN� �����

>�@ %� 0� 2OLYHU� ´7KHUPDO DQG TXDQWXP QRLVH�µ 3URF� ,(((� YRO� ��� SS� �������� 0D\ �����

����

while the upper-right condition of (43) gives

����

Substitution of these two results into (44) gives

����

Since equation (47) is true for the connection of any lossless guide to the lossy guide, we must in general have

����

which in turn implies

����
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