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Abstract- This paper presents a measurement method that completely characterizes

lossy printed multiconductor transmission lines. It determines not only the matrices of

impedances and admittances per unit length describing the transmission line in the

conductor representation, but also the propagation constants, characteristic impedances,

and cross-powers for each mode supported in the line. We apply the method to a pair of

lossy coupled asymmetric microstrip lines.

INTRODUCTION

This paper presents a measurement method that determines all of the modal and “power-

normalized” conductor quantities of [1] and [2] describing a multiconductor transmission line.

The method eliminates the requirement of [3] that the relationships between the modal and
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conductor voltages be fixed by symmetry conditions and known in advance. We demonstrate this

by applying the method to a pair of lossy asymmetric coupled microstrip lines.

The method consists of performing numerous two-port scattering-parameter measurements on

multiple lengths of a multiconductor transmission line. In each case we connect the terminals at

each of the analyzer measurement ports between one of the conductors of the transmission line

and its ground; previously characterized loads connect all of the remaining conductors at both the

near and far ends of the line to their grounds. We apply the ZHLJKWHG RUWKRJRQDO GLVWDQFH

UHJUHVVLRQ algorithm of Ref. [4] to find the matrices of transmission line impedances and

admittances per unit length that best reproduce the two-port measurements. The procedure places

no restriction on the values of terminating impedances, uses all of the available data in an optimal

fashion, and can provide error estimates for the results.

We apply the method in several stages. First we verify useful properties without making any

assumptions about the line. We then determine the low-frequency limit of the lines capacitance

matrix and use these results to resolve the problem with improved accuracy. As discussed in [5],

at this final stage of the analysis we can also add a reciprocal error box to the problem to account

for the transition parasitics: this may be is useful when the multiconductor transmission lines are

embedded in connectors or in a package with significant electrical parasitics.

THE TRANSMISSION-LINE MODES

The total transverse electric field E  and magnetic field H  in a closed transmission line that ist    t

uniform in z and constructed of linear isotropic materials can be written as [6]
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where v  and i  are the modal voltages and currents of the nth mode, e  and h  are itsmn  mn           tn  tn

transverse modal electric and magnetic fields (functions only of the transverse coordinates x and

y), the sums span all of the excited modes in the line, and the time harmonic dependence e ,+j7t

where 7 is the real angular frequency, has been suppressed. In open guides we must add a

continuous spectrum of modes to this discrete set [7], which we assume that we can neglect.

We restrict the normalizing voltages v  and currents i  by ,0n   0n

where Re(p )�0, so that the power carried in the forward direction by the nth forward and0n

backward modes in the absence of any other modes in the guide is given by v  i ; this is themn mn
*

conventional normalization and corresponds to the power condition used in Refs. [1]  and [8] and

suggested by Brews [9]. The characteristic impedance of the nth mode is Z  � v /i = v  /p0n  0n 0n  0n 0n
2 *

=  p /i  ; its magnitude is fixed by the choice of v  or i  while its phase is fixed by p .0n 0n          0n   0n        0n
2

The vectors of modal voltages v  and modal currents i  satisfy the transmission line equationsm    m

���

where the matrices of modal impedance and admittances per unit length are defined by ,

, �� = diag(� ), and Z  = diag(Z ) [1]. The modal equivalent circuit per unit length ofn   0  0n

the multiconductor line is sketched in the upper part of Fig. 1.

When a finite number of the discrete modes are excited in the line, the total complex power p

carried in the forward direction is
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where the superscript † indicates the Hermitian adjoint (conjugate transpose), the elements of the

cross-power matrix X are defined by , X  = 1, and the integralsnn

are performed over the entire transmission-line cross section [1].

CONDUCTOR REPRESENTATION

Since every excited mode in a multiconductor transmission line will impress a voltage across

each of its conductors, the total voltage between any given pair of its conductors will be a linear

combination of all of the modal voltages of the excited modes. Likewise the total current in any

given conductor will be a linear combination of the modal currents. References [1] and [2] refer to

these linear combinations of modal voltages and currents as the “conductor” voltages and

currents; Ref. [10] compares the modal and conductor representations.

The vectors of conductor voltages v  and currents i  of [1] and [2] are defined by  c   c

and , where the matrices M  and M  are unitless. The vectors v  and i are “power-v  i     c  c 

normalized” in [1] and [2] so that : this requires that M  and M  satisfy . Thev  i

vectors v  and i  satisfy the transmission line equationsc  c

���

where the matrices of conductor impedance and admittances per unit length are defined by
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 and  [1]. The conductor equivalent

circuit per unit length of the multiconductor line is sketched in the lower part of Fig. 1.

DETERMINATION OF MODAL PARAMETERS FROM Z  AND Yc  c

The measurement algorithm uses the procedure outlined in Ref. [1] for determining ��, M , M ,v  i

and the impedance matrix Z of the multiconductor transmission line from Z  and Y . Thisc  c

procedure, which reduces to that used in Ref. [3] for a pair of symmetric coupled microstrip

transmission lines, is based on the fact that M  and M  diagonalize  andv  i

; the eigenvalues of Z Y  (or Y Z ) determine �� while the columns of M  arec c  c c        v

proportional to the eigenvectors of Z Y  and the columns of M  are proportional to thec c     i

eigenvectors of Y Z .c c

The proportionality constants needed to fix the columns of M  are determined from thev

definitions of the modal voltage paths in terms of the conductor paths. The coupled lines we

studied support two dominant quasi-TEM modes, which are commonly called the c and % modes,

and which correspond to the even and the odd mode of the symmetric case, respectively; we

assumed that only these two modes were significantly excited in the coupled lines. Thus we fixed

the first column of M , which corresponded to the c mode, by setting M  equal to 1; this definesv          v21

the c-mode voltage equal to that between the second microstrip conductor and the ground plane.

We fixed the second column of M , which corresponded to the % mode, by setting M  + M  = -v          v12  v22

1; this defines the %-mode voltage equal to the difference of the voltages between the first and

second microstrip conductors. These conditions completely determine M  and are easily extendedv

to other cases.

 The proportionality constants needed to fix the columns of M  are found from the relationi
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, which implies that the product of each column of M  and the complex conjugate ofv

the corresponding column of M  must be equal to a diagonal element of X, all of which are equali

to 1.

Once M  and M  are determined we can find all of the modal parameters fromv  i

, , , and . Calculations show that the

reciprocity matrix of coupled microstrip lines in the conductor representation is nearly the

identity, so we can approximate the diagonal matrix W  of modal reciprocity factors fromm

 [1].

We needed to calculate the full conductor impedance matrix Z of the sections of line during

the optimization process to predict the measured two-port impedance matrices from the estimates

of Z  and Y , which we allowed to vary during the optimization process, and the measuredc  c

termination impedances. We determined Z from [1]

���

where l  is the length of the line, , and0

.
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MEASUREMENT PROCEDURE

Figure 2 illustrates the measurement procedure. It begins with a multiline TRL calibration [11]

with reference impedance correction [12] in the microstrip access lines to correct for the

imperfections in the analyzer and to remove the effects of the wafer probes, via-hole transitions

(not shown), and microstrip access lines used to connect the analyzer to the coupled lines: this

eliminates the models of Ref. [3] required to account for the contacts and access lines. The initial

reference plane of this calibration is in the middle of the shortest line, marked A in Fig. 2. We

move this reference plane to the position marked B in Fig. 2 to determine the impedances of our

imperfect loads, which consisted of a section of the access line, a probe, and a coaxial load. We

set the calibration reference planes to C of Fig. 2 to measure the two-port impedances of the

coupled lines terminated with these imperfect loads. The figure shows only one of the

combinations of probe and termination connections we used: the entire set of measurements

included all of the possible connections of the probes and terminations.

 As explained in the introduction we optimize the values of Z  and Y  using the algorithm ofc  c

Ref. [4] until the measured two-port impedance matrices best agreed in a least-squares sense to

the two-port impedance matrices calculated from the four-port transmission line impedance matrix

Z of Eq. (5), which is a function of the values of Z  and Y  being optimized, and the measuredc  c

impedances of the terminations connected to the remaining ports.

We apply the optimization in three stages, first without making any assumptions about G , C ,c  c

R , or L . We used this first optimization to verify that G  is small, C  is nearly frequencyc   c          c   c

independent, and C , R , and L  are symmetric, properties that we also verified with the full-wavec  c   c

calculation method of Ref. [13]. We then set the elements of G  to 0 and all of the other matricesc

symmetric, and repeat the optimization to determine the low-frequency limit C  of C . We0c  c
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perform the optimization a final time with C  set to this low-frequency limit. The correspondingc

conductor equivalent circuit model of the transmission line used in this final optimization is shown

in the lower part of Fig. 1. We found that the noise in R , L , and the modal parameters at this lastc  c

stage of the analysis was somewhat lower than in the earlier stages.

We tested the method with two asymmetric coupled microstrip lines contacted by single-mode

access lines fabricated on the same substrate. The coupled lines had widths of 54 µm and 254 µm

separated by a gap of 45 µm printed on an alumina substrate with an approximate thickness of

254 µm and lengths of 1 mm, 6 mm, 11 mm, 16 mm, and 21 mm. Their conductor metalization

had a measured thickness of 1.8 µm and measured dc conductivity of 3.3x10  6 #m .7 -1 -1

The procedure ignores coupling between the access lines and parasitics at the junction

between the access and coupled lines (point C of Fig. 2). For this reason we constructed the

access lines at 90( angles to reduce coupling between them, as illustrated in the figure. The access

lines also form an abrupt connection to the conductors of the asymmetric coupled line to reduce

parasitics there.

Figure 3 shows elements of L  in solid lines determined by the analysis. The measurements andc

calculations agree closely and display clearly the anticipated rise at the low frequencies due to the

internal inductance of the conductors.

MEASUREMENTS OF MODAL QUANTITIES

Figures 4 and 5 show modal quantities measured by the procedure. The figures show that the

conductor and modal quantities compare reasonably well to calculations using the full-wave

method of Ref. [13]. For the calculations we assumed that the substrate had a dielectric constant

of 10 and was lossless.
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We found that the calculations shown in Fig. 4 were quite sensitive to the size of the artificial

magnetic box placed around the lines. While increasing the size of this box improved agreement

with the measurements it also slowed solution time. The calculations shown in the figure

correspond to a 2854 µm wide by 1460 µm high box, the largest box we were able to simulate

with our computer. Extrapolations based on the smaller magnetic boxes we used indicated that

the remaining systematic offsets between the numerical and measured results in figures 4 are due

in large part to the box.

Reference [5] shows that the discrepancy between the measured and calculated modal cross-

powers in Fig. 5 are due to neglecting transition parasitics in the measurement procedure reported

here. Despite the discrepancies, Fig. 5 clearly shows that, as predicted by Ref. [14], the modal

cross-powers are significant at low microwave frequencies and cannot be ignored in the analysis.

Reference [15] shows that the elements of M  and M  change in the region where the modal cross-v  i

powers become significant; methods such as that of [3], which assume these quantities to be

frequency independent, will fail there.

CONCLUSION

We presented a method for the measurement and characterization of lossy asymmetric printed

multiconductor transmission lines, important components in electronic packages. The method not

only determines the matrices of transmission line capacitance, conductance, inductance, and

resistance per unit length in the conductor representations of [1] and [2], but all of the modal

quantities, including the modal propagation constants, characteristic impedances, and cross-

powers.

The method is based on rigorous relations between the transmission lines conductor
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representation, its modal representation, and its impedance matrix. This allows it to be used to

characterize lossy asymmetric coupled lines in which the modal cross powers are significant and

the relationships between the modal and conductor voltages and currents are complex and

frequency dependent.

In our experiments transition parasitics were small. However Ref. [5] shows that the method

can also be adapted to de-embed transition parasitics between the analyzer reference planes and

multiconductor transmission lines. Although not demonstrated here the method should also be

applicable to transmission lines with more than three conductors.
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>�@ '� )� :LOOLDPV� /� $� +D\GHQ� DQG 5� %� 0DUNV� ´$ FRPSOHWH PXOWLPRGH HTXLYDOHQW�

FLUFXLW WKHRU\ IRU HOHFWULFDO GHVLJQ�µ WR EH SXEOLVKHG LQ -� 5HV� 1DWO� ,QVW� 6WDQG� 7HFKQRO�

>�@ 1� )DFKp DQG '� 'H =XWWHU� ´1HZ KLJK�IUHTXHQF\ FLUFXLW PRGHO IRU FRXSOHG ORVVOHVV DQG

ORVV\ ZDYHJXLGH VWUXFWXUHV�µ ,((( 7UDQV� 0LFURZDYH 7KHRU\ 7HFK�� SS� �������� 0DUFK

�����

>�@ 7� :LQNHO� /�6� 'XWWD� +� *UDELQVNL� (� *URWHOXHVFKHQ� ´'HWHUPLQDWLRQ RI

WKH 3URSDJDWLRQ &RQVWDQW RI &RXSOHG /LQHV RQ &KLSV %DVHG RQ +LJK )UHTXHQF\

0HDVXUHPHQWV�µ ,((( 0XOWL�&KLS 0RGXOH &RQI� 'LJ�� 6DQWD &UX] �&$��

SS�������� ��� )HE�� �����

>�@ 3�7� %RJJV� 5� +� %\UG� DQG 5� '� 6FKQDEHO� ´$ VWDEOH DQG HIILFLHQW DOJRULWKP IRU

QRQOLQHDU RUWKRJRQDO GLVWDQFH UHJUHVVLRQ�µ 6,$0 -� 6FL� DQG 6WDW� &RPS�� SS� ����������

1RY� �����

>�@ '� )� :LOOLDPV� ´(PEHGGHG PXOWLFRQGXFWRU WUDQVPLVVLRQ OLQH FKDUDFWHUL]DWLRQ�µ ,(((

,QWHUQDWLRQDO 0LFURZDYH 6\PS� 'LJ�� SDSHU 7+�'��� -XQH ������ �����

>�@ 5� (� &ROOLQ� )LHOG 7KHRU\ RI *XLGHG :DYHV� 1HZ <RUN� 0F*UDZ�+LOO� �����

>�@ *� *RXEDX� ´2Q WKH H[FLWDWLRQ RI VXUIDFH ZDYHV�µ 3URF� ,�5�(�� SS� �������� -XO\ �����

>�@ 5� %� 0DUNV DQG '� )� :LOOLDPV� ´$ JHQHUDO ZDYHJXLGH FLUFXLW WKHRU\�µ -� 5HV� 1DWO�

,QVW� 6WDQG� 7HFKQRO�� SS� �������� 6HSW��2FW� �����

>�@ -� 5� %UHZV� ´7UDQVPLVVLRQ OLQH PRGHOV IRU ORVV\ ZDYHJXLGH LQWHUFRQQHFWLRQV LQ 9/6,�µ

,((( 7UDQV� (OHFWURQ 'HY�� SS� ���������� �����

>��@ '� )� :LOOLDPV� ´&DOLEUDWLRQ LQ 0XOWLFRQGXFWRU 7UDQVPLVVLRQ /LQHV�µ ��WK $5)7*

&RQIHUHQFH 'LJ� �2UODQGR� )/�� 'HF� ���� �����

>��@ 5� %� 0DUNV� ´$ 0XOWLOLQH 0HWKRG RI 1HWZRUN $QDO\]HU &DOLEUDWLRQ�µ ,((( 7UDQV� RQ

0LFURZDYH 7KHRU\ DQG 7HFK�� SS� ���������� -XO\ �����

>��@ 5� %� 0DUNV DQG '� )� :LOOLDPV� ´&KDUDFWHULVWLF ,PSHGDQFH 'HWHUPLQDWLRQ XVLQJ

3URSDJDWLRQ &RQVWDQW 0HDVXUHPHQW�µ ,((( 0LFURZDYH *XLGHG :DYH /HWW�� SS� �������� -XQH

�����

>��@ :� +HLQULFK� ´)XOO�ZDYH DQDO\VLV RI FRQGXFWRU ORVVHV RQ 00,& WUDQVPLVVLRQ OLQHV�µ

,((( 7UDQV� 0LFURZDYH 7KHRU\ 7HFK�� SS� ���������� 2FW� �����
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>��@ '� )� :LOOLDPV DQG )� 2O\VODJHU� ´0RGDO FURVV SRZHU LQ TXDVL�7(0 WUDQVPLVVLRQ OLQHV�µ

,((( 0LFURZDYH *XLGHG :DYH /HWW�� SS� �������� 1RY� �����

>��@ '� )� :LOOLDPV� ´&DOLEUDWLRQ LQ PXOWLFRQGXFWRU WUDQVPLVVLRQ OLQHV�µ �� $5)7* &RQI�WK

'LJ�� SS� ������ 'HF� ���� �����
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FIGURES

Figure 1. The modal and conductor equivalent circuit models per unit length of transmission line.

Only two modes are assumed to be excited in the line. c:\dr\coupled\both.wpg
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Figure 2. A schematic representation of the measurement artifacts and procedure. Coaxial cables

connect the vector network analyzer (VNA) to the ground-signal-ground probes. The probes

contact the center conductor of the access lines directly; the ground contact is made with

metallized via-holes. c:\dr\coupled\multimod\fig1.wpg
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Figure 3. The elements of L . Solid lines refer to measurements while markers indicate valuesc

from the full-wave calculation method of [13].c:\htb386\coupled\asym\plots\l.plt
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Figure 4. The real part of the measured effective dielectric constants and characteristic

impedances of the c and % modes. Solid lines with markers refer to measurements. Markers with

no lines indicate values from the full-wave calculation method of [13].

c:\htb386\coupled\asym\plots\all.plt



0

0.05

0.10

0.15

0.20

0.25

0.1 1 100.2 0.5 2 5 20 40

 X
πc

  (measurement)
 X

cπ
  (measurement)

 X
cπ

  (calculation)
 X

πc
  (calculation)

X
nk

 ≡ (v
0k 

i
0n 

* )-1    e
tk 

× h
tn

*  · z dS

Frequency (GHz)

M
ag

n
itu

d
es

 o
f 

th
e

 m
od

al
 c

ro
ss

 p
o

w
er

s

17

Figure 5. The measured magnitudes of the off-diagonal elements of the modal cross-power matrix

X. Solid lines refer to measurements, dashed lines refer to values from the full-wave calculation

method of [13]. c:\htb386\coupled\asym\plots\x.plt


