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Abstract-We examine electrical models for
lumped-element impedance standards used in
on-wafer network-analyzer calibrations. We
illustrate the advantages of using models that are
complicated enough to replicate the actual
electrical behavior of the lumped standards, but
do not have more degrees of freedom than
absolutely necessary.

INTRODUCTION

We investigate several models for lumped
resistors used in short-open-load-reciprocal/thru
(SOLR) and open-short-load-thru (OSLT) on-wafer
calibrations. We show that if the model used for the
load is not general enough, the resulting lumped-
element calibration will not accurately reproduce a
multiline thru-reflect-line (TRL) calibration [1],
which we treat as our reference calibration. We also
show that if the model has too many degrees of
freedom, it reproduces noise and other inaccuracies
in the measurements on which the model is based,
and is not suitable for extrapolation to higher
frequencies.

The impedance of lumped-element standards
used in on-wafer SOLR and OSLT calibrations
must be well modeled if the calibrations are to be
valid. Accurate on-wafer SOLR and OSLT
calibrations at very high frequencies are based on
models for the lumped standards that are derived
from measurements performed with the accurate

multiline TRL calibration. If the models used to
define the lumped-element impedance standards do
not correctly define the electrical behavior of the
lumped-element standards, large measurement
errors can result.

On the other hand, if there are too many degrees
of freedom in the models for the lumped-element
standards, the models will simply replicate noise
and systematic errors in the TRL measurements on
which they are based. Therefore, we need to
determine an optimal model.

For simplicity, we will restrict our attention to
models of lumped resistors, since these are more
difficult to model than opens or shorts. In what
follows, we will show that resistor models with
insufficient degrees of freedom result in inaccurate
calibrations. However, models with too many
degrees of freedom unnecessarily reproduce
measurement errors in the TRL calibrations on
which they are based, and are often not well suited
for extrapolation. For example, we will see that
non-physical polynomial terms in polynomial fits
are not statistically significant and do not improve
the calibrations. Rather, they reduce our ability to
extrapolate the model accurately to higher
frequencies. Finally, we will show that an
equivalent-circuit model and a low-order
polynomial model yield statistical improvements
over high-order polynomial models, take best
advantage of available measurements, and are well
suited for extrapolation.



2

0

0.02

0.04

0.06

0 10 20

R=50 Ω, L=constant
equivalent-circuit model
full-cubic model
"reduced-cubic" model
instrument drift

Frequency (GHz)

M
ax

|S
ij-S

ij'|

Figure 1. Error bounds for SOLR calibrations
with different load standard definitions; all
other standards are TRL-corrected.

Figure 2. Equivalent-circuit model for
lumped-element standards.

CALIBRATION COMPARISONS

We first performed a 50ÿ probe-tip multiline
TRL calibration in coplanar waveguide (CPW). We
then measured lumped-element standards on a
commercial calibration substrate. We fitted our
models to the TRL-corrected measurements of the
lumped-element standards. Model fits were then
used as inputs in a commercial software package to
perform our comparison SOLR and OSLT
calibrations [2]. The TRL-corrected open and short
measurements were also used in the SOLR and
OSLT calibrations following the work of Imparato
et al. [3]. We performed a final TRL calibration to
assess test-set drift and contact repeatability errors.
All calibration comparisons were performed using
the method of [4].

Figure 1 compares SOLR calibrations based on
several models for the load standard to the TRL
reference calibration. The most notable observation
is that the typical model of constant resistance and
inductance is the least accurate of any of the models
tested, as shown in the curve marked with open
circles. This was true despite our choice of an
inductance value that minimized the difference
between the SOLR and TRL calibrations. This
occurred because this simple model does not have

enough degrees of freedom to reproduce the
frequency-dependent electrical behavior of the
lumped-element resistor.

Figure 1 also compares calibrations based on
three other models: a full-cubic polynomial fit, a
“reduced-cubic” fit, and an equivalent-circuit
model. In the full-cubic model the resistance is of
the form R0+fR1+f2R2+f3R3 and the reactance is of
the form�L1+�

2L2+�
3L3. The reduced-cubic model

fits the resistance to a simpler polynomial, R0+f2R2,
and the reactance to�L1+�

3L3. The equivalent-
circuit model, shown in Figure 2, is an extension of
the model developed in [5].

Figure 1 shows that all of these models yield
similar results, despite their differing degrees of
complexity. The full-cubic, reduced-cubic, and
equivalent-circuit models result in error bounds
comparable to that of the instrument drift. Thus, our
results show that no improvement results from
adding the extra, non-physical polynomial terms
present in the full-cubic model.

LOAD MODEL ROBUSTNESS

In practice, the measurements used to develop
models for lumped-element standards may be
degraded by noise, systematic error, or other
calibration and measurement problems that are
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Figure 3. Effect of fitting cubic polynomials
and our equivalent circuit to load data corrected
with an inaccurate TRL calibration.
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Figure 4.Cross-validation statistic for model
predictions versus TRL-corrected
measurements for different load models.
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difficult to recognize or diagnose. Thus, model
selection needs to be based on model robustness;
i.e., how insensitive the model is to systematic or
random measurement error. We simulated this
degradation in our load measurements by correcting
our data with two calibrations, one using all five
delay lines in our CPW standard set, and a second
using only the shortest two delay lines. We then
fitted each corrected load measurement to a full-
cubic polynomial and to our equivalent-circuit
model while constraining the dc resistance. We also
fitted an unconstrained full-cubic polynomial for
comparison.

Figure 3 shows the results of these
measurements for a thin-film resistor that
terminates a CPW transmission line printed on a
gallium arsenide calibration substrate. The curve
marked with solid squares represents the load
measurement corrected with respect to our
reference TRL calibration, using five delay lines.
The curve marked with solid circles is the
equivalent data corrected with respect to a less-
accurate TRL calibration using only the two
shortest delay lines.

We fitted the models to the inaccurately-
calibrated load data; these results are shown as
dashed lines marked with open circles. We see that

the full-cubic and equivalent-circuit models fit the
accurate TRL measurement reasonably well, and we
note that the root-mean-square estimation errors for
the two fits are comparable.

However, at low frequencies both cubic fits
display a non-zero slope in the resistance, whether
or not we took advantage of the easily-measured dc
load resistance to constrain the fits. If we took the
Fourier transform of these frequency responses, the
corresponding time response would be imaginary,
which is not physically realizable. Qualitatively, we
observe that the equivalent-circuit model is less
sensitive to noise in the data. In the next section we
examine this issue quantitatively.
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STATISTICAL ANALYSIS

To ascertain the statistical validity of different
potential lumped-element models for the load
standard, we used the standard technique of cross-
validation. In cross-validation, one studies how well
the fit of a particular model to an estimation data set
can predict the values of another set of validation
data. The “best” model is the one that yields the
closest agreement between the observed and
predicted values of the validation data set. The
independence between estimation and validation
data sets can highlight such problems as over-
fitting. We employed a variation of the k-fold cross-
validation method [6].

To analyze our data, we fitted each of the
models over the lower three quarters of the total
frequency range. Based on this fit, we predicted the
values in the upper quarter of the frequency range.
The root-mean-square value of the differences
between these observed and predicted values
represents the calculated cross-validation statistic.

Figure 4 shows our cross-validation statistic for
the real and imaginary parts of the load impedance,
for each of nine loads, using different fitting
strategies. The cross-validation experiment shows
that the best fits to the real part of the impedance
are achieved with the “ax2+b” fit and the
equivalent- circuit model. The best fits to the
imaginary part of the impedance are achieved with
a constant inductance (linear reactance) model or
the equivalent-circuit model.

CONCLUSIONS

We found that a constant resistance in series
with a constant inductance did not have enough
degrees of freedomto model lumped-element loads.
We also found that high-order polynomials fits
cannot be extrapolated accurately, and often result
in non-physical fits. However, we found that the

low-order polynomial fits and equivalent-circuit
models were both sufficiently robust and well
suited for extrapolation to higher frequencies.
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