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Abstract- We develop analytic expressions for the impulse response and kickout pulses of a
simple sampling circuit that incorporate the nonlinear junction capacitance of the sampling diode. We
examine the effects of both the time-varying junction capacitance and conductance on the impulse
response and kickout pulses, and discuss their impact on the accuracy of the nose-to-nose calibration
technique.

Introduction

We develop a small-signal model for a balanced two-diode sampling circuit and derive closed-
form expressions for the circuit’s impulse response and kickout pulses. The small-signal model
incorporates both the sampling diode’s time-varying junction capacitance and conductance. We
examine separately the effects of the time-varying junction capacitance and conductance on the
impulse response and kickout pulses, which we define later, and show that the nonlinear junction
capacitance of the sampling diode affects the impulse response and kickout pulses in very different
ways. We also examine the interaction of the external sampling circuitry with the time-varying
conductance, and show that the total response of the sampler cannot be described as the convolution
of two separate responses, one of the diode and one of the external circuitry. Finally, we discuss the
implications of these results on the accuracy of the nose-to-nose calibration, which is based on the
hypothesis that the impulse response and kickout pulses have the same shape.

References [1], [2], and [3] developed analytic expressions for the impulse response and kickout
pulses of sampling circuits with purely resistive diodes and constant junction capacitance. The authors
concluded that asymmetry in the small-signal diode conductance causes small differences in the
kickout pulses and impulse response that cannot be corrected for by the nose-to-nose calibration.

Here we develop a small-signal model for the sampling circuit of Fig. 1 that incorporates a time-
varying diode capacitance. While this analytic model cannot account for the complicated parasitics
that may be incorporated in the SPICE models described in [1], [4], or [5], it does extend the analytic
models of [1-3], and offers a useful intuitive understanding of the roles of nonlinear diode junction
capacitance and conductance asymmetry in sampler operation. In particular, the model demonstrates
that, when the strobe fires, the change in the diode’s junction capacitance acts as an additional source
for the kickout pulses, but leaves the circuit’s impulse response unchanged. The manner in which the
diode’s junction capacitance affects these two functions results in additional differences between the
kickout pulses and impulse response that are not corrected for by the nose-to-nose calibration
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Fig. 1. Simplified schematic diagram of the two-diode
sampling circuit. v  is the diodes’ reverse-bias voltage.b

Kickout pulses are generated when the DC offset voltage vDC

is nonzero. The solid arrows indicate the direction of the
strobe current through the diodes. The dashed arrows indicate
the direction of the small-signal current due to a voltage at the
input through the diodes.

procedure.

The Nose-to-Nose Calibration

Figure 1 contains a simplified
schematic diagram of a two-diode
sampling circuit. The bias supplies
shown in the figure place the diodes in
a high-impedance reverse-biased state
until the strobe fires.

Each time the strobe fires, the
strobe pulse forward-biases the two
diodes, turning them on and lowering
their impedances for a short time.
Because the large-signal strobe current
is in the same direction (shown by
solid arrows in Fig. 1) and the circuit is
balanced, the effects of the strobe
current cancel at the input of the sampling circuit.

While the diodes are in their low-impedance state, a nonzero voltage at the input port of the
sampling circuit causes a net charge to flow from the input port through the diodes to the hold
capacitors. This small-signal current (shown by dashed arrows in Fig. 1) flows in opposite directions
in the two diodes, and adds a net charge on the hold capacitors. The sampler digitizes the average
voltage on the two hold capacitors after the strobe fires. This digitized voltage sample is proportional
to the net charge transferred to the hold capacitor when the strobe fired, and ideally will be
proportional to the voltage at the input port when the strobe fired.

In operation, a repetitive train of identical pulses is applied to the input port. The sampling circuit
is used to reconstruct the shape of an individual pulse from the input pulse train. This is accomplished
by firing the strobe at a time �t later than it fired in the previous cycle of the input pulse train. In this
way the strobe’s firing time slowly “scans” across the input pulse being sampled. Since each
successive digitized voltage sample corresponds to the input voltage at a time �t later than the
previous voltage sample, the shape of the pulses in the input pulse train can be reconstructed from
the digitized output voltage record.

For small input signals, the output of the sampling circuit can be described as a convolution of
the input signal and the “impulse response” of the sampler, which is carefully defined and explained
in [4]. The first objective of this paper will be to develop an analytic expression for the impulse
response of the sampling circuit shown in Fig. 1 in terms of the diode’s small-signal conductance g(t)
and junction capacitance C(t).

Rush, Draving, and Kerley [6] noted that when the DC offset voltage v  of the sampling circuitDC

of Fig. 1 is nonzero, it creates a train of “kickout” pulses at its input port with a shape similar to that
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Fig. 2. Small-signal models for (a) kickout
generation, (b) sampling operation, (c) the diode,
and (d) an equivalent model for both kickout
generation and sampling operation. In the
equivalent model, v  = v  for kickoutin  DC

generation and v  = v (t,-) = [R/(R +R)] (t+-)in     i e i

when determining the impulse response.

of the circuit’s impulse response. These pulses are
generated by current flowing from the hold
capacitors through the diodes to the input. Like
the small-signal input due to voltages at the input,
these currents are antiparallel. The nose-to-nose
calibration [6] exploits the similarity of these
kickout pulses and the circuit’s impulse response
to derive an estimate of the impulse response from
measurements.

To perform a nose-to-nose calibration, we set
the DC offset voltage of one sampling circuit to a
nonzero value so that it creates a train of kickout
pulses at its input port. These pulses are fed into
the input port of a second sampling circuit
operating in its conventional sampling mode.

When the two samplers are identical and
impedance matched, and communicate through a
transmission line of sufficient length, the nose-to-
nose calibration reconstructs the impulse response
of the circuits as the inverse Fourier transform of
the square root of the Fourier transform of their
nose-to-nose response. If the kickout pulses and
impulse response have identical shapes, the nose-
to-nose calibration accurately reconstructs the
impulse response of the sampler, as demonstrated
in [1-4].

In practice, the samplers are never identical,
and the nose-to-nose calibration procedure requires three sampling oscilloscopes, additional
measurements, and complex analyses to account for differences between the samplers, impedance
mismatches, and imbalances in the sampling circuitry [1-3]. Nevertheless, the fundamental supposition
of these practical three-sampler nose-to-nose calibrations is still that the kickout pulses generated by
the sampling diode have the same shape as the sampler’s impulse response.

Small-Signal Model

Figure 2 shows the small-signal model corresponding to the sampling circuit of Fig. 1. The two
balanced sampling arms, each of which contains a single sampling diode, hold capacitor, and bias
circuit, have been combined, as was done in [2] and [3].

The small-signal model is based on the assumption that the capacitance C  of the hold capacitorh

is large, and can be treated as a short circuit for all frequencies but DC. The resistance R1 is equal to
1/(R +R ), the resistance of the parallel combination of the sampling circuit’s input resistance R andi e              i

-1 -1
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the resistance R  of its load, and is usually about 25 6. The two diodes of Fig. 1 appear in parallel ine

the small-signal model of Fig. 2, so the diode’s spreading resistance R , time-varying conductances

g(t), and time-varying capacitance C(t) are those of the two diodes placed in parallel. That is, R  iss

one half of the spreading resistance of a single sampling diode, and g(t) and C(t) are twice the small-
signal conductance and capacitance of the individual diodes in the circuit.

Fig. 2a and 2b show small-signal models for kickout generation and sampling operation. Both the
junction capacitance and conductance of the Schottky-barrier diodes used in real samplers change
with applied voltage. The result is both a time-varying and generally asymmetric small-signal junction
capacitance and conductance. Fig. 2c shows a small-signal model for the diode that includes the time-
varying conductance and capacitance of the diodes.

Both the small-signal kickout circuit of Fig. 2a and the small-signal sampling-operation circuit of
Fig. 2b reduce to the equivalent small-signal circuit of Fig. 2d, with different excitation voltages v .in

During both kickout generation and sampling operation, Kirchhoff’s laws require that

(1)

where the diode’s small-signal voltage and current are related by

(2)

Here q, the small-signal charge stored in the diode’s junction capacitance, is equal to Cv , the productj              d

of the junction capacitance and the small-signal voltage across the diode junction. The values of g and
C in (2) are determined by the large strobe signal, and can be considered to be independent of the
small input signal v . On the other hand, the small-signal voltage v  and small-signal current i  are thein         d    d

responses of the circuit to the small input signal v , and depend on the small-signal excitation of thein

circuit.

Combining (1) and (2), we obtain the followin differential equation in v :d

(3)

This is a classic linear first-order differential equation, and has the solution [7]

(4)

where

(5)
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(6)

g1(t) � (R1 + R ) g(t), C1(t) � (R1 + R ) C(t), and t  is some initial time at which v  is known.s       s    0       d

Kickout Pulses

When the sampling circuit is generating kickout pulses, the small-signal input voltage v  is equalin

to the DC offset voltage v . The kickout voltage v (t) at the input port of the sampler isDC     k

(7)

where v  is the voltage across the diode junction and i  is the current flowing through the dioded         d

junction. To find the normalized kickout voltage v 1 defined byk

(8)

we substitute (4) into (7) to obtain

(9)

where we have chosen the time t  to be a large negative time when v  = v . To obtain the second0        d  DC

form in (9), we used du/dt = au/C1 and performed an integration by parts.

Impulse Response

To determine the impulse response v  of the sampler at a time -, we apply a Dirac delta functions

at the input of the sampling circuit at time t = 0 and fire the sampler’s strobe at time t = -. Then we
integrate the total charge moved onto the hold capacitor during the sampling cycle to calculate the
value of v (-).s

This operation is equivalent to firing the sampling circuit’s strobe at a fixed time and applying the
Dirac delta function at the input of the sampler at time t = --. Firing the strobe at a fixed time is more
convenient to treat analytically, and we will use this approach here. When the strobe is fired at a fixed
time and the delta function turns on at time --, the small-signal input voltage v  is equal to v , wherein    

(10)

Here -- is the time at which the impulse is applied to the sampling circuit, - is the time at which the
impulse response is determined, and  is the Dirac delta function.

The impulse response v  at time - is proportional to the extra charge stored on the hold capacitorss
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due to the small-signal input during one sampling cycle. That is, v (-) is [2, 3]s

(11)

where i (t,-) is the response to the input v (t) = v (t,-) and C  is the capacitance of the hold capacitor.d        in      h

To find the normalized impulse response v 1 defined bys

(12)

we substitute v  from (10) into (4) and integrate to obtain


(13)

Then, we substitute this expression for v  and the expression for v  from (10) into (1) to obtaind     

(14)

Performing the integral in (11) we obtain the result

(15)

and we have succeeded in obtaining closed-form expressions for both the impulse response of the
sampling circuit and the kickout pulses it generates.
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Fig. 3. The impulse response and a kickout pulse
for a symmetric conductance and constant diode
capacitance. In this case the normalized impulse
response and kickout pulse are identical.

Fig. 4. A normalized kickout pulse and the
impulse response for an asymmetric diode
conductance and constant diode capacitance.

Constant Capacitance

In simple cases we can solve (9) and (15) analytically. As we shall see, this exercise is particularly
insightful.

When  C  is constant and g is symmetric (g(t) = g(-t)),  v 1(t) = v 1(t), and the nose-to-nosek   s

calibration correctly reconstructs the impulse response [1], [2], [3]. Figure 3 illustrates this, and plots
v 1 and v 1 for the symmetric g(t) defined by g(t) = 0.2 S when |t| < t /2 and g(t) = 0 elsewhere. Fork   s               g
this example, we set the capacitance C(t) = 50 fF, R1+R  = 25 6, and t  = 10 ps. The plot shows that,s     g

as [1-3] predict, the normalized kickout pulses and the impulse response are equal. However,  v 1(t) isk

not equal to v 1(-t). This is true only when C = 0.s

There is an interesting observation to be made here: the kickout waveform and impulse response
rise rapidly to the value g 1/(1+g 1) (see Appendix 1) when the diodes turn on at t = -t /2 = -0.5 ps,0 0             g

but decay more slowly to 0 when the diodes turn off again at t = t /2 = 0.5 ps. This shows that theg

RC time constant of the circuit changes when the diode conductance changes.

Fig. 4 plots v 1 and v 1 for the asymmetric g(t) defined by g(t) = 0.1 S in the region -t /2 < t < 0,k   s               g

g(t) = 0.4 S in the region 0 < t < t /2, and g(t) = 0 elsewhere. For this example, we set R1+R  equalg            s

to 25 6, and t  equal to 10 ps and, to better illustrate the RC time constants, the diode junctiong

capacitance C equal to 200 fF. This figure illustrates not only the time-reversal of the impulse
response predicted by [1-3] and inherent in the solution for the impulse response (15), but the
differences in the RC time constants associated with the kickout pulses and impulse response. It is
evident that the leading edge of the impulse response rises much more sharply than the leading edge
of the kickout pulse. As the analytic solutions tabulated in Appendix 1 show, this is because the rate
at which the leading edge of the kickout pulse increases is set by the diode’s conductance of 0.1 S
during the time interval -t /2 < t < 0, while the rate at which the leading edge of the impulse responseg

increases is set by the diode’s conductance of 0.4 S during the time interval 0 < t < t /2.g
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Again, we see that the RC time constant associated with charging the diode’s junction capacitance
changes with time. We thus conclude that we cannot describe the kickout pulses or impulse response
of even these simple sampling circuits as the convolution of a time-varying aperture response
g(t)1/(1+g(t)1) or g(--)1/(1+g(--)1) and the time-invariant transfer function of an external RC circuit,
as might be expected. This is because the RC time constant associated with charging the diode’s
junction capacitance is modified by the time-varying diode conductance g(t), and thus becomes a
time-varying, rather than time-invariant, quantity. These conclusions are consistent with those of [2]
and [3].
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Fig. 5. A normalized kickout pulse and the
impulse response for the diode conductance and
capacitance plotted in Fig. 5. We set R1+R  equals

to 25 6.

Fig. 6. The time-varying diode conductance g(t)
and capacitance C(t) corresponding to the
normalized kickout pulse and impulse response
plotted in Fig. 6.

Time-Varying Capacitance

Figure 5 plots the impulse response and a kickout pulse for the capacitance and conductance
waveforms shown in Fig. 6. The figure illustrates the role of the time derivative dC/dt of the diode’s
junction capacitance C. Notice that the leading edge of the kickout pulse begins to rise as soon as
dC/dt becomes positive at t = -15 ps.

The effect of the change in diode junction capacitance on the kickout pulse can be understood by
considering the charge stored in the junction capacitance. When the strobe fires, the diode is forward
biased, and its depletion region narrows, increasing the diode’s junction capacitance. Since the
sampling circuit is balanced, these large-signal strobe currents cancel at the input.

However, as the diode’s junction capacitance increases suddenly, the small-signal charge q  = C vd   d

stored in the junction capacitance is conserved. As a result, the small-signal voltage v  across thed

junction must decrease suddenly to compensate. This sudden drop in v  generates the early rise in thed

kickout pulse seen over the time region -15 ps < t < -5 ps in Fig. 6. Likewise, the negative overshoot
of the kickout in Fig. 5 is due to the drop of diode junction capacitance back to its reversed-biased
value of C  over the time region 5 ps < t < 15 ps.0

Figure 5 also shows that the changing C(t) does not affect the impulse response over the time
region -15 ps < t < -5 ps. This is because the digitized voltage on the hold capacitor at the end of the
sampling cycle depends on the total charge moved onto the hold capacitor during the sampling cycle,
and the net charge transferred to the hold capacitor through the diode is 0.

This can be understood with the following argument. Because of the time reversal in (15), the
time region -15 ps < t < -5 ps of the impulse response corresponds to exciting the sampling circuit
with an impulse after the sampling diode has turned off. Since the diode has already turned off before
the excitation starts, g(t) has already returned to 0, and no extra electrons flow through the diode’s
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Fig. 7. A normalized kickout pulse and
the impulse response for a zero diode
conductance and the capacitance plotted
in Fig. 5. The circuit drawn in the figure
corresponds to the small-signal model for
sampling operation. The total charge
inside the dashed line is conserved. We
set R1+R  equal to 25 6.s

junction conductance due to the small-signal
excitation.

Not only are electrons unable to move across the
diode’s junction conductance, but they are also
unable to move through the diode’s junction
capacitance. So the net charge transferred to the hold
capacitor must be 0. In other words, while electrons
can be stored temporarily on the moving “plates”
formed by the depleted region in the diode’s junction,
resulting in short-lived currents in the circuit, no net
charge can be moved through the junction
capacitance to the hold capacitor. As a result, the
impulse response, which is proportional to the net
charge moved through the diode to the hold
capacitor, must be 0.

A sampling circuit with  g(t) = 0 and capacitance
C(t) shown in Fig. 6 illustrates this idea nicely. The
circuit’s equivalent circuit, normalized impulse
response, and kickout pulse are shown in Fig. 7. Charge conservation requires that the total charge
on the bottom plate of the diode’s junction capacitance and the top plate of hold capacitor, which are
enclosed by the dashed line in the figure, be conserved throughout the sampling cycle. There is
nothing to prevent charge on these two capacitor plates from “sloshing” back and forth between the
two capacitor plates, generating the kickout pulse shown in Fig. 7. However, charge conservation
does not allow the net charge on the two capacitor plates to change during the sampling cycle. Thus,
no net charge is transferred onto the hold capacitor during sampling operation, and the impulse
response is identically equal to 0.

Conclusion

We developed an analytic small-signal model of a balanced two-diode sampling circuit that
includes time-varying diode junction capacitance and conductance. We used this model to explore
the effects of the diode’s junction capacitance and conductance on the kickout pulses and impulse
response of the sampling circuit, which the nose-to-nose technique assumes are identical.

We found that when the diode conductance is symmetric and the junction capacitance is either
0 or constant, the normalized kickout pulses and the impulse response are identical. However, when
the diode conductance is asymmetric, the time reversal inherent in (15) leads to differences in the
kickout pulses and impulse response that cannot be corrected for by the nose-to-nose calibration.
These conclusions are consistent with those of [1-3].

We found that it is not possible to express the kickout pulse and impulse response as the simple
convolution of an aperture circuit function and a time-invariant response function of the external
circuitry. This is because the sampling diodes interact directly with other circuit elements that are
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physically close enough to be affected by the diodes’ time-varying conductance and capacitance
during the sampling aperture [2-3]. We conclude that linear circuit elements in close proximity to the
diode may need to be included in nonlinear circuit models of the sampling circuit, if the differences
in the kickout pulses and impulse response are to be precisely modeled.

We also saw that changes in the diode’s junction capacitance play a direct role in the generation
of kickout pulses. This is because the kickout is proportional to the instantaneous small-signal current
flowing through the diode, which depends on changes in the diode’s junction capacitance. On the
other hand, the impulse response is related to the net charge transferred to the hold capacitor during
a complete sampling cycle. Because electrons are unable to move through the diode’s junction
capacitance, all of this charge must move through the diode’s conductance. Therefore, the junction
capacitance has little effect on the impulse response. These two contrasting physical phenomena can
give rise to significant differences in the sampler’s kickout pulses and impulse response. As a
consequence, we conclude that accurate models of the sampling circuitry must include the diode’s
nonlinear junction capacitance.
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Appendix 1: Constant Capacitance

Here we summarize the analytic solutions for the kickout pulses and impulse response when the
junction capacitance C = C  is constant. The conductance function g(t) is equal to 0 for t < -t /2, equal0              g

to g  for -t /2 < t < 0, equal to g  for 0 < t < t /2, and equal 0 for t > t /2. These solutions correspond0  g        1      g        g

to the kickout pulses and impulse responses plotted in Figs. 3 and 4. The solution for a normalized
kickout pulse v 1 isk

(16)

and the solution for the normalized impulse response v 1 iss
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(17)

where g 1 � (R1 + R ) g , g 1 � (R1 + R ) g , and C 1 � (R1 + R ) C .0     s  0  1     s  1   0     s  0

Appendix 2: Time-Varying Capacitance

We also obtained analytic solutions for the kickout pulses and impulse response when the diode
conductance and capacitance take the form illustrated in Fig. 6. Here g(t) equals 0 for t < -t /2, g  forg  0

-t /2 < t < t /2, and 0 again for t > t /2, while C(t) equals C  for t < -t , increases linearly from C  tog     g        g     0    -     0

C  + �C over the region -t  < t < -t /2, equals C  + �C over the region -t /2 < t < t /2, decreases0      -    g   0      g     g

linearly from C  + �C to C  over the region t /2 < t < t , and equals C  for t > t . This case0    0    g     +    0    +

corresponds to the kickout pulse and impulse response plotted in Fig. 5.

Normalized kickout pulses: 

For t � -t , we have v 1(t) = 0.-    k

In the region -t  � t � -t /2, the solution for v 1 is-    g     k

(18)

where

(19)

In the region -t /2 � t � t /2, v 1 isg     g  k

(20)

where �C1 � (R1 + R ) �C. In the region t /2 � t � t , v 1 iss      g     +  k



vk1(t) 
 vk1(tg/2) C(t)
C0��C

�
�

	

1
�
�

1	 C(t)
C0��C

�
�

,

�
�
�

1	 (R1�Rs) �C/ (t
�
	tg/2)

(R1�Rs) �C/ (t
�
	tg/2)

.

vk1(t) 
 vk1(t�) exp 	

t	 t
�

C01
.

vs1(-)

g01

1�g01
1	exp 	

1�g01

C01��C1

-�
tg
2

.

vs1(-) 
 vs1(tg/2)
C(	-)

C0��C

�
	

	1

.

vs1(-) 
 vs1(t	) exp 	

-	 t
	

C01
.
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(21)

where

(22)

Observe that �  is not equal to � . This is because �  describes the charging of the capacitor as its+     -     +

capacitance increases, while �  describes the discharging of the capacitance while its capacitance is+

decreasing.

In the region t � t ,+

(23)

Normalized impulse response:

In the region - � -t /2, v 1(-) = 0. In this time region the impulse arrives after the diode conductanceg  s

has reset itself to 0, and do the impulse response is 0. This region also includes the times - � -t , and+

so t  does not play a role in determining the sampler’s impulse response.+

In the region -t /2 � - � t /2, v 1 isg     g  s

(24)

In the region t /2 � - � t , v 1 isg     -  s

(25)

In the region - � t ,-

(26)
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