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Abstract—We describe an algorithm for determining the min-
imum phase of a linear time-invariant response function from its
magnitude. The procedure is based on Kramers–Kronig relations
in combination with auxiliary direct measurements of the desired
phase response. We demonstrate that truncation of the Hilbert
transform gives rise to large errors in estimated phase, but that
these errors may be approximated using a small number of basis
functions. As an example, we obtain a minimum-phase calibration
of a sampling oscilloscope in the frequency domain. This result
rests on data obtained by an electrooptic sampling (EOS) tech-
nique in combination with a swept-sine calibration procedure.
The EOS technique yields magnitude and phase information over
a broad bandwidth, yet has degraded uncertainty estimates from
dc to approximately 1 GHz. The swept-sine procedure returns
only the magnitude of the oscilloscope response function, yet
may be performed on a fine frequency grid from about 1 MHz
to several gigahertz. The resulting minimum-phase calibration
spans frequencies from dc to 110 GHz, and is traceable to fun-
damental units. The validity of the minimum-phase character
of the oscilloscope response function at frequencies common to
both measurements is determined as part of our analysis. A full
uncertainty analysis is provided.

Index Terms—Hilbert transform, Kramers–Kronig relation,
linear response functions, minimum phase, mismatch correction,
oscilloscopes.

I. INTRODUCTION

AT THE National Institute of Standards and Technology
(NIST), Boulder, CO, we are developing high-speed

electrical time- and frequency-domain metrology that is based
on an electrooptic sampling (EOS) system that is traceable to
fundamental physical units. A fundamental component of this
metrology is a photodiode (PD) whose phase and magnitude
response is calibrated in the frequency domain up to 110 GHz
using the NIST EOS system [1]–[3]. The PD calibration in-
cludes corrections for the complex characteristic impedances
of the measurement system, as well as dispersion and multiple
reflections. Once calibrated, the PD can be used to calibrate
high-speed electrical test equipment, including sampling oscil-
loscopes [4]. We will refer to this as the EOS-PD calibration of
the oscilloscope.

The EOS system is designed for measurements requiring high
bandwidths, 110 GHz or more at present, and has degraded un-
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certainty below several hundred megahertz due to the maximum
time interval the system is capable of measuring. This gives rise
to an uncertainty in the PD response that propagates into an in-
creased uncertainty in the EOS-PD oscilloscope calibration over
this same low-frequency regime. This is a serious impediment
for using the oscilloscope to obtain calibrated waveforms over
time intervals larger than roughly 1 ns or, conversely, spectral in-
formation below 1 GHz. Furthermore, it is difficult to obtain ac-
curate absolute scaling for the voltage pulse generated by the PD
[1]. Thus, the EOS-PD calibration alone cannot be used to give
accurate absolute voltages, as measured by the oscilloscope.

As an alternative to the EOS-PD calibration, swept-sine
(frequency-domain) measurements can be used to determine
the magnitude of the frequency response of an oscilloscope,
as described in [5] and [6]. The swept-sine calibration can be
made at any frequency at which fundamental microwave power
standards are available, typically from 0.1 MHz to greater than
50 GHz. However, since the swept-sine calibration does not
give phase information, an oscilloscope calibrated using this
technique alone is not adequately characterized for time-do-
main metrology.

In this paper, we describe a procedure for reconstructing the
minimum phase of the oscilloscope response function from
its magnitude. Minimum-phase response functions have the
property that, in principal, the phase can be recovered from
the Hilbert transform of the logarithm of the magnitude [7]. In
practice, naive attempts to apply the standard theory can yield
extremely large absolute errors in the computed phase. This is
due to the truncation of the required integral operators to the
necessarily finite bandwidths attainable by measurement. Vari-
ations of this problem are well known and have been discussed
previously by several authors, [8]–[11].

Our fundamental observation is that although the truncation
error may be large in absolute scale, due to the localizing
nature of the Hilbert transform, this error is inherently low
rank in the sense that it can be approximated by a small
number of customized basis functions. As we have independent
and direct measurements of the phase response supplied by
the EOS-PD calibration over a large bandwidth, we solve a
linear least squares problem for the difference between our
measured values of the phase and the values computed via a
minimum-phase assumption as an expansion in our specialized
basis. This expansion corrects the absolute size and coarse
trends in the truncated minimum-phase approximation. We
provide a complete uncertainty analysis of the procedure.

Naturally, the final goal of a calibration is to determine the
true frequency-domain response, which may or may not be min-
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imum phase. In our example, our analysis allows us to con-
clude that the oscilloscope response function is indeed min-
imum phase over the bandwidth attainable by direct EOS-PD
measurements.1 Although the minimum-phase property would
seem desirable for an oscilloscope, given that such response
functions optimize a form of energy transfer (see, e.g., [12]), we
have not seen such a claim made before in the literature. To the
contrary, there exist several possible physical mechanisms [13]
that could, in principle, lead to a nonminimum phase response.

For theoretical reasons and based on experiments we have
performed in the laboratory, we conjecture that the minimum-
phase character of the oscilloscope response extends into the
low-frequency region. If so, our analysis results in a traceable
extension of the oscilloscope calibration to frequencies below
those unattainable by our present EOS techniques. Space does
not permit these arguments to be made in their entirety below.

To be clear, the results contained in this paper are as follows.
1) We describe an algorithm for correcting for truncation ef-

fects in minimum-phase analysis with a full description of
error propagation,

2) We present a new uncertainty analysis for the swept-sine
calibration procedure introduced in [5] and [6],

3) We demonstrate that the oscilloscope response function is
given by the minimum-phase response from 1 to 100 GHz.

A brief description of this paper follows. In Section II,
we present the minimum-phase analysis and derive the basis
functions suitable for correcting truncation effects. Section III
contains our uncertainty analyses of the swept-sine calibration
and the minimum-phase reconstruction. In Section IV, we im-
plement the procedure to calibrate a high-speed equivalent-time
sampling oscilloscope in the frequency domain. Finally, the
assumption that the oscilloscope response function is minimum
phase is fundamental to our analysis. We return to this in the
conclusion presented in Section V. The swept-sine calibration
of the oscilloscope magnitude was described previously in
[5] and [6]. An abbreviated description is included here in
Appendix A for completeness. The uncertainty analysis for this
calibration appearing in Section III of this paper is new. We
also include various numerical details in Appendix B, again for
completeness.

Throughout this paper, we use the “pseudowave” formalism
of [14] to characterize signals in microwave networks and limit
our discussion to frequencies below the cutoff frequency of
the guiding structures. Furthermore, the desired instrument
responses are assumed to be linear and time invariant, and also
to satisfy the necessary technical constraints; e.g., they are
finite square integrable, unless otherwise noted.

II. PHASE RECONSTRUCTION

Here, we describe the theory and implementation of the min-
imum-phase analysis.

1Technically the minimum-phase property is a global one in the frequency
domain. Phrases referring to the minimum-phase character of a frequency-do-
main response function over a finite bandwidth are to be understood as a lack
of observable features attributable to Blaschke terms in the fully general factor-
ization of (1).

A. Theory

An arbitrary frequency-domain response function can be fac-
tored as [12]

(1)

where is the minimum-phase response, is a real time
offset, and is a Blaschke product or “all-pass filter.” One
distinguishing characteristic of a minimum-phase function is
that its phase is determined by its magnitude via a Hilbert trans-
form relationship. There are various ways to express this; for
our purposes, the most elementary version is sufficient. Writing

, we have

(2)

One recognizes (2) as the usual Kramers–Kronig relations ap-
plied to the real and imaginary parts of the function

. The analyticity of and consequent applicability
of (2) is equivalent to the minimum-phase constraint. Note, by
definition, a minimum-phase response has neither delay, nor
all-pass components and . Currently we are un-
able to determine an absolute time origin. Therefore, we refer to
response functions with possibly nonzero as minimum phase
even though this is incorrect, strictly speaking.

A pervasive problem in the application of any
Kramers–Kronig analysis is to estimate the error due to
the finite bandwidth of a measurement. As it is impossible to
measure to infinite frequency, in practice, the integral in (2)
is truncated. We define

(3)

where is the maximum frequency attainable by experiment.
The problem is to estimate the effects of integrating only out to

[8], [9], [11]. (We use as a dummy variable and it should
not be confused with the usual Laplace transform argument.)

Concerning this truncation effect, there is a significant dis-
tinction between phase recovery and the use of Kramers–Kronig
relations to relate real and imaginary parts of response functions.
As the time-domain impulse response functions of interest are
real, standard parity arguments from Fourier analysis imply that
the magnitudes of the frequency-domain response functions roll
off as some even power, at large frequen-
cies. Experimentally, the magnitudes of generic oscilloscope re-
sponse functions have been observed to decay like , i.e.,

[15]. Regardless, as we will see, our results are indepen-
dent of . We assume an asymptotic expansion of the form

(4)
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where and the ’s are constants. For fixed , such that
, a simple estimate gives

(5)

In this set of equations, the constant depends on and is al-
lowed to change from line to line. The ellipses represent se-
ries terms in higher inverse powers of and, therefore, may
be ignored asymptotically. Notice that the form of the estimate
is independent of the rate of rolloff of the frequency-domain
response function, i.e., . The point here is that the scaling

converges so weakly as to not be useful. The impli-
cation is that even if the minimum phase hypothesis is valid, it
is difficult to compute an estimate of the underlying minimum
phase regardless of the experimental bandwidth.

The situation is radically different when attempting to recover
the imaginary from the real part. Using the same approach as in
(5) yields an estimate of the truncation error (again assuming
fixed ), which is

(6)

In this case, given a fixed interval of target frequencies, the size
of the error due to truncation approaches zero rapidly as the
measurement bandwidth increases.

An example of these estimates may be instructive. Consider
the second-order low-pass Butterworth filter given by

(7)

As a low-pass filter with rolloff, (7) is a reasonable surro-
gate for an oscilloscope response function for which the 3-dB
frequency point has been normalized to be (see [15]). We
emphasize that our results rely neither on this class of filters,
nor the order. The Butterworth filter is minimum phase, thus,
(2) is valid. For fixed target frequency , we compute
the functions

Consider the evaluation of and
from and , respec-

tively, using truncated integrals of the form (3). Computing the
required Hilbert transforms for different truncation frequencies
gives the results of Table I.

TABLE I
VALUE OF IMAGINARY PART AND PHASE OF RECONSTRUCTED FUNCTION

h (1=3) FOR DIFFERENT TRUNCATION FREQUENCIES 


If the real part is measured to twice the 3-dB frequency, we
observe two-digit accuracy on the calculated imaginary part.
By contrast, corresponding accuracy in the calculated phase re-
quires magnitude measurements out to 1000 times the charac-
teristic frequency. This slow convergence is consistent with the
estimate given in (5).

It is clear that estimation of the phase of a minimum-phase
response function from (3) alone will exhibit large errors due to
the truncation of the integral. However, we claim that although
this error is large in magnitude, it is simultaneously low rank. By
“low rank” we mean that it will be possible to expand the differ-
ence between the minimum phase and the phase computed by
the truncated operator (3) in terms of a small number of func-
tions that we define specially for this purpose.

B. Definition of Basis Functions

We assume that the response is minimum phase with the ex-
ception of a possible unknown time shift . In this case, (2) holds
with a slight modification

(8)

where is given by the truncated integral (3). The function
, defined implicitly by (8), is given by either of the equiv-

alent expressions

(9)

Note that encapsulates all unknown information of due to
both finite bandwidth measurements and unknown time shift.
As stated above, we know that admits an asymptotic ex-
pansion in even powers of . Assume that it is sufficient to
keep only the first term of this expansion. Substituting this into
the operator (9) gives

(10)
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Fig. 1. Plot of orthonormal basis functions (1=
p

)	(f=
).

where the constants depend on and . The functions
are

(11)

where is the Lerch transcendent. The equation for
is derived by expressing under the integral as a
power series in , integrating term by term, and rescaling the
result to obtain the power series definition of [16].
This transcendent is a special function in the generalized Rie-
mann–Zeta family and may be evaluated wherever needed ei-
ther by the power series or its analytic continuation [16].

For conditioning purposes, it is preferable not to use these
functions, but rather their orthogonalization given by a contin-
uous version of the Gram–Schmidt procedure [17]. We denote
the orthonormal functions by . They are shown for
the case in Fig. 1. The case for general is obtained
through a suitable rescaling. For a more technical analysis of
truncation effects relevant to the application of Kramers–Kronig
procedures in the classical setting—e.g., recovery of the imagi-
nary part from the real—see [9].

C. Procedure

We now have the tools necessary to describe our procedure.
We assume that we have a reasonably dense sampling of mag-
nitude measurements and direct measurements of the
phase . The magnitude measurements are obtained
from the EOS-PD measurement of [4] and the swept-sine mea-
surement described in Appendix A. The magnitude data sets,
acquired on different frequency grids, are merged using the
method described in Appendix B. The frequencies at which the
phase is measured need not be the same

as those of the magnitude measurements ,
nor even as dense. All that is required is that

Informally, the frequencies for which we have magnitude data
should “cover” the frequencies associated with the phase mea-
surements. For technical reasons, we enforce that the second of
the two inequalities is strict (see Appendix B). We assume that
the desired phase response is minimum phase, i.e., it satisfies
(8), and that is equal to a discrete sampling of .

Using the magnitude measurements, we evaluate ,
the truncated minimum-phase function (3) at all frequencies for
which we have measured phase data. For discretization of the
singular integrals, we represent the logarithms of the measured
magnitude data as a piecewise linear function of frequency. The
singular integral (3) is applied analytically to each of the linear
segments and then re-summed outside the integral. The operator
is evaluated at all of the frequencies where the EOS-PD calibra-
tion returns direct measurements of the phase response, as de-
scribed in Appendix B. The result is a dense matrix
of order , where is the number of EOS-PD data points
and is the total number of magnitude measurements. The
fully discretized version of (3) reads

(12)

where is the vector of logarithms of the magnitude response
measurements.

Next we form the difference (9) at the frequencies of the EOS
measurements

(13)

Following (10), we make the ansatz

(14)

and solve for the undetermined coefficients in a least
squares sense. Our fundamental claim is that although is
large relative to the true underlying phase , the func-
tional form (14) will be sufficient to expand . This will be
true if and only if the underlying response function is minimum
phase. Thus, violations of this claim may be used as a test of the
minimum-phase character of the measured response. We return
to this below.

Finally, given sufficiently low residual in the least squares fit,
an indicator of the validity of the minimum-phase assumption,
we compute the phase of the oscilloscope response function as
the sum

(15)

In this equation, the domain of the Kramers–Kronig operator
consists of the same frequencies as the magnitude measure-
ments ; the target frequencies are some arbitrary desired
frequency grid.
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III. UNCERTAINTY ANALYSIS

We perform a complete uncertainty analysis for the swept-
sine measurement procedure and minimum-phase recovery al-
gorithm. We recall the standard linearized propagation of errors.
Given a scalar random variable with mean and
variance , and variable , where
is sufficiently differentiable, we assume that

(16)

The multivariate analog involving the Jacobian of is straight-
forward; details may be found in [18]. In most instances, we
use the above formulas for computation of uncertainties. The
one exception is the determination of the uncertainty in the mis-
match factors in (29) or (30). In this case, the functional forms
are sufficiently complex that we instead use Monte Carlo anal-
ysis to determine the uncertainties as functions of the constitu-
tive reflection coefficients and -parameters.

A. Swept-Sine Calibration

We find the uncertainty in , as determined by the swept-
sine calibration, by propagation of the uncertainties in (29) or
(30) (of Appendix A), as appropriate. In linear units, we find the
uncertainty in the magnitude of the impulse response spectrum
as

(17)

where is the standard uncertainty of the quantity in
brackets, and is the mismatch term on the right-hand side
of either (29) or (30). All other terms in (17) are defined in
Appendix A.

We estimate the uncertainty in each of the power measure-
ments as the standard deviation of the mean of the measure-
ments. The standard uncertainty in the calibration factor is
taken from either the manufacturer’s specifications or the NIST
calibration report for the power meter. The standard uncertainty
in is determined from a Monte Carlo simulation that includes
uncertainty in the magnitude and phase of all the scattering pa-
rameters. Uncertainty in the reflection coefficients in is deter-
mined from either: 1) the manufacturers specifications for the
vector network analyzer used for the measurement or 2) NIST
calibration reports. The scattering parameters of the adapter are
determined from the Monte Carlo simulation of method de-
scribed in [19], and includes uncertainties in the definitions of
the open, short, and load terminations and the network analyzer
manufacturer’s specifications. Applying this analysis, we obtain
that the standard uncertainty [18] of our swept-sine data is typ-
ically between 0.05–0.08 dB.

B. Minimum-Phase Computation

We propagate errors through the minimum-phase reconstruc-
tion in a sequence of steps. First we evaluate via the
truncated Hilbert transform (12). Using the rules for linear prop-
agation of errors, we find that

(18)

where is the diagonal matrix containing the uncertain-
ties (systematic and random) of the vector . (Note: this ma-
trix could contain covariance estimates in off-diagonal terms if
such information is available. These correlations are important
for time-domain applications. See, e.g., [20].)

Next we form , the difference between the EOS-PD
determined phase and (12). Since the EOS and swept-
sine measurements are independent, the uncertainties
and are added in quadrature.

The least squares problem (14) is then solved for the vector of
coefficients . As with any linear least squares
problem, the error in the solution vector will scale with the
condition number of the underlying system matrix. In our case,
this system matrix is given by

(19)

It is at this point that we benefit from having pre-orthog-
onalized the natural set of expansion functions (11)
to instead form the orthonormal basis . Using the set

to define in place of the naïve func-
tions (11) reduces the condition number of from over 100 to
around unity. Another way to view this is that, as the are
orthonormal in a continuous sense, the discretized least squares
solution of (14) effectively is given by a well-conditioned
projection.

Finally, we evaluate wherever desired as the sum
(15). In principle, there exist correlations between the coeffi-
cients and the Kramers–Kronig operator applied to the mag-
nitude measurements, given that the later appear in the eval-
uation of the initial phase estimate . We assume these to
be negligible, as we require the values of at precisely
those frequencies where the EOS-PD calibration yields unre-
liable phase measurements. For this reason, whatever correla-
tions exist between the phase contributions of and
the coefficients would have to be effected through the off-di-
agonal components of the Kramers–Kronig operator and subse-
quent least-squares analysis. We assume these to be insignifi-
cant. Therefore, in this final expression for the relevant
random variables are and the set , which, by this
argument, are independent. The error propagation through the
integral operator and the three pointwise multiplications obey
their respective linear propagation formalisms, and the resulting
uncertainties of each are added in quadrature.

IV. OSCILLOSCOPE CALIBRATION

We implemented the procedures outlined above to obtain a
minimum-phase calibration of our equivalent-time high-speed
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Fig. 2. EOS-PD calibration: (a) phase and (b) magnitude are shown in grey.
Black lines show three separate sets of swept sine measurements. Together, mea-
surements span a five decade frequency range.

sampling oscilloscope. This oscilloscope has a nominal band-
width of approximately 50 GHz and has an adapter to convert
from the oscilloscope’s usual 2.4-mm connector to a 1.0-mm
coaxial input. It is at this 1.0-mm input reference plane that we
calibrate.

In our current configuration, the EOS-PD oscilloscope cali-
bration gives the magnitude and phase of the oscilloscope re-
sponse function at the 1.0-mm coaxial reference plane on
an equi-spaced frequency grid from 200 MHz to 110 GHz in
200-MHz increments. These data are shown in Figs. 2 and 3.
An uncertainty analysis, performed as part of that calibration,
is given in [4]. In addition to the sources of error identified in
that analysis, we also expect an increase in the uncertainty at
low frequencies due to the limited time interval that is mea-
sured by the EOS platform currently used to calibrate the PD. As
the oscilloscope is capable of taking measurements over large
time windows, e.g., longer than 5 ns, the low frequency cutoff
at 200 MHz is insufficient for utilizing the oscilloscope in the
manner that it could potentially be used.

To augment the EOS-PD calibration, swept-sine calibrations
were performed at the oscilloscope’s 2.4-mm input connector
plane, and the calibration was then embedded behind the
1.0-mm adapter. The measurements and uncertainty analysis
were performed as discussed in Appendix A and Section III,
respectively. After all mismatch corrections have been made
to account for adapter transfer and device reflections, these ex-
periments return the response magnitude on equi-spaced
frequency grids. Separate calibrations were made with this
technique over three overlapping frequency ranges.

Plots of the resulting magnitudes are shown in Figs. 2 and 3,
along with details of the measured frequency grids in the inset.

Fig. 3. Plot of the magnitude measurements from the EOS-PD calibration and
three swept-sine experiments. The combined uncertainty in the swept-sine mea-
surements is generally between 0.05–0.08 dB (the black error bar, shown for
scale, is�0.08 dB.) Uncertainties for the EOS-PD calibration is shown as gray
error bars. (Color version available online at: http://ieeexplore.ieee.org.)

In Fig. 3, we show the plots on both linear and logarithmic fre-
quency scales so as to examine certain features in the data. The
analysis of Section III-A yields a combined uncertainty in the
swept-sine measurements of generally between 0.05–0.08 dB.
A sample error bar is shown at the 0.20 GHz point in Fig. 3.

We draw attention to two features in these plots. First,
the EOS-PD calibration at the lowest two points (0.200 and
0.400 GHz) does not follow the response trend as measured
by the swept-sine technique. In fact, the 0.200-GHz point
differs from the swept-sine measurements by almost twice
the combined measurement uncertainties as based on our
current uncertainty analysis of the EOS-PD calibration [4].
Although less pronounced, a similar discrepancy appears at the
0.400-GHz point. Due to these discrepancies and additional
time-domain measurements we have performed, we conclude
that our current uncertainty analysis of the EOS-PD calibration
does not accurately capture the uncertainty due to the limited
time interval that is measured by the EOS system. For the
purposes of our current minimum-phase analysis, we neglect
these two points as outliers.

Second, the notch feature in the magnitude response centered
near 0.020 GHz, although small ( 0.1 dB), is both repeatable
and large relative to the uncertainties as computed by our un-
certainty analysis. Furthermore, this is a feature that would be
missed entirely if one were to extrapolate the EOS-PD calibra-
tion to dc from the lowest EOS-PD frequency measurement of
0.200 GHz.
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Fig. 4. Plot of the phase measured directly as part of the EOS-PD calibration
� and the evaluation of the truncated Kramers–Kronig operator � calcu-
lated from (12).

We proceed to the minimum phase computation. For magni-
tude data, we used a synthesis of the three swept-sine data sets
and the magnitude data of the EOS-PD calibration. Our proce-
dure for combining data sets is described in Appendix B. The
result is a single vector of magnitude measurements on an irreg-
ular frequency grid spanning five decades of frequencies (from
1 MHz to 110 GHz). This is the grid: .

Next, the truncated singular integral operator
was computed at all frequencies of the

EOS-PD data set with the composite product rule described in
Appendix B. This result is shown along with the EOS-PD mea-
sured phase in Fig. 4. We observe that the fine-scale structures
of the two curves agree. Simultaneously, there are gross trends
that have not been accounted for. The quantity is eval-
uated as the difference between these two curves and is shown
in Fig. 5. The basis functions were tabulated at the same
frequencies as and the system was inverted in a least
squares sense for the coefficients . The resulting expansion
of in the basis of is shown as the smooth curve in
Fig. 5. We observe that this expansion captures all significant
features of ; thus, we conclude that the minimum phase
hypothesis is valid.

We evaluate the minimum-phase response at all of the funda-
mental frequencies as the sum of the singular integral operator
and computed as a linear combination of , as in (15).
A plot over low frequencies of the measured phase and the min-
imum phase computed using our procedure is shown in Fig. 6.
The standard uncertainties computed as in Section III-B are
shown as the upper and lower dashed curves. The few EOS-PD
measurements of phase lying below 2 GHz are included for
comparison. The computed phase lies well within the EOS-PD
measurement uncertainty. Note that the 0.075-dB dip in mag-
nitude centered at 0.02 GHz (see Fig. 3) gives rise to the 0.4
rising region between 0.01–0.03 GHz. We have indeed observed
these features (magnitude and phase) in measurements of comb
generators performed with this oscilloscope.

Fig. 5. Plot of the difference of the two curves in Fig. 4,�, and its expansion
in the orthogonalized basis functions 	.

Fig. 6. Phase response of our oscilloscope estimated using the ESO-PD cali-
bration and the minimum-phase procedure described in this study. Combined
uncertainties for the minimum-phase estimate are shown as the dashed lines,
while uncertainties in the EOS-PD calibration are shown as gray error bars.

Finally, in Fig. 7, we plot the difference between the phase
measured directly by the EOS-PD calibration and the computed
minimum phase over all frequencies of the EOS-PD data set.
The uncertainty of the difference (which is dominated by the
EOS-PD measurements) is represented by the shaded gray re-
gion in this figure. The difference is less than a few degrees for

GHz, and may be considered to be zero to within the
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Fig. 7. Difference between phase measured directly by the EOS-PD calibration
and the computed minimum phase, plotted for all frequencies of the EOS-PD
data set. The uncertainty in the difference is represented by the gray shaded
region.

reported uncertainties. For frequencies above 70 GHz, the dif-
ference still remains small although the uncertainties returned
by the EOS-PD calibration become quite large due to the small
magnitude of the response function in this region. From this,
we conclude that the oscilloscope response function is indistin-
guishable from the minimum-phase response function over this
bandwidth.

V. CONCLUSION

We have described a procedure for systematically eliminating
the large error due to truncation effects in the implementation of
a minimum-phase analysis. A complete analysis of error prop-
agation has been performed. As an example, we augmented
swept-sine and EOS-PD data sets so as to obtain a min-
imum-phase calibration of our oscilloscope response function
at frequencies unattainable by either technique individually.
In the process of this analysis, we observed that the true
oscilloscope response function as measured by the EOS-PD
calibration is indistinguishable from the minimum-phase re-
sponse over a very large bandwidth. The theoretical possibility
that the true response function is not minimum phase cannot
be ruled out from the results and arguments presented above.
However, based on subsequent measurements and analysis, we
conjecture that this oscilloscope response is, within practical
limits, minimum phase to frequencies lower than we can attain
using our EOS-PD calibration. We stress that this last assertion
applies to our particular model oscilloscope and may not be
valid for other models of oscilloscopes or oscilloscopes made
by other manufacturers. We will report on these results in the
future.

APPENDIX A
SWEPT SINE MAGNITUDE MEASUREMENT

A. Theory

A power sensor is commonly used to measure the power of a
single-frequency microwave source, as described in [21]. When

directly connected to the signal source, the power meter reading
is given by

(20)

Here, and [shown schematically in Fig. 8(a)] are the forward
and reverse wave amplitudes of the “pseudowaves” at the junc-
tion between the source and the power meter (or oscilloscope)
and are normalized to a 50- reference impedance (see [14]).
These wave amplitudes have units of the square root of a watt.2

The quantity is the vector reflection coefficient of the power
meter, and , known as the mismatch loss, accounts
for the power reflected by the sensor. The sensor efficiency
accounts for ohmic and radiation losses in the sensor intercon-
nection and housing. Both factors are used to correct measured
incident power in commercial power meters, and are usually
combined in a calibration factor . From (20),
we see that the calibrated power meter measures the power in
the incident wave

(21)

The net incident power can be related to the power the source
would deliver to a 50- load by the relation

(22)

where is the vector reflection coefficient of the source. Com-
bining (20) and (22) gives the standard expression for the power
the source would deliver to a 50- load in terms of the power
meter reading, the meter calibration factor, and the meter and
generator reflection coefficients

(23)

By analogy with (21), we calibrate the oscilloscope so that it
measures the incident wave, as was used in earlier calibra-
tion methods [5]. That is, we calibrate the otherwise ideal3 os-
cilloscope to measure the convolution of the incident wave with
the oscilloscope impulse response and use a scale factor to give
the voltage reading. In the frequency domain, this becomes a
product

(24)

where is the complex frequency response of the oscilloscope
and is dimensionless, i.e., is the transform of the impulse re-
sponse of the oscilloscope evaluated at our frequency of interest,

2References [5], [14], and [21] use a root-mean-square (rms) normalization.
The rms-normalized pseudowaves a and b are related to those used here, with
a = a=

p
2 and b = b=

p
2.

3By “ideal” we mean that the oscilloscope is free from timing errors, non-
linearity, etc. We use the methods described in this study to characterize the
finite-impulse response of the otherwise ideal oscilloscope. Compensation for
other nonidealities is described in [4] and the cited references therein.
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Fig. 8. Schematic diagram showing pseudowave definitions for power meter
and oscilloscope calibration in (a) and experimental configuration in (b). (Color
version available online at: http://ieeexplore.ieee.org.)

and is the raw voltage measured by the oscilloscope. The
scale factor converts the pseudowave description to a
voltage. For a more detailed analysis of this scaling, see [20].

Using an analysis similar to that leading to (22), the oscillo-
scope measurement can be related to the wave and power the
source would deliver to a 50- load

(25)

and

(26)

where is the vector reflection coefficient of the oscilloscope
when in its quiescent state.

Since is an invariant property of the signal generator, it
can be used to relate the power meter and oscilloscope measure-
ments. We equate (23) and (26) to give an expression for in
terms of measured powers and reflection coefficients

(27)

where .

B. Implementation

The configuration of the swept sine measurement system is
shown in Fig. 8(b). The power at port 1 of the splitter is first mea-
sured by connecting directly to a calibrated power meter or, for
low frequencies, a low-frequency power sensor is connected to
port 1 through an adapter. The signal frequency is then stepped
over the appropriate frequency range and, after allowing time
for the equipment to settle, measurements are taken from the
calibrated power meter and the monitor power meter.

Port 1 of the splitter is then connected directly to the oscil-
loscope and the oscilloscope is placed in a vertical histogram

mode and is triggered asynchronously to measure the variance
of the voltage at each frequency. We observe that this variance is
the rms voltage measured by the oscilloscope. The power mea-
sured by the oscilloscope is calculated as

(28)

where is the measured signal variance and is the back-
ground variance measured with the signal generator turned off.
The frequency of the signal generator is then stepped over the
same frequency range, and the response of the oscilloscope is
calculated as

(29)

where is the monitor power meter reading while port 1 is
connected to the calibrated meter and is the monitor reading
when port 1 is connected to the oscilloscope. Using the ratio in
(29) instead of (27) compensates for drift in the source power.
When this type of ratio is used, the equivalent source reflection
coefficient is found using the method described in [22].

In the case where the adapter is added to the power sensor,
the response magnitude is calculated as

(30)

where are the scattering parameters of the adapter and
.

APPENDIX B
NUMERICAL DETAILS

Here we describe various numerical routines that were used
for the computations above. We first present our algorithm for
constructing a continuous description of tabulated noisy data.
We refer to this procedure as “merging.” Next we derive the an-
alytic expressions representing the application of the singular
integral operator (3) applied to the result of the discrete merged
data as in (12). We stress that the analytic basis of our argu-
ment—that the discrepancy between a minimum phase response
and the truncated Kramers–Kronig operator is low rank—is in-
dependent of discretization. By contrast, the error analysis pre-
sented above does depend on the discretization. The routines
that we employ are general in that they do not require function
data on a regular grid, and are robust to the presence of experi-
mental noise. They are also low order, a feature which simplifies
the algebra and error analysis considerably. There exist natural
higher order analogs to the procedures that we outline. For our
current applications, these were deemed unnecessary. We may
consider implementing them in the future.

A. Merging

The Hilbert transform operator is very sensitive to sharp
changes or discontinuities in the function to which it is being
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applied. In our current application, such changes are inevitable
as the magnitude data are obtained from different experiments
over different frequency grids. Even when the discontinuities
in magnitude are on the order of what could be expected
given the experimental uncertainty of these measurements,
they lead to sharp features in the reconstructed phase. Given
some underlying assumption of smoothness on the true phase
response, these features should be considered artifacts of the
data collection procedure. Hence, it is desirable to merge the
data sets in such a way that these effects are minimized.

Synthesizing a (smooth) data curve from noisy overlapping
samples is a topic in its own right. We employed a rela-
tively simple procedure, which is adequate for the current
purposes. As a first step, we combined all magnitude measure-
ments—EOS-PD and the three swept-sine calibrations—into
a single data set. To do this, we define the “fundamental” fre-
quency grid as the union of all of the experimental frequencies.
Next, for each experiment, we interpolated the magnitude data
to the fundamental frequencies lying within the frequency in-
terval of that individual experiment. We used piecewise-linear
interpolation at this step, and propagated the experimental
uncertainty accordingly. Finally, a global data set was formed
by computing the average of the magnitude measurements at all
frequencies where experiments overlapped. The average was
formed by weighting each measurement by the inverse of its
associated variance, i.e., the square of its standard uncertainty.
In our example, this procedure yields interpolated averaged
magnitude data at 800 irregularly spaced frequencies, as shown
in Fig. 3.

B. Kramers–Kronig Matrix

Next we describe our implementation of the Kramers–Kronig
operator and the entries of its matrix representation . We
define the data vector and its separation into frequencies and
values

The result of the merging procedure is a piecewise-linear
function defined on an arbitrary frequency grid, i.e., it is a

-spline interpolating the points . There are many ways
to represent such curves, one being as a linear sum of “hat
functions.” Given an arbitrary grid of abscissas , we define the

th hat function as the piecewise linear function (see,
e.g., [23, Ch. 3])

elsewhere

(31)

This definition requires some modifications at the extreme
frequencies. We assume that the lowest frequency is dc; .
As we are interested in taking the Hilbert transform of

, we know by standard Fourier arguments that this
function is even with respect to frequency. Thus, we may aug-
ment the data vector to include a reflected frequency and “mea-

surement” about the origin and
. Thereby, is defined. Finally, as there

are no measurement frequencies beyond is given
by the top line of (31) and is zero elsewhere. With these defini-
tions, given tabulated data , the desired piecewise linear inter-
polating spline is given by

(32)

By construction, is a simple function defined for all
. As such, we may apply the Kramers–Kronig operator

(32) analytically. Given a set of target frequencies, we define
our discretization of the operator as the matrix that evaluates
the singular integral operator against the interpolant formed
from the discrete data at the desired target frequencies, e.g.,

, where the phase has been measured. From (32), we have

(33)

Thus, the th entry of the matrix is given by

(34)

As is continuous for will like-
wise be continuous. The discontinuity in at the top fre-
quency has the consequence that the image
will have a logarithmic divergence at . This divergence
is mild and is not observable within our measurement error for

. However, it is due to this logarithmic divergence
that we enforce the strict inequality in
Section II-B.

It remains to evaluate in (34). For the sake of clarity,
we drop the primes on in what follows. The operator ap-
plied to a general linear function is fundamental and is given by
the identity

(35)

For , application of to the hat function is a sum
of terms of the form (35) with appropriate definitions of slopes
and intercepts and . For , substituting (31) into
(35) gives

(36)
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Equation (36) makes sense for . At
these three points, the logarithmic terms diverge. By construc-
tion, however, these divergences cancel and the limit of (35) is
finite. For example, the limit as is given by

(37)

We leave the other cases for the readers.
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