YALINA facility

Location: at the Joint Institute of Power and Nuclear Research, Sosny - ~20 km east of Minsk, Belarus

subcritical assembly driven by a neutron generator that operates in either pulsed or DC mode

Main research program

Experimental and theoretical research on transmutation of long-lived fission products and minor actinides in a sub-critical assembly driven by a neutron generator

- ☐ neutronics studies of a sub-critical system driven by external neutron source
- ☐ measurements of the transmutation rates of fission products and minor actinides
- ☐ investigation of kinetics of the sub-critical systems with external neutron sources
- □ validation of the experimental techniques for sub-criticality monitoring, neutron spectra measurements & nuclear data models & libraries
- ☐ investigation of dynamics characteristics of sub-critical systems with an external neutron source operated in pulse mode

Collaborators: RIT (Sweden); CIEMAT (Spain), FzK (Germany)

YALINA detector equipments

modest equipment ...

- ☐ ³He neutron detectors with 10 mm and 250 mm length
- ☐ Fission chambers ^{235,nat}U and ²³²Th
- ☐ Coaxial HpGe detector 80% efficiency
- ☐ Planar (LEPS) Ge detectors
- □ Radioactive samples of ²³⁷Np, ²⁴³Am and ¹²⁹I

YALINA neutron generator

Deuteron energy		100 – 250 keV
Beam current		1 – 12 mA
Pulse duration		0.5 – 100 μs
Pulse repetition frequency		1 – 10000 Hz
Spot size		20 – 30 mm
(d,t)-target	Maximum neutron yield	~2.0·10 ¹² ns ⁻¹
	Reaction Q-value	17.6 MeV
(d,d)-target	Maximum neutron yield	~3.0·10 ¹⁰ ns ⁻¹
	Reaction Q-value	3.3 MeV

water cooled, rotating targets
Ti-t and Ti-d

ion source

bending magnet

YALINA thermal assembly

subcritical k_{max} < 0.98 with thermal neutron spectrum

- 1 core
- 2 Pb target
- 3 graphite reflector
- 4 cadmium screen
- 5 polyethylene block
- 6 experimental chan
- 7 -detectors for neutro monitoring

Some results from the thermal assembly

Axial rate distributions

YALINA-B /buster configuration

The fast zone – considered as a volume source – close to the spallation target of SAD and MYRPHA experiments

Buster Zone (K_{eff}=0.67)

Fuel: metallic U (90% ²³⁵U)

UO₂ (36% ²³⁵U)

Moderator: Pb

Intermediate Zone

Fuel: metallic ^{nat}U (0.7% ^{235}U)

 $B_{4}C$

Moderator: Pb

Thermal Zone (K_{eff}=0.95)

Fuel: UO_2 (10% ^{235}U)

Moderator: polyethylene

Reflector: graphite

YALINA-B /buster configuration

Future research program

- \square Validation of applicability of methods developed for critical reactors to determine k_{eff} for sub-critical systems
- ☐ Development of reactivity monitoring techniques for sub-critical systems with fast neutron spectrum
- □ Study of dynamics, coupling (feedback) for the system "neutron generator sub-critical reactor"
- \square Investigations of the core response due to fast reactivity insertions by movement of a B₄C rod in the experimental channels of the core
- ☐ Studying the features of coupling of spallation target and the core
- ☐ Studying the influence of shielding on physical parameters of the fast spectrum core
- ☐ Pu, MA and LLFP transmutation rates in fast & thermal neutron spectrum

