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Abstract

A system of utility software has been written which meteorological
computer modelers can incorporate in their programs to provide the math-
ematical and physical properties of Conformal maps that their models
may need. In addition to coordinate transformations, routines supply
projection-dependent terms of the governing equations, wind component
conversions, and rotation axis orientation components. The routines seam-
lessly handle the transitions from Polar Stereographic through Lambert
Conformal to Mercator Projections. Initialization routines allow concur-
rent handling of multiple projections, and allow simple means of defining
computational model grids to the software.
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1 Introduction

Meteorological Computer Models are typically constructed as finite difference
approximations to differential equations. These finite difference equations are
generally based on a square mesh grid imposed on a flat map of the Earth in
some selected projection, usually conformal.

To relate model results to the weather on the Earth, the modeler requires
subroutines to translate the x-y coordinates of the grid to the latitude-longitude
coordinates of the Earth. Several software packages provide this capability,
among them certain of the W3LIB routines, Stackpole, (1988) maintained by
the National Weather Service and certain routines (EZMAP) of the ncargraphics
package (Middleton-Link, 1993, pp 63-169).

However, the modeler needs more than coordinate transformation. The
model winds are represented by vector components aligned with the grid; con-
version to meteorological standards requires rotation by an amount dependent



on position and projection. The governing equations include terms which are
determined by the mathematical properties of the map projection, and which
would not be present if the Earth were flat.

These capabilities are directly related to the same map projection that de-
fines the task of coordinate transformation, and ideally would be provided by
the same software package. This paper desscribes an ensemble of subroutines
that provide these services for the most common conformal projections (polar
centered Lambert Conformal, Mercator, and Stereographic projections). Source
code for these Conformal MAP Function (CMAPF) routines is available at URL
http://www.arl.noaa.gov/ss/models/cmapfl.html, or by anonymous FTP from
the server IAMG.ORG.

Our routines are more user-friendly than the earlier cited software. Initial-
ization routines are provided to allow the user to describe the map projection
and associated grid in easily understood terms. The user’s information is com-
piled in one or more parameter blocks which can then be passed to the other
routines. In this way, the user can work with more than one grid at a time, and
exchange data between grids.

By contrast, the W3LIB routines require each separate parameter to be
passed individually in every call, which can make code harder to maintain and
requires the user to define the grid in the terms dictated by the routine. Further,
the ability to orient the grid at an angle to North on the map is restricted
in the Lambert Conformal situation and prevented in the Mercator situation.
The ncargraphics EZMAP routines provide only the forward (Lat-Lon to x-y)
transformation, while restricting rotation in the Lambert Conformal situation,
as well as the gridsize in the x-y plane. Initialization sets internal parameters,
precluding working with more than one grid at a time.

Traditionally, Meteorological Models have been presented on maps created
from an assumed spherical Earth, rather than the more exact flattened ellip-
soid, and our routines are not an exception in this regard. Accounting for the
flattening according to the Ellipsoid of the International Union of Geodesy and
Geophysics (Richards & Adler, 1972, pp 1-23) would adjust the scale of our pro-
jections by £0.5% and the aspect ratio (ratio of scale in North-South direction
to that in East-West direction) by £0.7%, depending on latitude.

Section 2 presents the standard modeling equations and indicates the terms
which will be provided on demand by the subroutines. The next two sections
present instructions on how to initialize (Section 3) and use (Section 4) our
software. Section 5 covers the differences between the FORTRAN and C ver-
sions. Appendix A presents the mathematical basis for the subroutines, while
Appendix B outlines special considerations at and around the North and South
poles.

Mention of a commercial company or product is done only for illustrative
purposes and does not constitute an endorsement by the author, the National
Oceanographic and Atmospheric Administration, or any agency of NOAA.



2 Conformal Projections and the Equations of
Motion

The system of routines described in this paper support a conformal coordinate
system, i.e. an orthogonal coordinate system with distance scales isotropic in
the horizontal. Combined with a vertical dimension, they allow for a special case
of orthogonal curvilinear coordinates. The form of the Meteorological equations
of motion derived below relies only on the intrinsic distance relations of such
coordinates, and the gradients of these distances. This feature of the equations
means that the information provided by the CGSZ.. functions and the CCRV..
routines is sufficient to construct meteorological models on this grid, as well as
suggests how to extend such systems to more general map transformations.

In a general system of orthogonal curvilinear coordinates, we write z; = x,
To =y, T3 = 2, and suppose the distances given by small changes in coordinates
are given by ds?® = h3dx? + h3dx3 + h3dx% (c.f., (Haltiner & Williams, 1980,
p441)). We designate velocity components either in grid-units per time unit
(denoted by ;) or in physical units of meters per second (denoted as convenient
by U; or by «, v, and w). Then Uy = w = hy uy, Uy = v = hg ug and
U3 = w = hs us. In such coordinates, the vector operators for gradient,
divergence and curl are

op i ap j op k
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where i, j, and k are unit vectors in the direction of increasing x, ¥, and z,
respectively,
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If an orthogonal coordinate system is conformal, we have hg = 1 while
hi = he =0 (2,y,2) = oo(z,y) r / a, where 0y represents the gridsize at
surface level (the length in km of a unit distance in the x-y coordinate system),
a represents the radius of the Earth, and the factor r/a =1 + z/a is due to
the fact that the length of an arc increases proportional to distance from the
Earth’s center. Then gradient, divergence and curl become
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where G, = 062600/637 and G, = 052600/8y define the components of the
intrinsic curvature vector of the map projection at the point (z,y). This vector,
projected normal to any apparently straight line in the z,y plane, yields the
magnitude of the actual curvature of that line on the Earth.

The continuity equation is written, using the above expressions, as

0
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where p denotes the atmospheric density. This is essentially the same as (Haltiner
and Williams, 1980, p 13), who write m instead of 1/0, and drop the 2-
dependence of o and hence the last term as being negligibly small.

The momentum equation is written as

Du 1

— +-V 2Qey X k=0 5

D1 +p p+2Qey Xu+y (5)
where p is the pressure and ey = N, i + N, j + N, k is a unit vector

aligned with the Earth’s axis in the North direction. €2 is the rotation rate of
the Earth, and f = 2N, represents the Coriolis parameter, while 200N, and
200N, represent coeflicients of coriolis force exchanges between the horizontal
and vertical. Du/Dt is the acceleration, expressed in terms of a “substantive
derivative® operator D/ Dt which yields the rate of change of a quantity following
a wind trajectory, and if the quantity is a vector, allowing for the effects of
parallel transport on its components.
The acceleration term Du/Dt has components Du; /Dt given by
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where the first two terms of the right hand side represent the total rate of
change in the components of the velocity, and the final term represents the



rate of change of the direction of the basis vectors with motion along an air
parcel trajectory. The symbol in braces ({}), also written I‘; % 1s a Christoffel
symbol of the second kind, defined in (McConnell, 1957), and for orthogonal
curvilinear coordinates, evaluated on page 156 of that reference. Substituting
that evaluation, while converting to physical units, we find

- J hj a’L’j hi axij

Di ot

For the conformal case, substituting for the h; yields
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Using the above expressions for the wind acceleration, the momentum equa-
tion becomes
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where f = 202N, denotes the Coriolis parameter, as before.

(Haltiner and Williams, 1980, pp 11-13) present momentum equations for
the cases of Polar Stereographic projection (origin at North Pole, gridsize= 1
at the equator) and for the Mercator projection (gridsize= 1 at the equator,
with the origin at the intersection of the equator with the prime meridian).
Comparing Equation (8) with theirs, we find that they are equivalent, noting

N — z 1+ sin(¢) _ yl4sin(o)
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z Y
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in the Polar Stereographic situation, and
t
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in the Mercator situation. In the above equations, ¢ represents the latitude.
throughout. We also assume, with (Haltiner and Williams, 1980), that 2 is
negligible in comparison with a, and so replace  with a throughout.

These equations are readily generalized for the Lambert Conformal projec-
tion which our subroutines support. They can also be generalized to other
conformal projections such as Transverse Mercator and Oblique Stereographic.

The differences between these equations and those that would apply if the
Earth were flat and could be assumed uniform, are multiples of the terms G, =
oy 290 /0x and Gy = 0 280, /0y. These terms, whose units are radians per
km, define the intrinsic curvature of the projection, i.e. the actual curvature
on the Earth of a line which appears straight on the grid. A projection can
always be specified so this curvature vanishes at any given point. The effects
will be minuscule near that point but gradually become more significant away
from that point and can be overwhelming in the vicinity of the pole (except for
the case of the Polar Stereographic projection).

Thus, for a 10 m sec™! East wind on a Mercator projection, the vorticity
due to the term uG, at latitude 45° (2.23 - 10 %sec™!) is 2% of the Coriolis
parameter (1.03 - 10" *sec™1). At 70° the ratio is 10%, (1.27 10 ®sec™! vs
1.37 10 *sec™1), and at 85° is 140% (2.07 10 *sec ! vs 1.45 10~ *sec™!).

To summarize, the form of the equations of motion shows that the following
terms depend on the map projection, and may conveniently be provided by calls
to any system of routines responsible for handling the projection: the gridsize
00 (2,y) as a function of x and y, its gradient (G, G,) = 0, 2 (900 /dx,d00/dy),
and the direction cosines of the Polar axis (N, N, N,). These terms are
returned by some of the subroutines we have provided.

3 Initializing the CMAPF functions

The Conformal MAP Function (CMAPF) functions and subroutines perform
coordinate transformations between points and vectors on the Earth’s surface
(given in degrees of latitude and longitude, with North and East as positive),
and their equivalents on a class of X — Y grids overlaying Conformal maps.

Each XY grid and its corresponding map is defined to the program through
a PARMARP array of 9 floating point variables. It is the user’s responsibility to
provide this array in the calling routines:

REAL PARMAP(9).

More than one such grid may be defined, allowing coordinate transformations
between two or more grids.

Before coordinate transformations can be performed, the PARMAP arrays
must be initialized. This is carried out in a two stage process: first the map
projection is specified by a call to STLMBR; subsequently the grid is laid out
on the projection and defined by a call either to STCMI1P or to STCM2P.



Figure 1: Conic projection

3.1 Initialization Stage 1: Specifying the Projection

In the class of maps supported by the software - Lambert Conformal, including
Polar Stereographic and Mercator - the latitudes and longitudes of the Earth
are projected onto a cone circumscribed on the earth at a specific latitude, as
in Figure 1. A mathematical function maps a point of a given latitude ¢ and
longitude A to a point at a distance B(¢) from the apex of the cone, along the line
from the apex tangent to the sphere at longitude A. The special instances of the
Polar Stereographic and the Mercator projection occur when the cone flattens
to a plane tangent at the pole or extends to a cylinder tangent at the equator,
respectively. In the special instance of the Polar Stereographic projection, there
is a focal point (the opposite pole) from which rays may be conveniently drawn
through points on the globe to corresponding points on the map.

After projection, each meridian becomes a line of the cone, drawn through
the apex and tangent to the longitude, while circles of latitude map into cir-



Figure 2: Conic projection as unrolled

cles on the cone whose spacing is determined by the conformal condition that
the scale in the North-South direction be the same as that in the East-West
direction.

Unrolled and flattened, the projection appears as in Figure 2. Longitudes
appear as rays from a common center, and circles of latitude appear as arcs.
The arcs do not fill complete circles, but a fraction «y of a circle where v is the
sine of the latitude at which the circumscribed cone is tangent to the Earth.
Necessarily, the rolled out projection is “cut” at some specific longitude. Two
parameters distinguish each projection from all others:

1. The latitude, TNGLAT, at which the superimposed cone is tangent to the
Earth

2. A “reference longitude“, REFLON, halfway around the world from where
the projection is cut (vertical in Figure 2).

The first step in initializing the PARMAP arrays is to provide this informa-
tion, using the STLMBR routine:
CALL STLMBR(PARMAP,TNGLAT,REFLON)
e.g. CALL STLMBR(PARMAP, 35., -75.)
For Polar Stereographic maps, TNGLAT will be 90.0 if centered about the
North Pole, —90.0 if about the South Pole. For Mercator maps, TNGLAT will




P1: (1’1) - - P2 (11,6)
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Figure 3: Illustration of two-point grid specification

be 0.0. All other values of TNGLAT, from —90° to +90°, refer to Lambert
Conformal maps.

In most published Lambert Conformal maps, the tangent latitude is not
specified. Instead, the map legend will specify the scale at two “Reference
Latitudes”, e.g. “Scale 1 : 360,000 at 28° and 41°48". The tangent latitude
needed to specify the projection lies between the two reference latitudes and
can be calculated from them. We have included a function, EQVLAT, in our
software to perform this calculation. The projection can be specified to the
PARMAP array through the call

CALL STLMBR(PARMAP, EQVLAT(REFLT1, REFLT2), REFLON)
e.g. CALL STLMBR(PARMAP, EQVLAT(28.0, 41.8), -75.).

3.2 Initialization Stage 2: Specifying the Grid
3.2.1 Two Point Specification

Once the projection is specified, an X —Y coordinate system is laid down on it.
Given the conformal condition that the scale must be isotropic, an orthogonal
x — y coordinate system can be completely defined by knowing the geographic
location of any two distinct points on it. In 3, the user lays out the grid with
corner points P1 (X1=1,Y1=1) and P2 (X2=11,Y2=6) located at latitude 10° N,



P1: (1,1) > Orientation:
P1: (10°N,109°W) N : —13°

20° 75" 60" Gridsize:

G=R20km at 30°'N

Figure 4: Illustration of one-point grid specification

longitude 109°W and 51° N, 48°E, respectively. To include this definition in
the PARMAP array, the STCM2P two-point grid definition routine is used:
CALL STCM2P(PARMAP, X1,Y1, XLAT1,XLON1, X2,Y2,
C XLAT2,XLON2)
e.g. CALL STCM2P(PARMAP, 1.,1., 10.,-109., 11.,6.,
C b51.,48.)

In general, it is not necessary that the two points be corner points, or that
they have different X or different Y coordinates. It is only necessary that they
be different points; i.e. that either the X-coordinates, or the Y-coordinates, or
both, differ.

3.2.2 One-Point Specification

Information on grid size and grid orientation may be substituted for one of the
points in the two-point specification. As shown in 4, the orientation of the grid
coordinate system can be established by the angle at which the Y-coordinate
lines cross the reference longitude (in degrees measured clockwise from the North
direction) while the scale of the grid can be given by the grid size in km at some
latitude. Instead of using STCM2P, this form of specification can be placed in
PARMAP by STCMI1P:

10



CALL STCM1P(PARMAP, X1,Y1, XLAT1,XLON1, GLAT,GLONG,

C GSZ, ORIENT)
e.g. CALL STCM1P(PARMAP, 1.,1., 10.,-109., 30.,-75.,
C 220., -13.)

A facility is provided for allowing the grid to be tilted with respect to the
reference longitude since meteorological modelers may well choose to orient their
grids along a valley, mountain range, or island chain, which may not be so
obliging as to lie in an exactly North-South or East-West direction.

3.3 Initialization Examples using Standard Grids

The grid specification system described above can accommodate many grid def-
initions in standard usage, several of which are specified in Dey (1996). For
example, the National Centers for Environmental Prediction grid 27 (the 65x65
point grid used to display forecast fields from many NCEP models) is defined
as Polar Stereographic, oriented along the 80°W longitude, grid size 381 km at
60° N, North Pole at (33.,33.). It can be specified with the code

REAL CEP27(9)

CALL STLMBR(CEP27, 90., -80.)

CALL STCM1P(CEP27, 33.,33., 90.,0., 60.,-80.,

C 381., 0.).

NOAA’s Automated Weather Interactive Processing System has defined sev-
eral map grids. AWIPS grid 204 is a Mercator projection covering Hawaii. It
has a gridsize of 160 km at latitude 20°1V, oriented with the Y-axis North.
Its lower left point (1,1) is located at 29.26°S, 129.47°E, and it straddles the
International Date Line. It can be specified with the code

REAL AWP204(9)

CALL STLMBR(AWP204, 0., 180.)

CALL STCM1P(AWP204, 1.,1., -29.263,129.470,

C 20.,180., 160., 0.).

It could also be specified with the code

REAL AWP204(9)

CALL STLMBR(AWP204, 0., 180.)

CALL STCM2P(AWP204, 1.,1., -29.263,129.470,

C1.,71., 60.547,129.470).

4 Using the CMAPF functions

4.1 Coordinate Transformations

Once the projection and grid specifications have been set in a PARMAP array,
the CMAPF functions can be used to transform coordinates and vectors. To
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Figure 5: Wind vectors on a grid

transform between geographic coordinates (lat-long coordinates) and the X-Y
coordinates of the PARMAP grid, use
CALL CXY2LL(PARMAP, X,Y, XLAT,XLONG)
and  CALL CLL2XY(PARMAP, XLAT,XLONG, X,Y).
The first returns, as XLAT and XLONG, the latitude and longitude of the
X,Y point on the PARMAP grid, while the second returns the (x,y) coordinates
on that grid of the point whose latitude and longitude are XLAT, XLONG.
When working with two grids concurrently, it will often be necessary to relate
the position of points in one grid relative to another. To find the coordinates
on the AWP204 grid of the point whose coordinates on the CEP27 grid are
XN,YN, these calls are combined as follows:
CALL CXY2LL(CEP27, XN,YN, XLAT,XLONG)
CALL CLL2XY(AWP204, XLAT,XLONG, X,Y)
The first call returns the latitude and longitude of the point, and the second
returns the X,Y coordinates in the AWP204 coordinate system.

4.2 Vector (Wind) Transformations

Winds are normally given with reference to the North-South and East-West
directions, but as illustrated in Figure 5, vectors with the same components
(Uy, V,) relative to the grid, taken at two different points of the grid, will
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generally not have the same compass direction. To relate compass wind vectors
to the grid wind vectors is equivalent to rotation by an amount depending on the
projection and on the location of the wind. This position may be known either
in terms of latitude and longitude or of grid coordinates; to avoid confusion, we
have supplied a subroutine for each contingency.
To convert wind components from compass-oriented to grid-oriented coordi-

nates or vice-versa, use one of the routines

CALL CC2GXY (PARMAP, X,Y, UE,VN, UG,VG)

CALL CC2GLL (PARMAP, XLAT,XLONG, UE,VN, UG,VG)

CALL CG2CXY (PARMAP, X,Y, UG,VG, UE,VN)

CALL CG2CLL (PARMAP, XLAT,XLONG, UG,VG, UE,VN).
The CC2G.. routines accept Compass-oriented wind components (UE,VN)
(UE in the East direction, VN in the North Direction), and return Grid oriented
components (UG,VG) according to the grid specified in PARMAP (UG in the
grid’s X —direction and VG in the grid’s Y —direction). The CG2C.. routines
reverse the transformation, converting from Grid-oriented to Compass-oriented
components. The C...XY routines accept position information in Grid coordi-
nates X,Y, while the C...LL routines accept position information in geographic
coordinates XLAT , XLONG. Note: within one degree of each pole, the Compass
oriented wind components are oriented according to a “compass” oriented with
the “North“ direction (the ¥ or v axis) in the direction of the prime meridian
(longitude 0°). See Appendix B.

4.3 Gridsize

The previously described routines accept wind components in km per hour and
return them in the same units. The magnitude of the wind does not change.
To determine the distance in grid steps moved by material in a unit of time,
or the value of a pressure height gradient between neighboring grid points, one
must divide or multiply, as appropriate, by the size of a grid step. This size
changes with position. To obtain the gridsize at a given point, use
REAL FUNCTION CGSZXY (PARMAP, X,Y)
or REAL FUNCTION CGSZLL (PARMAP, XLAT,XLONG),
depending on whether the position of the point is known in & — y or ge-
ographic coordinates. Each function returns the gridsize in km at the given
location.

4.4 Curvature (Scale Gradient)

The differences between the Modeling Equations of Section 2 and those that
would hold if the Earth were flat amount to multiples of the vector G = 0~ Vo,
where o denotes the gridsize, and the gradient operator is defined by V =
0~ 1(8/8X,8/Y). This vector, whose units are radians per km, represents
the difference between a path’s apparent curvature on the map and its actual
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Figure 6: A series of geodesics on a conformal map.

curvature on the Earth. Its appearance in the equations of motion is due to
this curvature shift, and the extent of its influence may be estimated by the
curvature of geodesics on the map.

Geodesics (Great Circles) are paths without curvature on the Earth’s surface,
and ideally should be represented by straight lines on the map. This is not
possible for a conformal map, and the projection process endows geodesics with
a slight apparent curvature on the map. This “induced curvature” of a geodesic
at a given point is limited by the magnitude of G. The vector is directed toward
the tangent latitude circle, and on this circle it is equal to zero.

The induced curvature on a geodesic attains this maximum only where the
geodesic is perpendicular to the vector G; otherwise the actual curvature vector
is the projection of G normal to the geodesic, i.e. Kk = G — (t - G)t where t is
the unit vector tangent to the geodesic. Figure 6 shows a sequence of geodesics
on a Lambert Conformal projection whose tangent latitude is 35° V.

The induced curvature is a prime source of distortion of geographic features
on the map and may be minimized for a particular area by proper selection of
the tangent latitude. Figure 7 shows the induced curvature as a function of
latitude for various choices of tangent latitude.

Subroutines are provided to supply the components of the curvature vector
G. Use

14
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Figure 7: Maximum induced curvature for various tangent latitudes.

CALL CCRVXY (PARMAP, X,Y, GX, GY)

or CALL CCRVLL (PARMAP, XLAT,XLONG, GX, GY)

to obtain the curvature components given grid position (X,Y) or geographic
location (XLAT,XLONG), respectively. Units of GX, GY are in radians per km.
They are grid-oriented (directed along the X- and Y- axes of the grid) rather
than compass oriented (directed in the North or East directions), since these
vectors are in fact directed North-South toward the tangent latitude. If desired,
the compass components could be obtained using CG2CXY or CG2CLL.

4.5 Polar Axis

To evaluate the effects of the Coriolis Force in Meteorological models, it is
useful to know the components of a unit vector along the rotational axis of the
Earth. The vertical component of this vector, multiplied by twice the angular
velocity of the Earth’s rotation, yields the Coriolis parameter f which governs
the rotation of momentum in the horizontal plane. If the full Coriolis force is
included (Coriolis exchanges between the vertical and horizontal velocities), the
appropriate terms involve the same multiple of the other two components of this
vector. To evaluate these components, use
CALL CPOLXY (PARMAP, X,Y, ENX, ENY,ENZ)

or CALL CPOLLL (PARMAP, XLAT,XLONG, ENX, ENY,ENZ).
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Either subroutine returns, as ENX, ENY and ENZ, the components of the
unit North Polar vector in the x-, y- and z- directions, respectively.

5 Using the C code version

C source code is also available. The syntax is virtually identical to the FOR-
TRAN version, with the following language-related variations:

Prototypes and type definitions are contained in the cmapf.h header file,

which should be #included in any program:
#include ‘‘cmapf.h‘¢

Storage for the map parameter block must be reserved by a declaration
statement using typedel maparam (defined in cmapf.h):

maparam parmap;

The function and subroutine names and parameters of the FORTRAN ver-
sion are replicated identically in type and meaning, except that the map pa-
rameter blocks, and any parameters which are to be returned, are passed by
reference (&) rather than by value. For example, in

cxy211(& parmap, x,y, & latit, & longit);

x and y are passed by value, but parmap, latit and longit are passed by
reference.

The C counterpart of a FORTRAN SUBROUTINE is a function returning
void, but the C counterpart of a FORTRAN function is a function of the same
type.

For reasons of coding convenience, all parameters and non-void functions in
the C version of CMAPF are of type “double® as specified in the prototypes in
the cmapf.h header file. There is little practical impact in this choice: single
precision would be quite adequate for meteorological modeling since granularity
of single precision latitude and longitude coordinates amounts on most machines
to 2-5 meters in ground position.
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A Equations of the Conformal Transform

We present here a brief overview of the mathematical basis of the CMAPF sub-
routines. A more complete and detailed discussion of the mathematics of map
transformations, including the effects of the non-spherical Earth, non-polar map
orientations, and non-conformal projections, can be found, e.g. in Richardus &
Adler (1972).

A conformal transform is a mapping from points on the globe to points on
a plane in which the scale at any point is isotropic. As shown in Figures 1 and
2, a circle of latitude at latitude ¢, with a circumference of 27a cos (¢) (where
a is the radius of the Farth), is mapped into an arc of radius p(¢), say, with a
length of 2rvp. Then the scale in the Fast-West direction is

_ar
acos (@)

In the North-South direction, the scale is

pg =

10p
MN—E% .

Equating the two scales, we see that p, as a function of latitude ¢, is given by
the solution of

1o _ 1
0 dd  cos ()
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If we define the Mercator coordinate ,, as

N Lt )

cos (¢) 2 1 — sin (¢)
we have ( )
eXp (—VYm
p(P) = —— (10)
v
choosing the arbitrary constant so that the scale at the equator will always be
1/a.
The scale p , equal to both uy and pg, is given by
EXP L —VYm
() = SR Em) (11)

acos (@)

and the gridsize, as we have defined it, is just o= 1/ .
When a Lambert Conformal projection is specified with two reference lati-
tudes ¢1 and ¢2, we must choose v as the solution of y (¢1) = p(¢2), or

In (cos (¢1)) — In (cos (¢2))
Ym (¢2) —Ym (?bl)
In (Psl—n(%)) 4 In <1+sin(¢1))

)« o e
—sin(¢1 sin(¢$1
In <17sin(¢2)) —In <1+sin(¢2))

The logarithmic gradient of the gridsize, i.e. the curvature induced on geodesics
by the map transform, is given by
_Ldp  ydym _ 7 —sin(9) (13)
apdp  a dp  acos(¢)
and is zero when sin (¢) = v . This latitude is also the latitude at which the
cone of the projection, fitted over the globe, would be tangent to the globe (cf.
Figure 1.)

The first step in the transform from geographic coordinates to general grid
coordinates is to map into Cartesian coordinates of a standard, or canonical
type (Figure 8). Let £ and 7 be Cartesian Coordinates. Let Ao be the reference
longitude defined above. We define our standard representation in the following
way: The point on the equator at longitude Ay maps into the origin of the £, 7
plane, and the Ao meridian lies along the 7 axis, with ¢ increasing in the positive
71 direction. This implies the following coordinate transformation:

1 — exp (—YYm) cos vy (A — o)
v
siny (A — Ao)
v

7’] =
§ = exp(—VYm)

(14)
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and the inverse transformation:

Ym

I
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(15)
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Letting ¥, go to oo shows that one of the poles is located at the point
(&,m) = (0,1/7). When «y > 0, this point is the North Pole, but when -« < 0,
it is the South Pole. The other Pole does not map into a finite point in the
(£,7) plane. Letting < tend to zero (the tangent latitude tends to the equator,
resulting in a Mercator projection), the (£, 1) coordinates tend to (A — Ao, Ym ),
i.e. the 1 coordinate is the Mercator coordinate defined above, while the £
coordinate is longitude in radians, and neither Pole maps into a finite point in
the (£,7) plane.

To complete the transformation to the grid, we make a general orthogonal
linear transformation from (£,7) to (z,y). The general form for such a trans-
formation is

a
x = xo+ G_o (c1€ + cam)
a
Yy o= Yot (c1n — e28) (16)
0

where Gy is the gridsize at the equator, x¢ and yg are the grid coordinates of the
origin of the (£,7) system, and (cl, ¢2) are the coordinates in the (£,7) plane
of the unit vector in the x- direction of the grid.

The inverse transformation is

¢ = Lloe—m) -l —w)
G
no= [e1 (y = wo) + 2 (z — o) (17)

and the gridsize of the combined transformation is given by Gy / (au(e)).
To describe completely a given grid, we need to know the seven terms vy, Ag,
Go, g, Yo, c1, and c2. The first two are provided by the initial call to STLMBR.
To find the remaining terms from the information provided to STCMZ2P, let
(£4,710) and (&, m5) be the £,1 coordinates of two distinct points, while (4,¥,)
and (23, yp) are the x, y coordinates of the same two points. Then we make the
following calculations in the order listed:

d;r - \/(xa - .’Ilb)2 + (ya - yb)2
de = \/(5a — &)+ (e —m)*
Gy = “CZI
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(T — 1) (§a — ) + (Yo —Yp) (M0 — )

T =

dpde
o (xa - xb) (na - 77b) - (ya - yb) (ga - gb)
Cy =
dpde
a a dl’
vo = 1, (c1€a + c27a)
d
c1n, — c2&,) dy
Yo = Yo— % (18)
§

Using instead the information provided to STCMI1P, let ¢ be the latitude
at which the grid should have size (G, and let ¥ be the (clockwise, or compass)
angle the y- axis makes with the reference meridian Ag. Then we make the
following calculations:

Go = Gap(go)

¢ = cos ()
cg = sin(¥)
a
o = Tg— G_O (Clga + 0277@)
a
Yo = Yo — G_ (Clna - CQ&@) (19)
0

and obtain all information needed to define this particular modeler’s grid.

To convert wind components from Meteorological (North- and Fast-) to
Grid-based (z— and y— direction), all that is needed is the Grid-based compo-
nents (N, N,) of the unit vector in the North- direction. Then, if (u4,v,) are
the grid based components, while (ug,vy) are the Meteorological components,
we have

ugp = Nyugz — Nyu,
vy = Nzug+ Nyv,

and the inverse relationship

u, = Nyup+ Nyuy

vy = —Nzup+ Nyvy

To obtain the North vector components, at a location given by grid coor-
dinates (x, y), we note that the Pole is located at the point (£,7) = (0,1/7).
Converting to (x-, y-) coordinates, performing a vector subtraction and multi-
plying by , we find

N, = 02—770(30—1:0)

G
Ny = ==y =) (20)
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is proportional to the desired vector; to normalize, we divide by (N f + N, 5)1/2.

Note that, for ~ < 0, the multiplication by v reverses the direction of the
vector, directing it from pole to point instead of point to pole. Since the pole is
now the South pole, the resultant vector is still directed North.

Given the location in latitude and longitude coordinates, rather than (x, y)
coordinates, it is not necessary to compute the location in (z, y) or (£,7) coor-
dinates. The meridian is inclined at an angle (A — Ag) counter-clockwise to
the axis. The normalized (N,, N,) coordinates are then

Ny = —csin(A— Ag) + cacos (A — Ao)
Ny, = crcos(A—Ag)+casin(A— Xg) (21)

B Behavior at the Pole

As noted in Appendix A, the pole is located, in (£,7) coordinates, at (0, 1/7),
where the North Pole is meant for v > 0, the South Pole for v < 0. The other
pole, and both poles in the Mercator case (v = 0), is not at any finite location.
On transformation to model grid coordinates, the pole is still placed at some
finite location.

However, except for the Polar Stereographic cases, v = =+ 1, it makes
little sense to include the pole in the area being modeled. In the first place, the
gridsize at the pole is zero except for the Polar Stereographic cases.

Indeed, when p, the non-dimensional map distance from the pole, satisfies
p << Y7 ((1 =) (1 +7))"2, o tends to 0 like 2a (jyp))/" ™ as p — 0. In
the same region, the magnitude of the induced curvature vector tends to oo
like (1/(2a)) (1 — |9]) |yp| Y7 as p — 0.. Thus, as v — 1 (i.e. tends to the
stereographic case), the rate of increase of the curvature vector steepens, while
the region in which this occurs shrinks to a point.

Except for the Polar Stereographic case, wind directions cannot be defined
at the pole. By taking a sequence of geodesics approaching the pole (cf. Figure
6), it is clear that the limiting geodesic through the pole bends through an angle
of 27 (1 —v) radians as it passes through the pole. Thus, unless v = 1, the
direction of that geodesic at the pole is undefined.

In the exceptional case of the Polar Stereographic projection, it is possible,
and often done, to include the Pole in the region being modeled. The gridsize
at the Pole is twice that at the equator, and the induced curvature vector is
zero. There are no bends in the geodesics, and in the grid coordinate system,
vector directions are well defined.

For this projection, the only way in which the pole is treated as a special
case is the reporting, in standard meteorological coordinates, of vector quanti-
ties such as wind, since compass directions have no meaning for winds there.
International standards for reporting wind direction at (or within 1° of) the
North Pole are governed by Code Table 878 of the WMO Manual on Codes
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(WMO 1988). However, the Manual on Codes is silent on standards for the
South Pole.

In essence, the North Pole convention is to orient a compass face so that
the 0° (or North) index is aligned with the prime (0°) meridian. Winds are
reported according to that compass face, so that a wind blowing from a given
meridian is given a direction according to the longitude of that meridian, if a
west longitude, or 360° minus that longitude, if east.

One would expect the South Pole to be treated analogously, orienting a
compass face with the 0° (North) index along a specific meridian. This meridian
could be (i) the prime (0°) meridian, (ii) the (180°F) meridian, or (iii) some
other meridian. Observations made at the South Pole Station have been made
according to (i) (c.I. (Naval Weather Service, 1988, Block D)). Analyses and
Forecasts in the form of gridded data, however, as reported in gridded binary
(GRIB) form by the National Weather Service, appear to be reported according
to (ii) (Dey, 1996, Section 1, pp 12-13). Actually, the latter reference contradicts
itself by asserting both that their practice is (i) and that it is (ii), but the
implementation described, taking the limit as the pole is approached along the
180° meridian, conforms with (ii). Thus, at the South Pole, gridded data wind
reports and observations may be rotated 180° with respect to each other. Users
of South Pole vector data must exercise caution.

In our routines, we assume Meteorological data aligned according to (i).
However aligned, Meteorological vector components are obtained from a right
hand set of x — y axes oriented with the positive y-axis in the “North* direction
of the compass face, and vector components are reported according to these
axes, i.e. Ug = —Usin(d), Vy = —U cos(d), where U is the magnitude of the
wind and d is the direction defined above.

C SUBROUTINE Summary

Initialization calls to establish a particular projection form:

SUBROUTINE STLMBR (PARMAP,TNGLAT,REFLON)
REAL FUNCTION EQVLAT (REFLT1, REFLT2)

Initialization calls to establish a particular scale and orientation:

SUBROUTINE STCM2P (PARMAP, X1,Y1, XLAT1,XLON1,
C X2,Y2, XLAT2,XLON2)

SUBROUTINE STCM1P (PARMAP, X1,Y1, XLAT1,XLON1,
C GLAT,GLONG, GSZ, ORIENT)

Coordinate transformation calls:
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SUBROUTINE CXY2LL (PARMAP, X,Y, XLAT,XLONG)
SUBROUTINE CLL2XY (PARMAP, XLAT,XLONG, X,Y)

Vector wind transformation calls:

SUBROUTINE CC2GXY (PARMAP, X,Y, UE,VN, UG,VG)
SUBROUTINE CC2GLL (PARMAP, XLAT,XLONG, UE,VN, UG,VG)
SUBROUTINE CG2CXY (PARMAP, X,Y, UG,VG, UE,VN)
SUBROUTINE CG2CLL (PARMAP, XLAT,XLONG, UG,VG, UE,VN)

Gridsize evaluation:

REAL FUNCTION CGSZXY (PARMAP, X,Y)
REAL FUNCTION CGSZLL (PARMAP, XLAT,XLONG)

Curvature vector evaluations:

SUBROUTINE CCRVXY (PARMAP, X,Y, GX, GY)
SUBROUTINE CCRVLL (PARMAP, XLAT,XLONG, GX, GY)

North Polar Vector evaluations:

SUBROUTINE CPOLXY (PARMAP, X,Y, ENX, ENY,ENZ)
SUBROUTINE CPOLLL (PARMAP, XLAT,XLONG, ENX, ENY,ENZ)

C.1 Parameters used:

REAL PARMAP(9) - a 9-word array holding parameters characterizing a par-
ticular map. Must be initialized by a call to STLMBR, followed by a call
either to STCM2P or STCM1P.

REAL TNGLAT - tangent latitude - the latitude at which the projection cone
is tangent to the earth.

REAL REFLON - the longitude furthest from the cut in the map layout.

REAL REFLT1,REFLT?2 - reference latitudes as normally given in the legend
for Lambert Conformal maps. EQVLAT will return the equivalent tangent
latitude.

REAL X1,Y1, X2,Y2 - x,y coordinates of anchor points which establish a
particular scale and rotation.

REAL XLAT1,XLONI1, XLAT2 XLON2 - latitude,longitude coordinates of an-
chor points which establish a particular scale and orientation.
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REAL GSZ,GLAT - Gridsize in km and the latitude at which the scaled map
is to attain that gridsize.

REAL GLONG,ORIENT - longitude of key meridian to orient map, and the
angle between it and the y-axis.

REAL X,Y - x,y coordinates of a generic location on the map.

REAL XLAT ,XLONG - latitude,longitude coordinates of a generic point on
the globe.

REAL UE,VN - wind vector components in the East- and North- directions
(Compass components).

REAL UG,VG - wind vector components in the x- and y- directions (Grid
components).

REAL GX,GY - the geodesic curvature vector. Used to determine rates of
change in direction per unit distance. See text.

REAL ENX,ENY,ENZ - direction cosines of the North Polar axis. ENX ,ENY
form a convenient locator of True North in grid components, while ENZ
multiplied by 202 = 47/23.93% yields the local Coriolis factor.
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