General Characteristics			
1	Abstract of Model Capabilities	VULCAN is applicable to internal compartment fires and external pool and jet fires.	
2	Sponsor and/or Developing Organization	Norwegian Oil and Gas Industries	
		Defense Special Weapons Agency (DSWA)	
3	Last Custodian/ Point of Contact	SINTEF (Norway)	
4	Life-Cycle	Sandia National Laboratories (SNL) VULCAN is based extensively on the KAMELEON fire codes developed by B.F. Magnussen and his colleagues at SINTEF/NTH.	
5	Model Description Summary	VULCAN is a finite difference field model which solves the governing equations (PDES) on a grid. VULCAN includes combustion, soot, turbulence, and thermal radiation models. It uses a "first principles" approach to solve the basic conservation equations.	
6	Application Limitation	See weaknesses.	
7	Strengths/ Limitations	 Strengths: Applicable to a wide-range of problems/fires; Able to predict, a priori, how a fire will develop and spread heat and smoke; Very little reliance on empirical parameters; Provides detailed spatial and temporal information; Submodels contain fundamental physical processes; and, Can simulate large eddy transport. Limitations: Limited to cartesian coordinate systems; Limited to hydrocarbon-based fuels; Permits only 1 or 2 fuel types; No radioactive source term calculation capability; Very CPU intensive; Requires expertise with CFD; Limited flame spreading model for solid materials; and, No fire suppression capability. 	
8	Model References	 J. Holen, M. Brostrom, and B.F> Magnussen, "Finite Difference Calculation of Pool Fires", Proceedings of 23rd International Symposium on Combustion, pp. 1677-1683, 1990. L.A. Gritzo, et al. "Heat Transfer to the Fuel Surface in Large Pool Fires", Transport Phenomenon in Combustion, S.H. Choa (editor), Taylor and Francis Publishing, Washington, D.C., 1995. L.A. Gritzo, et al., "Wind-Induced Interaction of a Large Cylindrical Calorimeter and an Engulfing JRE Pool Fire", Symposium on Thermal Science & Engineering in Honor of C.L. Tien, Berkeley, CA, November 14, 1995. 	
9	Input Data/Parameter Requirements	User must generate grid, define fuels, objects, and boundary conditions. All thermophysical fuel and object parameters must be inputted. In addition, wind boundaries and fuel releases from jets must be specified.	
10	Output Summary	VULCAN provides detailed output at every grid point for every time step of x-, y-, and z-velocity components, density, turbulence quantities/parameters, temperature, species, radiative heat flux, pool evaporation rate, temperatures of objects, heat flux to objects, absorption coefficient, and pressure.	
11	Applications	Applicable to hydrocarbon pool or jet fires in the open, or in an enclosure. Could also be applied to a multi-compartment fire.	
12	User-Friendliness	Requires expert user and familiarity with CFD and fire modeling. Pre- and post-processors greatly aid in generation of input deck, and outputting results in graphical format.	
13	Hardware-Software Interface Constraints/ Requirements	Workstation, preferably Silicon Graphics, to take advantage of integrated graphics and calculations. The faster the computer, the better.	
		FORTRAN Compiler, C Compiler, Test Editor.	
14	Operational Parameters	Needs expert-level user.	

15	Surety Considerations	J. Holen, M. Brostrom, and B.F. Magnussen, "Finite Difference Calculation of Pool Fires", Proceedings of 23 rd International Symposium on Combustion, pp. 1677-1683, 1990.			
		L.A. Gritzo, et al. "Heat Transfer to the Fuel Surface in Large Pool Fires", Transport Phenomenon in Combustion, S.H. Choa (editor), Taylor and Francis Publishing, Washington, D.C., 1995.			
		L.A. Gritzo, et al., "Wind-Induced Interaction of a Large Cylindrical Calorimeter and an Engulfing JRE Pool Fire", Symposium on Thermal Science & Engineering in Honor of C.L. Tien, Berkeley, CA, November 14, 1995.			
16	Runtime Characteristics	4-24 hours, depending on the workstation.			
		Specific Characteristics			
Part A: Source Term Submodel Type					
A1	Source Term Algorithm?	_✔YESNO			
Part	Part B: Dispersion Submodel Type (Not Applicable)				
Part	C: Transport Submodel	Type (Not Applicable)			
Part D: Fire Submodel Type					
D1	Radiant Energy	Yes			
D3	Jet Fires	Yes			
D4	Flash Fires	Yes			
Part E: Energetic Events Submodel Type (Not Applicable)					
Part F: Health Consequence Submodel Type (Not Applicable)					
Part G: Effects and Countermeasures Submodel Type (Not Applicable)					
Part H: Physical Features of Model (No Information Provided.)					
Part	Part I: Model Input Requirements (See Item 9.)				
Part J: Model Output Capabilities					
J2	Graphic Contours and Resolution	Yes			
J4	Tabular at Fixed Downwind Locations	Yes			
Part	Part K: Model Usage Considerations (See Items 5 - 7.)				