	General Characteristics				
1	Abstract of Model Capabilities	The MAILS modeling system combines a database of military aircraft emission rates with a line source dispersion model in order to estimate surface concentrations of criteria pollutants due to low-flying aircraft along Military Training Routes (MTRs). Criteria pollutants treated by the model are sulfur dioxide, nitrogen dioxide, carbon monoxide, particulate matter, and hydrocarbons. The model produces a screening report that can be used in environmental assessments and environmental impact statements for new or existing MTRs.			
2	Sponsor and/or Developing Organization	Capt Leon Perkowski / Maj Mike Moss AFRL/MLQE, 139 Barnes Drive, Suite 2 Tyndall AFB, FL 32403 (850) 283-6249, DSN 523-6249 leon.perkowski@ccmail.aleq.tyndall.af.mil imy@ornl.gov			
3	Current Custodians	Capt Leon Perkowski / Maj Mike Moss AFRL/MLQE, 139 Barnes Drive, Suite 2 Tyndall AFB, FL 32403 (850) 283-6249, DSN 523-6249 leon.perkowski@ccmail.aleq.tyndall.af.mil imy@ornl.gov			
4	Life-Cycle	The development of MAILS was initiated in the late 1980's, concurrent with a project to estimate visibility and air quality impacts of low-altitude training flights. The MAILS code was an outgrowth of a simple model called SAILS (Single Aircraft Instantaneous Line Source) utilized internally for that effort. The database of many aircraft and ability to account for multiple aircraft operations over regulated averaging times was added in order to produce a product that would be useful for the wider USAF environmental community, and was released in present form in 1992.			
5	Model Description Summary	The MAILS system combines an aircraft emissions database with a simple Gaussian line source dispersion model to calculate ground track concentrations of criteria pollutants in military training areas. The emissions database contains the following information for roughly 50 military aircraft types: airspeed, fuel rate, emission factor, number of engines and total emissions rate. The emission rate information is given for sulfur dioxide, nitrogen dioxide, carbon monoxide, particulates and hydrocarbons. The dispersion modeling portion of MAILS approximates a line source by using a series of Gaussian puff sources, with wind direction conservatively assumed parallel to the flight track. Ground level concentrations of the pollutants above may be calculated over one, three, eight, and 24-hour averaging periods, as well as one year, with adjustments applied to account for statistical variations in flight track about the stated centerline and for the intermittent nature of military training route operations. Model output is written to a file or to a printer in the form of a table that echoes input data and lists calculated concentrations for all requested pollutants at all requested averaging times. These concentrations are given both in micrograms/cubic meter and also as a percentage of the applicable National Ambient Air Quality Standards (NAAQS) and Prevention of Significant Deterioration (PSD) Class I standards.			
6	Application Limitation	The MAILS system is a narrowly focused application that is limited to calculating ground track pollutant concentrations along Military Training Routes (MTRs). Application to the more widely distributed flight paths involved in a Military Operations Area, for example, will produce very conservative estimates of surface concentration, potentially appropriate for screening purposes but not for more refined analyses. The conservative, screening nature of the model is reinforced by assumptions including the along-flight path wind direction and the calculation of surface concentrations based on a matrix of 49 wind speed/stability combinations, from which the maximum resulting concentrations are selected for reporting.			
7	Strengths/ Limitations	 Strengths: Simplicity; Fast operation; Small "footprint"; Direct applicability of output for intended purpose. Limitations: Inflexibility; Archaic user interface; Design hardwired for MTR application; Duplicates inputs often required for noise modeling. A possible upgrade project will recast the model with an up to date interface, expand flexibility as to aircraft types and operational parameters, and allow for input data swaps with applicable military range noise models. 			
8	Model References	 Liebsch, E.J. et al, MAILS Dispersion Model User's Guide (ESL-TR-89-59) Liebsch, E.J., Development and Application of Procedures to Evaluate Air Quality and Visibility Impacts of Low-Altitude Flying Operations (ESL-TR-90-02) Seitchek, G.D., Aircraft Engine Emissions Estimator (ESL-TR-85-14) 			

Requirements pollutants of interest, selects an output destination (screen or file), enters the applicable number aircraft/get and sincraft type and sincraft type. 0 Output Summary The model outputs a summary of input parameters, calculated criteria pollutant ground track. Concentrations over various standard dusabes outputs a summary of input parameters, calculated criteria pollutant ground track. Concentrations over various standard dusabes applied to the subsen of the calculated concentration versus the most stringent applicable standard (susally PSD Class I the base of AI (CGC/CV). 11 Applications Has been applied for numerous environmental assessments in support of flying operations on main (MCG/CCV). 12 User-Friendliness Simple DOS-based database interface involving on-screen menu selection. Running a typical problem is a rapid process, easily learned by carrying out a small number of sample problems. Modifying the aircraft database is slightly more involved, but is described fully in the user manual. 13 Hardware-Software Computer patroning Problem Problem Problem Programming I anguage: Foxbase Plus and MS-FORTRAN 14 Operational Identify whether the code has any error diagnostic messages to assist the user in trobleshooting operational problems: Yes 15 Surety Consideration All quality assurance documentations. In information provided. 16 Runti			
concentrations over various standards-based averaging times, and a comparison of the calculated concentration versus the most stringent applicable standard (usually PSD Class) increments). 11 Applications Has been applied for numerous environmental assessments in support of flying operations on military training routes and in military operations areas. A primary user has been Air Combat Comman (ACC/CEV). 12 User-Friendliness Simple DOS-based database interface involving on-screen menu selection. Running a typical problem is a rapid process, easily learned by carrying out a samal number of sample problems. Modifying the aircraft database is slightly more involved, but is described fully in the user manual. 13 Hardware-Software interface Constraints/ Requirements Computer operating system: PC-DOS, MS-DOS Computer peripheral interface Constraints/ Requirements 14 Operational Programming language: Foxbase Plus and MS-FORTRAN Other computer peripheral interface to information provided. 15 Surety Considerations All quality assurance documentation: Benchmark runs: Vesus ISCST (see user guide) Varification with field experiments that has been performed with respect to this code: Nore 16 Runtime Characteristics Depends on complexity of modeled scenario, but runs in 1-3 minutes for most scenarios, a bit slower (5-10 minutes) for complex scenarios on older (i.e., 80286, early 80386) platforms. Para A: Source Term Submodel Type (Not Applicable) Parate: Transport Submodel Type (Not Applicable) Part B: Dispersion Submo	9		pollutants of interest, selects an output destination (screen or file), enters the applicable number of aircraft/altitude combinations, the aircraft type and altitude for each combination, the mixing height, and the frequency of passes by the designated aircraft during the periods of analysis. A
millary training routes and in millary operations areas. A primary user has been Air Combat Command (ACC/CEV). 12 User-Friendliness Simple DOS-based database interface involving on-screen menu selection. Running a typical problem is a rapid process, easily learned by carrying out a small number of sample problems. Modifying the aircraft database is slightly more involved, but is described fully in the user manual. Computer operating system: PC-DOS, MS-DOS Computer pletform: PC-compatble Disk space requirements: 2 MB Run execution time (for a typical problem): 1-3 minutes Programming language: Foxbase Plus and MS-FORTRAN Other computer peripheral information: No information provided. 14 Operational Parameters Identify whether the code has any error diagnostic messages to assist the user in troubleshooting operational problems: Yes Set up time for: . Typical times are: <i>first-time user</i> : 10 min experienced user: 5 min 15 Surety Considerations All quality assurance documentation: Benchmark runs: Versus ISCST (see user guide) Verification with field experiments that has been performed with respect to this code: None 16 Runtime Characteristics Depends on complexity of modeled scenario, but runs in 1-3 minutes for most scenarios, a bit slower (5-10 minutes) for complex scenarios on older (i.e., 80266, early 80386) platforms. Part A: Source Term Submodel Type	10	Output Summary	concentrations over various standards-based averaging times, and a comparison of the calculated
Problem is a rapid process, easily learned by carrying out a small number of sample problems. Modifying the aircraft database is slightly more involved, but is described fully in the user manual. 13 Hardware-Software Interface Constraints/ Requirements Computer operating system: PC-DOS, MS-DOS Computer platform: PC-compatible Disk space requirements: 2 MB Run execution time (for a typical problem): 1-3 minutes Programming language: Foxbase PUs and MS-FORTRAN Other computer peripheral information: No information provided. 14 Operational Parameters Identify whether the code has any error diagnostic messages to assist the user in troubleshooting operational problems: Yes Set up time for: . Typical times are: first-time user: 10 min experienced user: 5 min 15 Surety Considerations All quality assurance documentation: Benchmark runs: Versus ISCST Validation calculations: Versus ISCST (see user guide) Verification with field experiments that has been performed with respect to this code: None 16 Runtime Characteristics Depends on complexity of modeled scenario, but runs in 1-3 minutes for most scenarios, a bit slower (5-10 minutes) for complex scenarios on older (i.e., 80286, early 80386) platforms. 18 Runtime Characteristics _YESNO 19 Source Term Submodel Type _YESNO 14 Source Term Submodel Type (Not Applicable)	11	Applications	military training routes and in military operations areas. A primary user has been Air Combat
Interface Constraints/ Requirements Computer platform: PC-compatible Disk space requirements: 2 MB Run execution time (for a typical problem): 1-3 minutes Programming language: Foxbase Plus and MS-FORTRAN Other computer peripheral Information: No information provided. 14 Operational Parameters Identify whether the code has any error diagnostic messages to assist the user in troubleshooting operational problems: Yes Set up time for: Typical times are: first-time user: 10 min experienced user: 5 min 15 Surety Considerations All quality assurance documentation: Benchmark runs: Versus ISCST Validation calculations: Versus ISCST (see user guide) Verification with field experiments that has been performed with respect to this code: None 16 Runtime Characteristics Depends on complexity of modeled scenario, but runs in 1-3 minutes for most scenarios, a bit slower (5-10 minutes) for complex scenarios on older (i.e., 80286, early 80386) platforms. Specific Characteristics Part A: Source Term Submodel Type 21 Gaussian YES All opticable.) Part C: Transport Submodel Type (Not Applicable) Part B: Dispersion Submodel Type (Not Applicable) Part B: Transport Submodel Type (Not Applicable) Part B: Energetic Events Submodel Type (Not Applicable) Part B: Energetic Events Submodel Type (Not Applicable) Part B: Elestify div	12	User-Friendliness	problem is a rapid process, easily learned by carrying out a small number of sample problems.
Parameters troubleshooting operational problems: Yes Set up time for: . Typical times are: first-time user: 10 min experienced user: 5 min 15 Surety Considerations 16 Surety Considerations 17 Surety Considerations 18 Benchmark runs: Versus ISCST Validation calculations: Versus ISCST (see user guide) Verification with field experiments that has been performed with respect to this code: None 16 Runtime Characteristics Depends on complexity of modeled scenario, but runs in 1-3 minutes for most scenarios, a bit slower (5-10 minutes) for complex scenarios on older (i.e., 80286, early 80386) platforms. 16 Runtime Characteristics Depends on complexity of modeled scenario, but runs in 1-3 minutes for most scenarios, a bit slower (5-10 minutes) for complex scenarios on older (i.e., 80286, early 80386) platforms. 16 Runtime Characteristics Depends on complexity of modeled scenario, but runs in 1-3 minutes for most scenarios, a bit slower (5-10 minutes) for complex scenarios on older (i.e., 80286, early 80386) platforms. 17 Source Term Algorithm? YES 18 Bource Term Algorithm? YES 241 Source Term Algorithm? YES 241 Source Term Algorithm? YES 241 Source Term Algorithm? YES 241 Source Term Algo	13	Interface Constraints/	Computer platform: PC-compatible Disk space requirements: 2 MB Run execution time (for a typical problem): 1-3 minutes Programming language: Foxbase Plus and MS-FORTRAN
Benchmärk runs: Versus ISCST Validation calculations: Versus ISCST (see user guide) Verification with field experiments that has been performed with respect to this code: None 16 Runtime Characteristics 18 Runtime Characteristics Depends on complexity of modeled scenario, but runs in 1-3 minutes for most scenarios, a bit slower (5-10 minutes) for complex scenarios on older (i.e., 80286, early 80386) platforms. Specific Characteristics Part A: Source Term Algorithm? _YES ✓ NO Part B: Dispersion Submodel Type B1 Gaussian _Straight-line plume _Segmented plumeStatistical plume _ Part C: Transport Submodel Type (Not Applicable) Part E: Energetic Events Submodel Type (Not Applicable) Part F: Health Consequence Submodel Type (Not Applicable) Part H: Physical Features of Model H1 Stability Classification Turbulence Typing Past R: No Richardson number: No Sigma theta: No Richardson number: No Sigma theta: No Sigma theta: No Sigma theta: No Silt sigma: No Split sigma: No	14		troubleshooting operational problems: Yes
Characteristics slower (5-10 minutes) for complex scenarios on older (i.e., 80286, early 80386) platforms. Specific Characteristics Part A: Source Term Nubmodel Type	15	Surety Considerations	Benchmark runs: Versus ISCST Validation calculations: Versus ISCST (see user guide) Verification with field experiments that has been performed with respect to this code:
Part A: Source Term Submodel Type A1 Source Term Algorithm? Part B: Dispersion Submodel Type B1 Gaussian	16		
A1 Source Term Algorithm? _YES _NO Part B: Dispersion Submodel Type			Specific Characteristics
Algorithm?	Part	A: Source Term Submoo	del Type
B1 Gaussian Straight-line plumeSegmented plumeStatistical plume _✔ Statistical puff Part C: Transport Submodel Type (Not Applicable.) Part D: Fire Submodel Type (Not Applicable) Part D: Fire Submodel Type (Not Applicable) Part E: Energetic Events Submodel Type (Not Applicable) Part F: Health Consequence Submodel Type (Not Applicable) Part G: Effects and Countermeasures Submodel Type (Not Applicable) Part H: Physical Features of Model H1 Stability Classification Turbulence Typing Pasquill-Gilfford-Turner: Yes Model implicitly uses stability categories as applied in the PTPLU and ISCST models. A matrix of 49 stability/wind conditions is applied, and the maximum resulting concentration is selected for a conservative, screening approach. STAR: No Irwin: No Sigma theta: No Sigma theta: No Richardson number: No Monin-Obukhov length: No TKE-driven: No Split sigma: No	A1		_YES _VNO
Part C: Transport Submodel Type (Not Applicable.) Part D: Fire Submodel Type (Not Applicable) Part E: Energetic Events Submodel Type (Not Applicable) Part F: Health Consequence Submodel Type (Not Applicable) Part G: Effects and Countermeasures Submodel Type (Not Applicable) Part H: Physical Features of Model H1 Stability Classification Turbulence Typing Pasquill-Gilfford-Turner: Yes Model implicitly uses stability categories as applied in the PTPLU and ISCST models. A matrix of 49 stability/wind conditions is applied, and the maximum resulting concentration is selected for a conservative, screening approach. STAR: No Irwin: No Sigma theta: No Richardson number: No Monin-Obukhov length: No TKE-driven: No Split sigma: No	Part	B: Dispersion Submode	Туре
Part D: Fire Submodel Type (Not Applicable) Part E: Energetic Events Submodel Type (Not Applicable) Part F: Health Consequence Submodel Type (Not Applicable) Part G: Effects and Countermeasures Submodel Type (Not Applicable) Part H: Physical Features of Model H1 Stability Classification Turbulence Typing Pasquill-Gilfford-Turner: Yes Model implicitly uses stability categories as applied in the PTPLU and ISCST models. A matrix of 49 stability/wind conditions is applied, and the maximum resulting concentration is selected for a conservative, screening approach. STAR: No Irwin: No Sigma theta: No Richardson number: No Monin-Obukhov length: No TKE-driven: No Split sigma: No	B1	Gaussian	Straight-line plumeSegmented plume Statistical plume _
Part E: Energetic Events Submodel Type (Not Applicable) Part F: Health Consequence Submodel Type (Not Applicable) Part G: Effects and Countermeasures Submodel Type (Not Applicable) Part H: Physical Features of Model H1 Stability Classification Turbulence Typing Pasquill-Gilfford-Turner: Yes Model implicitly uses stability categories as applied in the PTPLU and ISCST models. A matrix of 49 stability/wind conditions is applied, and the maximum resulting concentration is selected for a conservative, screening approach. STAR: No Irwin: No Sigma theta: No Richardson number: No Monin-Obukhov length: No TKE-driven: No Split sigma: No	Part	C: Transport Submodel	Type (Not Applicable.)
Part F: Health Consequence Submodel Type (Not Applicable) Part G: Effects and Countermeasures Submodel Type (Not Applicable) Part H: Physical Features of Model H1 Stability Classification Turbulence Typing Pasquill-Gilfford-Turner: Yes Model implicitly uses stability categories as applied in the PTPLU and ISCST models. A matrix of 49 stability/wind conditions is applied, and the maximum resulting concentration is selected for a conservative, screening approach. STAR: No Irwin: No Sigma theta: No Richardson number: No Monin-Obukhov length: No TKE-driven: No Split sigma: No	Part	D: Fire Submodel Type (Not Applicable)
Part G: Effects and Countermeasures Submodel Type (Not Applicable) Part H: Physical Features of Model H1 Stability Classification Turbulence Typing Pasquill-Gilfford-Turner: Yes Model implicitly uses stability categories as applied in the PTPLU and ISCST models. A matrix of 49 stability/wind conditions is applied, and the maximum resulting concentration is selected for a conservative, screening approach. STAR: No Irwin: No Sigma theta: No Richardson number: No Monin-Obukhov length: No TKE-driven: No Split sigma: No	Part	E: Energetic Events Sub	model Type (Not Applicable)
Part H: Physical Features of Model H1 Stability Classification Turbulence Typing Pasquill-Gilfford-Turner: Yes Model implicitly uses stability categories as applied in the PTPLU and ISCST models. A matrix of 49 stability/wind conditions is applied, and the maximum resulting concentration is selected for a conservative, screening approach. STAR: No Irwin: No Sigma theta: No Richardson number: No Monin-Obukhov length: No TKE-driven: No Split sigma: No	Part	F: Health Consequence	Submodel Type (Not Applicable)
H1 Stability Classification Turbulence Typing Pasquill-Gilfford-Turner: Yes Model implicitly uses stability categories as applied in the PTPLU and ISCST models. A matrix of 49 stability/wind conditions is applied, and the maximum resulting concentration is selected for a conservative, screening approach. STAR: No Irwin: No Sigma theta: No Richardson number: No Monin-Obukhov length: No TKE-driven: No Split sigma: No	Part	G: Effects and Countern	neasures Submodel Type (Not Applicable)
Classification Model implicitly uses stability categories as applied in the PTPLU and ISCST models. A matrix of 49 stability/wind conditions is applied, and the maximum resulting concentration is selected for a conservative, screening approach. STAR: No Irwin: No Sigma theta: No Richardson number: No Monin-Obukhov length: No TKE-driven: No Split sigma: No Split sigma: No	Part	H: Physical Features of	Model
H2 Release Elevationgroundroof 🖌 flight level	H1	Classification	Model implicitly uses stability categories as applied in the PTPLU and ISCST models. A matrix of 49 stability/wind conditions is applied, and the maximum resulting concentration is selected for a conservative, screening approach. STAR: No Irwin: No Sigma theta: No Richardson number: No Monin-Obukhov length: No TKE-driven: No
	H2	Release Elevation	groundroof 🖌 flight level

H3	Mixing Layer	trapping lofting _✔_ reflection penetration inversion breakup fumigation temporal variability			
Part I: Model Input Requirements (See Item 9.)					
Part J: Model Output Capabilities (See Item 10.)					
Part K: Model Usage Considerations					
K1	Ease of Model Use	Training required to run the model:background (years of education) <u>3 hrs</u> training time needed on the model to be able to exercise all model capabilities Training required to continue development of the model: background (years of education) training time needed on the model to be able to exercise all model capabilities			