		General Characteristics
1	Abstract of Model Capabilities	This is a Gaussian plume model especially designed to run on an HP 486X graphical calculator for convenience during emergencies and model reviews. It calculates both radiological dose and hazardous material risk under a variety of conditions including building wakes, resuspension, wet and dry deposition, tilted plume. It also calculates plume rise (both heated and explosive), long range transport and quality.
2	Sponsor and/or Developing Organization	Los Alamos National Laboratory P. O. Box 1663 Los Alamos, NM 87545
3	Last Custodian/ Point of Contact	William M. Porch LANL MS D407 Los Alamos, NM 87545 (505)-667-0971 wporch@lanl.gov primary individual
9	Input Data/Parameter Requirements	Source height (Plume-rise calculated) Wind Speed Stability Category Receptor Distance Receptor Height Urban or Rural Surface Puff or Plume Also for related calculations such as resuspension (soil type) or wet deposition ()
10	Output Summary	 Three type of output are possible 1. Source normalized concentration or specific calculation results such as resuspension factor or surface concentration 2. Radiological Dose 3. Risk factor
11	Applications	Los Alamos National Laboratory and Cape Canaveral for radiological risk assessment.
12	User-Friendliness	Menu driven input, but requires some sophistication on the user's part to work a problem all the way through to dose estimates and several steps.
13	Hardware-Software Interface Constraints/ Requirements	Computer operating system: HP calculator (Language similar to FORTH) Computer platform: HP 48 6X Disk space requirements: About 250k bytes of RAM Run execution time (for a typical problem):1 to 10 seconds for single calculation Programming language: GAUS1 can be down loaded from a PC Other computer peripheral information:
14	Operational Parameters	Identify whether the code has any error diagnostic messages to assist the user introubleshooting operational problems: NoneSet up time for: Typical times are: first-time user: 1 hexperienced user: 30 min.
15	Surety Considerations	All quality assurance documentation: User's Guide Benchmark runs: Comparison with test problems Validation calculations: Test Problem Comparison in User's Guide Verification with field experiments that has been performed with respect to this code: No specific validation except with standard Gaussian plume results
16	Runtime Characteristics	This model only runs on an HP48 Scientific calculator. Most results available in seconds.
		Specific Characteristics
Part	A: Source Term Submo	del Type
A3	For Radiological Consequence Assessment Models	Gaseous releases: ✓ noble gases ✓ iodines ✓ other non-reactive gases Aerosol releases: Radioactive and hazardous gases. Particulate releases: Hazardous aerosols such as Plutonium-239 and hazardous materials such as Beryllium.
		Chemistry Isotopic exchange Physical properties capability
Part	B: Dispersion Submode	Type (No Information Provided.)

Part C	: Transport Submodel	Туре
C1	Prognostic	No
C2	Deterministic	Yes
C3	Stochastic	No
C4	Frame of Reference	Eulerian Lagrangian Hybrid Eulerian- Lagrangian
Part D	: Fire Submodel Type	
D5	Brand Transport Probabilities	Long-Range Transport >100 KM Algorithm included
Part E	E: Energetic Events Sul	omodel Type (Not Applicable)
Part F	: Health Consequence	Submodel Type (No information Provided)
Part G	Effects and Counterr	neasures Submodel Type (No information Provided)
Part H	I: Physical Features of	Model
H1	Stability Classification Turbulence Typing	Pasquill-Gilfford-Turner: Stability category paramerization supplemented with long-range diffusion algorithm. STAR: Irwin: Sigma theta: Richardson number: Monin-Obukhov length: TKE-driven: Split sigma:
H6	Mixing Layer	✓ trappingloftingreflectionpenetration inversion breakup fumigationtemporal variability Parameterized limited mixing with mixing depth as input parameter
H7	Cloud Buoyancy	neutral [passive]dense [negative] // plume rise [positive] Stable and unstable plume rise calculation (modified Briggs)
Part I:	Model Input Requirem	nents
11	Radio(chemical) and Weapon Release Parameters	Release rate: _Continuous Time dependent Instantaneous Release container characteristics: vapor temperature tank diameter tank height tank temperature tank pressure nozzle diameter pipe length Jet release: initial size shape concentration profile at end of jet affected zone Release dimensions: _V point _V line _V area Gaussian normalized dispersion Release elevation: ground roofV stack Stack height and virtual source calculations
12	Meteorological Parameters	Wind speed and wind direction:

Part K	Part K: Model Usage Considerations				
К1	Ease of Model Use	Training required to run the model:background (years of education) College level or special training on atmospheric transport processes training time needed on the model to be able to exercise all model capabilities 1 - 3 week specialized training class Training required to continue development of the model: background (years of education) Post graduate training time needed on the model to be able to exercise all model capabilities 1 - 3 week specialized course			