	General Characteristics				
1	Abstract of Model Capabilities	Environmental Tritium Model (ETMOD) simulates: the transport of release of elemental tritium (designated HT) and/or tritiated water vapor (designated HTO) in the atmosphere; deposition of HT from the plume to the ground; in-ground conversion of HT to HTO by microbial action; uptake of HTO by plants; re-emission of HTO from plants and/or soil; atmospheric dispersion of this re-emitted material; the radiation dose to an in-plume resident. Plume depletion by deposition, and direct in-plume oxidation of HT to HTO are accounted for.			
2	Sponsor and/or Developing Organization	S.B. Russel and G.L. Ogram Ontario Hydro Research Division Ontario Hydro Toronto, M5G 1X6			
3	Last Custodian/ Point of Contact	S.B. Russel, Nuclear Safety Department Design and Development Division Ontario Hydro Toronto, M5G 1X6, Canada L. Ogram Ontario Hydro Research Division Ontario Hydro Toronto, M5G 1X6, Canada			
4	Life-Cycle	ETMOD originated as TRITMOD which was developed at Savannah River Laboratory by C.E. Murphy and M.M. Pendargast in the early 80's. The code was adopted by Ontario Hydro in 1985 and renamed OHTDC (Ontario Hydro Tritium Dispersion Code). OHTDC was transferred to the Canadian Fusion Fuels Technology Project (CFFTP) and improved and renamed ETMOD. ETMOD Version 0.0 was released October 1991. Associated Quality Assurance Documentation was released August 1992.			
5	Model Description Summary	ETMOD simulates the transport of a release of elemental tritium (designaed HT) and/ot tritiated water (designated HTO) in the atmosphere. It also addresses deposition of HT from the plume to the ground, in-ground conversion of HT to HTO by microbial action, uptake of HTO by plants, re- emission of HTO from plants and/or soil, atmospheric dispersion of this re-emitted material, and the radiation dose to an in-plume resident. In addition, plume depletion by deposition and direct in-plume oxidation of HT to HTO are accounted for.			
6	Application Limitation	ETMOD has been designed for tritium releases only.			
7	Strengths/ Limitations	Strengths: The code is fairly easy to run and provides a lot of output information. Limitations: The documentation provided with ETMOD is very limited, and does not contain any information on default values or valid ranges. Tritium is the only radionuclide that is available. The verification model does not verify models but simply describes some of them. While the code may be technically valid, the documentation does not convey this. The user's manual does not show any sample output files.			
8	Model References	I.W. Thompson, J.A. Kennedy, J-M. Lina, ETMOD Software Quality Assurance Documentation Volume 3, Atlantic Nuclear Services Ltd., CFFTP P-9205, August 1992.			
9	Input Data/Parameter Requirements	Five different input files must be prepared for each run. This files are: 1) TERRAIN.DAT, 2) SOIL.DAT, 3) METEOR.DAT, 4) DOSIM.DAT, 5) SCENE.DAT. In TERRAIN.DAT the user enters terrain for a user-defined rectangular grid. In SOIL.DAT the user enters various soil parameters and specifies the number of soil layers. In METEOR.DAT various constants are entered as well as information (wind speed, temperature, rainfall, etc.) for different time steps as specified by the user. DOSIM.DAT input includes: dose conversion factors, breathing rate, skin absorption factor, and occupancy factor. SCENE.DAT contains scenario specific data related to the release and its location.			
10	Output Summary	 The five different output files and a brief description of each follows: 1) ETSOIL.OUT - Soil concentration output data file 2) ETGRAPH.OUT - Graphical output data file 3) ETINFO.OUT - Dispersion and depletion output data file 4) ETINTENS.OUT - Air concentration output data file 5) ETMOD.OUT - Total concentrations and dose output data file 			
11	Applications	Biological life cycleand doses for HT and HTO releases.			
12	User-Friendliness	ETMOD is fairly easy to use.			

ETMOD

40	Handward O. ft	FORTRAN 77 And DO with MC DOO
13	Hardware-Software Interface Constraints/ Requirements	FORTRAN 77 – Any PC with MS-DOS
14	Operational Parameters	Can run on any MS-DOS PC (45 min on 486) however can take a long time on laptop (13 hr).
15	Surety Considerations	Although a QA package exists it is very limited and does not contain much detail in the user's manual or verification manual. The validation document mostly compares the effect of using different input parameters and shows one case with comparison to measured data which differs greatly from the code predictions. The conclusion of the validation report even states, "A number of deficiencies have been identified in the ETMOD code."
		Specific Characteristics
Part	A: Source Term Submod	lel Type
A3	For Radiological Consequence Assessment Models	HT and HTO only.
Part	B: Dispersion Submodel	Туре
B1	Gaussian	✓ Straight-line plumeSegmented plume Statistical plume Statistical puff
Part	C: Transport Submodel	Туре
C2	Deterministic	Yes.
C4	Frame of Reference	_✔ EulerianLagrangianHybridEulerian- Lagrangian
Part	D: Fire Submodel Type	(Not Applicable)
Part	E: Energetic Events Sub	model Type (Not Applicable)
Part	F: Health Consequence	Submodel Type
F2	For Radiological Consequence Assessment	Cloudshine:finite cloudsemi-infinite cloudother Groundshine:short-termlong-term
	Models	Inhalation:short-termlong-term Total effective dose equivalent Uptake of respirable fraction of particle spectra
		Resuspension:short-termlong-termAnspaugh
		Food/Water Ingestion: dynamic static
		Skin dose:absorptionother
		Dose assessment: ICRP-60 criteria organs pathways
		Health effects: v early latent
Part	G: Effects and Countern	neasures Submodel Type (No Information Provided.)
	H: Physical Features of	
H2	Release Elevation	_✔_ ground✔_ roof
H3	Aerodynamic Effects from	✓ building wake cavity K-factors flow separation
	Buildings and Obstacles	Increase initial diffusion coefficients accordingly.
H4	Horizontal Plume Meander	All stability classes; if activated.

H9	(Radio)chemical Transformation and In-Cloud Conversion Processes	Oxidation of HT			
H10	Depositon	gravitational setting _✔_ dry deposition precipitation scavenging resistance theory deposition simple deposition velocity liquid deposition plateout and re-evaporation			
H11	Resuspension	Re-emission of HTO via vegetative expiration			
Part I:	Model Input Requiren	nents			
11	Radio(chemical) and Weapon Release Parameters	Release rate: <u>v</u> Continuous <u>v</u> Time dependent Instantaneous Release container characteristics: vapor temperature tank diameter tank height tank temperature tank pressure nozzle diameter pipe length			
		Jet release: initial size shape concentration profile at end of jet affected zone			
		Release dimensions: point line area			
		Release elevation:groundroofstack			
12	Meteorological Parameters	Wind speed and wind direction: <u><</u> single point			
		Temperature: <u>//</u> single point single tower/multiple point multiple towers			
		Dew point temperature: 🖌 single point 🦳 single tower/multiple point			
		multiple towers			
		Precipitation: <u>/</u> single point single tower/multiple point multiple towers			
		Turbulence typing parameters: temperature difference sigma theta			
		sigma phi Monin-Obukhov length roughness length cloud cover incoming solar radiation user-specified			
		Four dimensional meteorological fields from prognostic model:			
Part J: Model Output Capabilities					
J4	Tabular at Fixed Downwind Locations	Data files.			
Part K	Part K: Model Usage Considerations (See Items 5 - 7)				