		General Characteristics
1	Abstract of Model Capabilities	The Chemical Accident Stochastic Risk Assessment Model (CASRAM) is used in the statistical analysis of consequence and risk from accidents associated with hazardous materials transportation or industrial plant/facility use (e.g., processing, handling, and storage). The CASRAM modeling concept involves two primary components. The first is a meteorological prepocessor, which uses routine National Weather Service observation or similar data to determine hourly values of key atmospheric turbulence parameters. The second component uses the meteorological information together with transportation or storage attributes to analyze thousands of individual potential accidents through statistical sampling of accident scenario parameters. A post processor to the model is used for the statistical analysis of model results providing the distribution of hazard zone size and/or exposed population. The model also exists in a single-case (i.e., deterministic) version that is denoted as CASRAM-SC.
2	Sponsor and/or Developing Organization	Argonne National Laboratory (ANL)/University of Illinois (U of I)Sponsors: Department of Transportation, Research and Special ProgramsAdministration/Department of Energy, Office of Environmental Management.ANL: 630-252-3447630-252-3194 FAXU of I: 217-333-3832217-244-4416 FAX
3	Last Custodian/ Point of Contact	Michael Lazaro, David F. Brown, William E. Dunn (217) 333-9054 (217) 244-4416 Fax
4	Life-Cycle	CASRAM has been under development since 1993 under sponsorship from the Department of Transportation and the Department of Energy. The preliminary model components consisting of a meteorological preprocessor for the analysis of National Weather Service observations and a simple dispersion model were originally developed in 1993. The source model was added in 1994. All components of the model (meteorolgical preprocessor, source model and dispersion model) were upgraded in 1996 and 1997.
5	Model Description Summary	The source component of CASRAM determines chemical release rates for specified chemical spill and/or vaporization scenarios. Several types of release estimates can be provided; including quasi-instataneous release scenarios and estimating release rates, the source model in CASRAM accesses a database of the key physical properties for over 200 chemical compounds. Discharge fraction and emission rate estimates are for near-surface and surface releases. The current version of CASRAM contains statistical empirically based upon data contained in the Hazardous Materials Incident Reporting System (HMIRS) maintained by the U.S. Department of Transportation. Discharge fractions can also be the U.S. Department of Transportation. Discharge fractions can also be directly (specified release quantity) or indirectly (e.g., specified chemical amount (s) and state properties and container size and rupture location) controlled or specified by the user. Pool chemical evaporation within CASRAM is determined using a time- dependent energy-budget model that carefully accounts for the key air-pool-ground energy fluxes that govern the evaporation rate. Heat transfer to and from the pool is treated via explicit consideration of solar radiation, air convection, ground conduction, and evaporative heat loss from the pool. Transport and dispersion within CASRAM is simulated using a continous plume model for releases from evaporating pools and a single-puff model for short-duration, quasi- instantaneous releases. Vertical turbulent diffusion is treated using a Lagrangian integral dispersion model that is parameterized in terms of atmospheric boundary layer simarity parameterized in terms of the Lagrangian time scale and lateral wind direction fluctuations. CASRAM is capable of estimating hazard zones or hazard population exposure for single and multiple chemical releases. Health effect threshold concentrations, required for determining hazard-zone estimates, are specified as model input parameters allowing simple adjustment for modeling var
6	Application Limitation	CASRAM currently does not treat plume buoyancy (e.g., dense gas effects and plume rise) and is not application for near surface releases (z > 20m or so). Complex-terrain effects are not considered. Even though multiple chemical are treated in terms of toxicological effects, chemical interaction of mixtures and chemical transformation is not currently addressed in CASRAM.

7	Strengths/ Limitations	 Strengths: 1) Statistical treatment of potential hazardous material accidents both in terms of source strength and meteorology. 2) State-of-art treatment of meteorology and dispersion for individual accidents scenarios. 3) Model is designed to interface with standard routing codes allowing convenient risk analysis of hazardous material transportation risk including estimation of exposed population. Limitations: 1) Model does not treat dense gas releases 2) Model does not treat elevated releases 3) Complex terrain effects are not considered. The most problematic of these weaknesses is the absence of a dense-gas submodel. The model developers intend to incorporate a dense-gas model within the near future. The later two weaknesses of limitations only apply to fixed facility analyses.
8	Model References	 Brown, D.F., W.E. Dunn, M. Lazaro (1997) CASRAM: <i>The Chemical Accident Stochastic Risk</i> <i>Assessment Model: Technical Documentation - Beta Version 0.7.</i> Argonne National Laboratory, Argonne IL. Brown, D.F., W. E. Dunn, M. Lazaro (1997) <i>Users Guide for CASRAM-SC</i> Argonne, National Laboratory, Argonne IL. Brown, D.F., W.E. Dunn and A.J. Policastro (1996) "Application of CASRAM to Assess Risk in Transportation Risk Assessment", proceedings of the U.S. Army Forces Command Real World Air Conference held in Colorado Springs, CO, Sept. 3-5, 1996. Lazaro, M.A. etal (1996), Risk Assessment for the Transportation of Hazardous Waste and Hazardous Waste Components of the Low-Level Mixed Waste and Transuranic Waste for the U.S. Department of Energy Waste and Management Programmatic Environmental Impact Statement, ANL/EAD/TM-28, December. Hartmann, H.M., A.J. Policastro, and M.A. Lazaro (1994), Hazardous Waste Transportation Risk Assessment for the U.S. Department of Energy Environmental Restoration and Waste Management Program - Human Health Endpoints, Vol. 2, published in the proceedings of the WM'95 Conference, Tucson, AR, February 26 - March 2, 1995. W.E. Dunn, Brown, D.F. and A.J. Policastro (1996) Technical Documentation in Support of the 1996 Emergency Response Guidebook, NTIS UILU-ENG-97-4001, prepared for the U.S. Department of Transportation, Office of Hazardous Materials Technology, University of Illinois, Urbana, IL.
9	Input Data/Parameter Requirements	For use with transportation-related analyses, CASRAM interfaces with the standard route- generating codes HIGHWAY 3.3 and INTERLINE 5.0. These codes provide a sequence of discrete route segments with associated latitude, longitude and population density information. Therefore, the user need only supply the origination and destination for the shipments. Shipment size and one concentration threshold, corresponding to different averaging times, are accepted. Alternatively, the model will also accept a probit value for the chemical (s) analyzed. For a fixed- site analysis, the chemical (s) involved, the location, and the concentration thresholds are required for the particular process or storage scenario considered, since the discharge-fraction distributions available with CASRAM are only for transportation-related releases. The available discharge fractions do include those for loading and loading or transportation shipments, however. (Fixed site discharge-fraction distributions process and storage are currently under development.) Meteorological data necessary for CASRAM are obtained from NWS surface and upper air stations. The meteorological data are processed using a meteorological prepocessed meteorological database. This database currently includes data from 64 cities in the United States from 1985-1989. Chemical data required for the source model are contained in a separate file and are keyed by CAS number. The chemical databases currently contains data for approximately 200 chemicals. For chemicals not currently in the database, molecular weight, critical temperature, critical volume, boiling point, liquid density, vapor pressure and heat of vaporization are required. Temperature dependent property data are accepted and employed where applicable.
10	Output Summary	The output of CASRAM consists of a predetermined number of estimates (user specified) of hazard-zone size and, if applicable, exposed populations. A post processor to the model analyzes these intermediate data to provide the probability distributions of hazard-zone size and/or exposed population. Through use of the post processor, several separate transportation shipments can be considered and, if desired, separately weighted in the same consequence distribution.
11	Applications	CASRAM has been used in the preparation of the Department of Transportation Emergency Response Guidebook, the Department of Energy Hazardous Waste Management Programatic EIS, as well as several smaller risk assessment studies for the Department of Energy and Department of Defense.
12	User-Friendliness	At the current time, CASRAM does not have a friendly user interface. Users must set up problems in a command-line text file and must be run under a UNIX or DOS environment.

13	Hardware-Software Interface Constraints/ Requirements	Computer operating system: Unix or DOS Computer platform: 486 or Pentium class PC or Sun 4 or higher workstation Disk space requirements: About 250 MB of hard-disk space is necessary for meteorological database and intermediate analysis files. Run execution time (for a typical problem): 2-12 hours on a Sun 5 workstation Programming language: FORTRAN-77 Other computer peripheral information:
14	Operational Parameters	Identify whether the code has any error diagnostic messages to assist the user in troubleshooting operational problems: Several error messages are displayed in the event of unreadable or nonsensical input data guiding the user to the source of the problem. Set up time for: Typical times are: <i>first-time user:</i> 2-4 days <i>experienced user:</i> 1-2 hours
15	Surety Considerations	All quality assurance documentation: Benchmark runs: Validation calculations: Verification with field experiments that has been performed with respect to this code: Pool evaporation calculations have been checked against published data for hydrocarbon evaporation. Dispersion estimates have been validated with numerous field and laboratory data including Project Prairie Grass.
16	Runtime Characteristics	Run times vary from 2-12 hours on a Sun 5 workstation for the statistical analysis of 100,000 accidents. CASRAM has not been run on a PC workstation to this date. It is expected that on a PC-class machine, execution times would be somewhat longer.
		Specific Characteristics
Part	A: Source Term Submo	del Type
A1	Source Term Algorithm?	_✔_YESNO
A2	For Chemical Consequence Assessment Models	Liquid spill: ✓ pool evaporation ✓ particulate resuspension Pool chemical evaporation within CASRAM is determined using a time-dependent energy-budget model that carefully accounts for the key air-pool-ground energy fluxes that govern the evaporation rate. Heat transfer to and from the pool is treated via explicit consideration of solar radiation, air convection, ground conduction, and evaporative heat loss from the pool. Pressurized releases:two-phase jets ✓ flashing ✓ entrainmentaerosol formation For liquefied gases, flashing is calculated based on a thermodynamic balance of the chemical involved. Entrainment rates into the flashed material are based on simple empirical relationships. For pressurized gases, standard blowdown relationships are employed. Solid spills:resuspension sublimation
A3	For Radiological Consequence Assessment Models	Gaseous releases: noble gases other non-reactive gases The CASRAM source model does not currently include radiological-specific algorithms. Aerosol releases: The CASRAM source model does not currently include radiological-specific algorithms. Particulate releases: The CASRAM source model does not currently include radiological-specific algorithms. Particulate releases: The CASRAM source model does not currently include radiological-specific algorithms. Chemistry Isotopic exchange Physical properties capability The CASRAM source model does not currently include radiological-specific algorithms.
A4	For Weapons Consequence Assessment Models	Chemical weapon release characteristics: The CASRAM source model does not currently include chemical-weapons-specific algorithms. Biological weapon release characteristics: The CASRAM source model does not currently include biological-weapons-specific algorithms.
Part	B: Dispersion Submode	I Туре
B1	Gaussian	✓ Straight-line plume ✓ Segmented plume Statistical plume Statistical puff Horizontal turbulent dispersion is represented with Gaussian relationships that are parameterized in terms of the Lagrangian time scale and lateral wind direction fluctuations. Continuous release calculations are straight-line in nature since terrain effects are not considered. Instantaneous releases are treated as puffs.

B2	Similarity	✓ Plume ✓ Puff Vertical turbulent dispersion is treated with a Lagrangian-integral model parameterized in terms of mean plume height, average advection velocity, and a dimensionless travel time. These parameters are expressed as integral equations written in terms of plume travel time and atmospheric boundary layer parameters. Continuous releases are treated as plumes, and instantaneous releases are treated as puffs.
B3	Stochastic	Monte CarloRandom walk Not applicable in CASRAM
B4	Gradient Transport or K-Theory	Not applicable in CASRAM
B5	Particle-In-Cell	Not applicable in CASRAM
B6	Box	Not applicable in CASRAM
B7	Turbulent Kinetic Energy (TKE)- Driven	Not applicable in CASRAM
B8	Particle	Not applicable in CASRAM
B9	Multiple Capabilities	Not applicable in CASRAM
Part C	: Transport Submodel	Туре
C1	Prognostic	Single-point (in time) meteorological data are used in the calculation of ground-level concentrations. However, for travel times over an hour, concentrations are adjusted to account for changing meteorology.
C2	Deterministic	Each accident scenario considered in CASRAM is treated using a deterministric dispersion model based on single-point meteorological data.
C3	Stochastic	Although each accident scenario is treated in a deterministic manner, the resulting distributions of hazards zone size or exposed population capture the statistical variability since very large numbers of releases are considered.
C4	Frame of Reference	_ Eulerian Lagrangian Hybrid Lagrangian Ground-level concentrations are parameterized in terms of mean plume height, average advection velocity and a dimensionless travel time. These parameters are expressed as integral equations written in terms of plume time and atmospheric boundary layer parameters.
Part D	: Fire Submodel Type	(Not Applicable)
Part E	: Energetic Events Su	bmodel Type (Not Applicable)
Part F	: Health Consequence	Submodel Type
F1	For Chemical Consequence Assessment Models	Health effects:

F2	For Radiological Consequence Assessment Models	Cloudshine: finite cloud semi-finite cloud other Not currently treated in CASRAM long-term long-term Mot currently treated in CASRAM long-term long-term Inhalation: v_short-term long-term v_Total effective dose equivalent long-term v_Total effective dose equivalent long-term v_Total effective dose equivalent long-term v_Total effective dose effects when appropriate threshold concentrations are specified. Resuspension: short-term _long-term dotsurently treated in CASRAM long-term Anspaugh Not currently treated in CASRAM long-term Anspaugh Not currently treated in CASRAM
		Not currently treated in CASRAM Dose assessment: ICRP-60 criteria organs pathways Not currently treated in CASRAM Health effects: early latent CASRAM will consider these effects appropriate threshold concentrations are specified.
F3	For Weapons Consequence Assessment Models	Health effects: ✓ fatalities ✓ cancers latent cancers ✓ symptom onset CASRAM will consider these effects when appropriate threshold concentrations are specified. However, CASRAM does not contain any weapons-specific algorithms. Health criteria ✓ IDLH ✓ STEL ✓ TEEL ✓ AEGL Heath criteria is a user supplied parameter, so any of the above values can be used. However, CASRAM does not contain any weapons specific algorithms. Risk quantification: CASRAM provides risk in terms total exposed area (i.e., hazard zone) or number of people exposed to threshold concentration. Since CASRAM is capable of analyzing many (~1,000,000) scenarios, these numbers are provided as probability distributions. Concentration: ✓ single value
Part G	: Effects and Counter	measures Submodel Type
G1	For Chemical Consequence Assessment Models	Evacuation: CASRAM allows an exclusion distance from the source in the calculation of hazard zone size. Sheltering: Not currently considered in CASRAM Interdiction: Not currently considered in CASRAM Spray/Foam: Not currently considered in CASRAM Victim Treatment/Treatment Measures: Not currently considered in CASRAM
G2	Radiological Consequence Assessment Models	Land contamination: Not currently considered in CASRAM Economic costs:decontaminationinterdiction foodstuff lossesdenial of facility accessvictim treatment Economic consequences are not directly calcuated in CASRAM. However, economic costs could be calculated from concentration hazard zone or exposed population distributions. Evacuation: CASRAM will allow an exclusion distance in the calculation of hazard zone size. Sheltering: Not currently considered in CASRAM Interdiction: Not currently considered in CASRAM Decontamination: Not currently considered in CASRAM
G3	For Weapons Consequence Assessment Models	Land contamination: Not currently considered in CASRAM Economic costs: Economic consequences are not directly calculated in CASRAM. However, economic costs could be calculated from concentration hazard zone or exposed population distributions. Evacuation: CASRAM will allow an exclusion distance in the calculated of hazard zone size. Sheltering: Not currently considered in CASRAM Interdiction: Not currently considered in CASRAM

Part H	Part H: Physical Features of Model			
H1	Stability Classification Turbulence Typing	Pasquill-Gilfford-Turner: Not used in CASRAM STAR: Not used in CASRAM Irwin: Not currently used in CASRAM, but could be adopted by a particular user in developing a site specific or regional meteorological database for CASRAM. Sigma theta: Not currently used in CASRAM, but could be adopted by a particular user in developing a site specific or regional meteorological database for CASRAM. Richardson number: Not used in CASRAM Monin-Obukhov length: Atmospheric stability is based on Monin-Obukhov lenght, friction velocity and mixing height. TKE-driven: Not used in CASRAM Split sigma: Not used in CASRAM		
H2	Release Elevation	ground roof Releases must be within the lower surface layer (i.e., less than the absolute value of the Monin Obukhov Length)		
HЗ	Aerodynamic Effects from Buildings and Obstacles	building wake cavity K-factors flow separation Not currently treated in CASRAM		
H4	Horizontal Plume Meander	Effect of plume meander is treated in stable conditions through modification of sigma-Y formulas		
H5	Horizontal/Vertical Wind Shear:	Not currrently in CASRAM		
H6	Mixing Layer	✓ trapping lofting reflection penetration inversion breakup fumigation temporal variability In both stable and unstable conditions, vertical dispersion is limited by the mixing height such that the crosswind integrated concentration approaches an asymptotic, well-mixed value as the downwind distance becomes very large.		
H7	Cloud Buoyancy	✓ neutral [passive] dense [negative] plume rise [positive]		
H8	Cloud Liquid Droplet Formation/ Aerosolization	Not currently in CASRAM		
H9	(Radio)chemical Transformation and In-Cloud Conversion Processes	Not currently in CASRAM		
H10	Deposition	gravitational setting dry deposition precipitation scavenging resistance theory deposition simple deposition velocity liquid deposition plateout and re-evaporation		
H11	Resuspension	Deposition is not currently considered in CASRAM		
H12	Radionuclide Ingrowth and Decay	Not currently in CASRAM		

H13	Temporally and Spatially Variant	Urban heat island: Urban effects on the surface energy budget are considered in the calculation of atmospheric of atmospheric stability parameters.
	Mesoscale	Canopies: Vegetation type and density is used in the calculation of atmospheric stability
	Processes	parameters.
		Complex terrain (land) effects: mountain-valley wind reversals
		anabatic windskatabaic winds
		Not currently considered in CASRAM
		Complex terrain (land-water) effects: seabreeze airflow trajectory reversals
		Thermally Induced Boundary Layer definition seabreeze fumigation
		landbreeze fumigation
		Not currently considered in CASRAM
		Thunderstorm outflow: Not currently considered in CASRAM
		Temporally variant winds: Not currently considered in CASRAM
		High velocity wind phenomena:tornadohurricanesupercanemicroburst

Part I: Model Input Requirements			
11	Radio(chemical) and Weapon Release Parameters	Release rate: Continuous ✓ Time dependent ✓ Instantaneous Instantaneous and time dependent release rate is calculated internally for each accident scenario modeled in the statistical analysis. Release container characteristics: vapor temperature ✓ tank diameter ✓ tank height tank temperature ✓ tank diameter ✓ tank height tank temperature ✓ tank pressure nozzle	
12	Meteorological Parameters	Wind speed and wind direction:	
Part J: Model Output Capabilities (See Item 10.)			
Part K	Part K: Model Usage Considerations (No Information Provided)		