Preprint (November 9, 2005) To be published in Nuclear Data Sheets 106, 251 (2005)

Nuclear Data Sheets for $A = 266-294^*$

M. GUPTA^a

National Nuclear Data Center Brookhaven National Laboratory Upton, NY 11973-5000, U.S.A.

Manipal Academy of Higher Education, Manipal, KA 576 104, INDIA e-mail: mohini.gupta@manipal.edu

THOMAS W. BURROWS

National Nuclear Data Center Brookhaven National Laboratory Upton, NY 11973-5000, U.S.A. e-mail: burrows@bnl.gov

(Received March 22, 2005; Revised October 4, 2005)

- Abstract: The 2000 Nuclear Data Sheets for A=267-293 (2000Fi12) and part (A=266) of the 2001 Nuclear Data Sheets for 250,254,258,262,266 (2001Ak11) have been revised using experimental decay and reaction data received by August 12, 2005.
- Cutoff Date: August 12, 2005; all references entered into the Nuclear Science References File and papers and private communications received by this date were considered.

General Policies and Organization of Material: See the introductory pages.

General Comments:

 Acconyms and notations used in this evaluation:

 β2 Quadrupole deformation of the nuclear ground state

 BGS Berkeley Gas Filled Separator

 DGFRS Dubna Gas Filled Recoil Separator at the Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia

 EVR Evaporation Residue

 GARIS Gas-filled Recoil Ion Separator

 RILAC RIKEN Linear Accelerator facility

 SHIP Separator for Heavy Ion reaction Products

 t, t_n, and t_{SF} Time delay between detection of α or SF fragment and detection of previous EVR or α

 TKE Total Kinetic Energy

 VASSILISSA Electrostatic separator at the Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia

new data exist or the IUPAC/IUPAP Joint Working Party (JWP) Technical Reports (2001Ka70,2003Ka71) have already assigned a priority of discovery for an element (Z=110 or Ds and Z=111 or Rg), the evaluators have relied on the judgement of the JWP in determining the strength of the arguments made in the various papers. In the cases where there are new data or where the JWP has not yet assigned a priority of discovery for an element, the evaluators have attempted to follow the guidelines of the IUPAC/IUPAP Transfermium Working Group (TWG) as detailed in 1992Ba77 in their assessments of the data.

In the above context, with respect to Z=112 and the collective works of A. Marinov *et. al.*, the reader is referred to 1992Ba77, 2001Ka70, and 2003Ka71, the response by the experimenters (2004MaZS), and references therein.

Note that the TWG and JWP are primarily concerned with the priority of discovery of an element and not a specific nuclide. The purpose of this evaluation is to present the "best" set of nuclear properties for those nuclides reported between A=266 and A=294 based on data currently available and **not** to establish a priority of discovery for any element.

^a Permanent address: Manipal Academy of Higher Education, Manipal, KA 576 104, INDIA

It is well known that alpha decay chains seen in cold fusion reactions tend to terminate in known mass regions. The method of $\alpha-\alpha$ or $\alpha-SF$ correlations for identifying the parent has therefore been used with confidence. Experiments carried out with hot fusion reactions, result in alpha decay chains beginning and ending with hitherto unknown nuclei, thereby necessitating the use of EVR- α or EVR-SF correlations in an attempt to identify the parent and daughters. The latter method is not as accurate as the first since a greater probability of randomness is inherant to the technique. As such, independent verification and confirmation of the data gains added importance. These facts should be taken into account when considering the suggested properties of nuclei created following a hot fusion reaction as for the synthesis of Z=114 and above.

Finally, with regard to the some of the hot fusion studies conducted by the Dubna-Livermore collaboration, 2004Mo15 have pointed out that mass assignments which are based on the excitation energy of the compound nucleus may be off by a single unit. This may also be due in part to uncertainties in the beam energy and calculated mass excesses of the expected super heavy nuclei. Once again, collateral information is required to establish the charge and approximate A of the nucleus.

 $\Delta T_{1/2}$ Estimates: Where the half-lives as given by the authors have not been adopted, the evaluators have used the approximations in equation 18 of 1984Sc13 for three or more events, assuming an exponential distribution to estimate the standard uncertainty (68% confidence level) in $T_{1/2}$:

$\tau_u / t_m \approx 1/(1 - z/\sqrt{n}), \quad \tau_l / t_m \approx 1/(1 + z/\sqrt{n})$

where τ_u =upper uncertainty, τ_1 =lower uncertainty, t_m =average mean time, z=1 for a 68% confidence level, and n=number of events. For one and two events, the exact values given in Table 1 have been used: τ_1/t_m =0.543 and τ_u/t_m =5.79 for n=1 and τ_1/t_m =0.606 and τ_u/t_m =2.82 for n=2. Note that except for the one event τ_u/t_m , the approximations are accurate within 10%.

- $\frac{\text{Viola-Seaborg Systematics (1966Vi04 and references therein):}}{\text{evaluation used the relationship:}}$
 - $\log T_{1/2}(\alpha) = (aZ+b)Q^{-1/2} + (cZ+d)$

where Z refers to the atomic number of the parent nucleus, Q is the Q-value of the α -decay in MeV and: a=1.78722, b=-21.398, c=-0.25488, and d=-28.423.

The parameters were obtained by a fit to 65 even-even nuclei with Z>82 and N>126 (2004OgZZ). Values are revised here in accordance with the parameter set used in these evaluations. We note that these systematics are only an indication of α -decay half-lives from the ground state of a given even-Z(parent), rather than specific to any isotope of the the element under consideration. The use of this formalism in the case of odd and odd-odd nuclei is to be taken as qualitative. Some experimenters (e.g., 2004OG03) use $T_{1/2}$ (calc) so derived to estimate a Hindrance Factor (HF) for a given transition, attributable to the odd neutron or proton. This quantity is then given by the ratio of $T\alpha$ (expt) to $T\alpha$ (calc). The HF so computed is an approximate indication.

Others (Phenomenological parametrizations): See Nuclear Science References.

<u>Fusion-Fission Dynamics</u>: An emerging topic of interest in the trans-fermium elements is the manifestation of shell effects in the mass energy distributions (MED) of heavy nuclei as reflected in their fission and quasi-fission (QF) signatures. Studies of this type are important as QF is expected to play a greater role on the hindrance of fusion as one attempts to synthesis heavier nuclei in the approach to the "island" of stability. An understanding of this mechanism is necessary to establishing the most favorable reactions for producing heavy elements. Another unexpected hindrance to fusion was discovered by the Canberra group (1998Da24) in much lighter, asymmetric systems leading to the formation of CN ²¹⁶Ra*. This was found to be related to both the mass asymmetry in the entrance channel as well as the on-set of QF. It is thought that (closed) shell structure, as well as deformations, may also play an important role in reducing the probability of forming a compound system. In the face of extremely low yields and a steep decrease of production cross-sections already in evidence with available stable beam-target combinations, the influence of all possible mitigating factors must be accurately determined in order to optimize the probability of successful fusion. The formation of a super-heavy element (SHE) will be possible only if the di-nucleus survives QF going on to form a compact compound system which must then face competition from fission.

Recently (2004PrZW), a series of experiments designed to investigate fusion-fission dynamics have been carried out at FLNR-JINR in Dubna in collaboration with investigators from Belgium, France, and Italy. Nascent compound nuclei were formed in the range Z=102-122 in the reactions ${}^{26}Mg+{}^{248}Cm$; ${}^{48}Ca$ with ${}^{208}Pb$, ${}^{232}Th$, ${}^{238}U$, ${}^{244}Pu$, and ${}^{248}Cm$; and ${}^{58}Fe$ with ${}^{208}Pb$, ${}^{232}Th$, ${}^{244}Pu$, and ${}^{248}Cm$ using the U400 cyclotron and the double-arm tof spectrometer "Corset". These experiments were inspired by the use of similar targets in the synthesis of Z=112, Z=114, and Z=116 at Dubna. QF was observed in nuclei ${}^{286}112$ to ${}^{296}116$ and multi-modal fission in the case of both ${}^{274}Hs$ and ${}^{256}No$. Many such experiments are planned or underway to investigate the various effects.

Others (Fusion-Fission Dynamics): 2002Hi20, 2004Da11, and 2004It05 and references cited in these papers.

Experimental Estimates of Fission Barriers:

1987Mu15 deduce fission barriers (B_f) for (N-Z)=48 isotopes. For Z=92, 94, 96, 98, 100, 102, 104, 106, and 108 the experimentally derived barrier heights are respectively: $B_f=6.23$, 6.47, 6.35, 6.17, 6.03, 6.24, 6.64, 6.89, and 6.68 MeV (\pm 0.01 MeV). See 1987Mu15 for details.

2002It04, in an analysis of available experimental data, derive the $^{283-286}112$, $^{288-292}114$, and $^{292-296}116$ fission barrier heights of ≥ 5.5 , ≥ 6.7 , and ≥ 6.4 MeV, respectively.

 $\frac{\text{Dubna data on }^{289}114, \, ^{287}114, \, \text{and }^{283}112:}{^{289}114, \, ^{287}114, \, \text{observations:}}$ Two possibilities have been proposed in an attempt to understand the the

(i) that the single $^{289}114$ chain seen by the DGFRS group belongs to a rare decay mode originating from an isomeric state, or that

(ii) the sequence may actually originate from $^{290}114 \rightarrow ^{286}112 \rightarrow ^{282}Ds \rightarrow ^{278}Hs$ (SF) (See $^{290}114$ Adopted Levels).

The evaluators believe that further investigations are required to support either hypothesis.

Thus, ²⁹⁰114, ²⁸⁶112, ²⁸²Ds and ²⁷⁸Hs remain unobserved. Also, $T_{1/2}$ for ²⁸⁷114 as seen by 1999Og07 (data from the VASSILISSA separator) is much larger than that observed by 2004Og12 and 2004OgZZ (15 data points, using DGFRS), although the E α is in agreement. Such inconsistencies need to be better understood.

Note that the two papers, 2004Og12 and 2004OgZZ are identical in many respects. 2004OgZZ report more statistics in some cases.

Other comments on $^{\rm 289}114$ and $^{\rm 283}112$

2000Ar03, who analyzed the data for the 34-min decay chain of ²⁸⁹114 (DGFRS data from 1999Og10), ²⁸⁷114, and the SF events reported for ²⁸³112 (VASSILISSA data from 1999Og05 and 1999Og07), classified the evidence as being "very weak", with no convincing supporting arguments for the possible production of SHE. We make the following general observations:

A total of 46 events (Table IV, 2004Og12), with 5 more events bringing the total to 51 decays (Table V: 2004OgZZ), have since been reported by the Dubna-JINR collaborations for all isotopes of Z=114. From the largest number of events as reported in 2004OgZZ, the isotopes observed are $^{289}114$ (9 events), $^{288}114$ (16 events), $^{287}114$ (15 events) and $^{286}114$ (11 α + 5 SF events). Taking all the data into consideration, the =34 min decay sequence postulated as originating from a rare decay mode of $^{289}114$ does not seem very likely. On the other hand, a statistical analysis by 2000Zl02 suggests that the $^{289}114$ decays observed are genetically linked and not the result of a background decay sequence. These discrepancies have to be resolved, along with some others.

²⁸³112: The six SF events reported *via* 1999Og05 and 1999Og07 have (see also 2004Og02) with VASSILISSA, have not been reproduced in experiments done with DGFRS. There appears to be a lack of internal consistency through the collective measurements and the data are inconclusive as pointed out by experimenters (reasons given in each paper). Decay properties of parent ²⁸⁷114 may be similar to those noted in 2004Og12 but those of the daughter ²⁸³112 differ. Also, 2005Gr19 and 2002Lo15 reported no SF decays or EVR- α - α correlations with $\Delta t(EVR-\alpha)$ <20 s or $\Delta t(\alpha-\alpha)$ <20 s in any of the ⁴⁸Ca + ²³⁸U irradiations performed by them. See ²⁸³112 Adopted Levels for details.

These observations by the experimenters are consistent with the findings of 2000Ar03 which offer a more detailed analysis. However, of the various arguments put forward therein, the following comments may be made here:

Total TKE's from the two presumed Z=112 fragments are in each case:
 MeV and 212 MeV (19990g05)
 MeV and 170 MeV (20040g02)
 MeV and 165 MeV (19990g07: Daughters of ²⁸⁷114)
 TKE for Z=112 (20040g12; ²⁸²112 observed as daughter in four events of nine attributed to ²⁸⁶114 (Page 8, Table II(c)) is measured at 213 MeV and 211 MeV (two events, # 1 & 9, registered in both focal plane and side

II(c)) is measured at 213 MeV and 211 MeV (two events, # 1 & 9, registered in both focal plane and side detectors). With one exception, all the energies measured in the three papers (1999Og05, 1999Og07, and 2004Og02) are, in fact, lower than would be expected for this mass range (Z=112 or Hs) as pointed out in 2000Ar03. However, a direct mass analysis undertaken by the experimenters (2004OG02) of the two SF nuclei (from the second experiment) after EVR implantation resulted in A=285.1 41. The result is in agreement with EVR's produced in ${}^{48}Ca + {}^{238}U \rightarrow {}^{286}112^{\circ}$.

2. 2000Ar03 statement that correlations between the fission events and preceding signals (recoils/ α 's) are random. Note that a 'backward' analysis of the data was reported in 1999Og07 and in the other papers. These statements by 2000Ar03 are evidently in contradiction with those made by the experimenters. A more complete analysis would be beneficial.

3. The experimenters rely on two Z=114 chains (one measured in the 1999Og07); the \approx 34 min sequence tentatively attributed to ²⁸⁹114 quoted from an earlier experiment (and not seen since) is invoked in support of daughter Z=112 assignments. The proposed assignment of Z=114 to both parents may be incorrect taking into account new data which do not support these observations and for reasons already mentioned. Hence, the Z=112 daughter is also possibly incorrect.

CONCLUSIONS:

Properties of Z=112 as proposed in 1999Og05, 1999Og07 and 2004Og02 are not conclusive. Overall, the results from the VASSILISSA experiments are at variance with data from experiments using DGFRS. The latter investigations are done using more stringent methods, and have greater statistics, offering better internal consistency. Some obvious discrepancies and other inconsistencies between the two sets of data remain and need to be resolved or adequately explained as does the lack of events observed in the 48 Ca + 238 U irradiations performed by 2005Gr19 and 2002Lo11.

Properties of 287114 as observed in 1999Og07 and 289114 quoted from earlier work are not reproduced to date.

Theoretical Calculations:

- 1995Mo29: β2 based on the finite-range droplet macroscopic model and folded-Yukawa single-particle microscopic model with "global" parameters.
- 1997Mo25: β -decay properties based on the finite-range droplet model and folded-Yukawa single particle potential. Odd-proton and odd-neutron J π simultaneously obtained with the calculated masses and deformations in 1995Mo29. Global parameterization from ¹⁶O through A=239.
- 2003Mu15, 2003Mu26: β2 based on Yukawa-plus-exponential model for the macroscopic part and the Strutinski shell correction, with the Wood-Saxon single-particle potential, for the microscopic part.
- 2005GaZX: β2 based on self consistent calculations within the framework of the Relativistic Mean Field (RMF) theory with very few "globally" fit parameters and employing the frequently used NL3 Lagrangian parameter set. Since other parameter sets in use exhibit similar systematics, these results are expected to be representative. β2 to three decimal places are taken from 2005GaZY.

Other Measurements:

- 2004DrZZ has found evidence for Z=120 compound nucleus formation from lifetime measurements for ²³⁸U on natural Ni at E=6.62 MeV/A (Blocking technique in single crystals).
- Acknowledgments: The evaluators are very grateful to G. Munzenburg, S. Hofmann, A. Turler, M. Schaedel, and A. Yakushev (GSI/Germany); K. Morita (RIKEN/Japan); Yu.Ts. Oganessian, M.G. Itkis, E.M. Kozulin, V. Utyonkov, and A. Yeremin (JINR-Dubna/Russia); P.A. Wilk (LLNL/USA); R.B. Firestone and K.E. Gregorich (LBNL/USA) and A. Drouart (CEA-Saclay/France) for the useful discussions as well as all the additional information that they readily provided during this evaluation; to the compilers of the XUNDL datasets (J. Roediger and B. Singh, McMaster University/Canada) used in this evaluation; and to B. Singh for helpful discussions. We thank A. Marinov (Racah Institute/Israel) for keeping us updated on their work. We also thank R. Arcilla, J. Totans, and the other staff of the National Nuclear Data Center for their assistance in preparing this evaluation. In addition, one of the us (MG) is grateful to J.K. Tuli, P. Oblozinsky, and N. Holden (BNL/USA); A.L. Nichols (IAEA/Vienna); A.K. Jain (Indian Institute of Technology-Roorkee/India); E. Browne (LBNL/USA); Y.K. Gambhir (Indian Institute of Technology-Bombay/India); and A. Sobiczewski (Soltan Institute, Poland). Finally, this evaluation also owes its existence to the late Y.A. Akovali (ORNL/USA) and her constant encouragement, valuable insights, and suggestions until her untimely demise are hereby acknowledged.

^{*} This work was performed under the auspices of the U.S. Department of Energy, Contract No. DE-AC02-98CH10886, and Brookhaven National Laboratory Contract No. 92389.

Summary of Properties for Possible Ground-States in A=266-294

z	Α	Ν	N/Z	Q _α (exp) (MeV)	Branching Ratio	T _{1/2} (expt)	Partial T _{1/2} (expt) (secs)
118	294	176	1.49	11.81 6	%α≈ 100	1.8 ms + <i>84-8</i>	T _{1/2} (α)≈0.0018 +84-8
116	293	177	1.53	10.67 6	%α≈ 100	53 ms +62-19	T _{1/2} (α)≈0.0053 +62 - 19
116	292	176	1.52	10.80 7	%α≈100	18 ms +16-6	T _{1/2} (α)≈0.018 +16-6
116	291	175	1.51	10.89 7	%α≈ 100	6.3 ms +116-25	T _{1/2} (α)≈0.0063 +116-25
116	290	174	1.50	11.00 8	%α≈100	15 ms +26-6	T _{1/2} (α)≈0.015 +26-6
115	288	173	1.50	10.61 6	%α≈ 100	87 ms +105-30	T _{1/2} (α)≈0.087 +105-30
115	287	172	1.50	10.74 9	%α≈100	32 ms +155 - 14	T _{1/2} (α)≈0.032 +155-14
114	289	175	1.54	9.96 6	%α≈ 100	2.7 s +14-7	T _{1/2} (α)≈2.7 +14-7
114	288	174	1.53	10.09 7	%α≈ 100	0.80 s +32-18	T _{1/2} (α)≈0.80 +32-18
114	287	173	1.52	10.16 6	%α≈ 100	0.51 s +18-10	T _{1/2} (α)≈0.51 +18-10
114	286	172	1.51	10.345 60	%α≈ 40 ;	0.16 s +7-3	T _{1/2} (α)≈0.40 +18–8
					%SF≈6 0		T _{1/2} (SF)≈0.27 +12-5
113	284	171	1.51	10.15 6	%α≈ 100	0.48 s +58-17	T _{1/2} (α)≈0.48 +58-17
113	283	170	1.50	10.26 9	%α≈ 100	100 ms +490-45	T _{1/2} (α)≈0.100 +490-45
113	278	165	1.46	11.85 <i>4</i>	%α≈ 100	0.24 ms +114-11	T _{1/2} (α)≈0.00024 +114-11
112	285	173	1.54	9.29 6	%α≈ 100	34 s +17-9	T _{1/2} (α)≈34 +17-9
112	284	172	1.54	≤9.85	%SF≈100	101 ms +41-22	T _{1/2} (SF)≈0.101 +41-22
112	283	171	1.53	9.67 6	%α≥99; %SF<1	4.0 s +13-7	$T_{1/2}(\alpha) = 4.0 + 14-8$
112	282	170	1 52	~10.92	% SE-100	$0.50 \text{ ms} \pm 32 14$	$T_{1/2}(SF) \ge 4 \times 10^{-7}$
112	202	165	1.02	≤10.02 11.504.55	/03F≈100 0/ ar-100	0.50 ms + 60-24	$T_{1/2}(SF) \approx 0.050 \pm 33-74$
112	211	100	1.47	11.554 55	700≈100	0.05 ms 105-24	T _{1/2} (α)≈0.009 ±09 - 24
111	280	169	1.52	9.87 6	%α≈ 100	3.6 s +43-13	T _{1/2} (α)≈3.6 +43-13
111	279	168	1.51	10.52 <i>16</i>	%α≈ 100	0.17 s +81-8	T _{1/2} (α)≈0.17 +81-8
111	274	163	1.47	11.32 7	%α≈ 100	6.4 ms +307-29	T _{1/2} (α)≈0.0064 +307-29
111	272	161	1.45	11.150 35	%α≈ 100	3.8 ms +14-8	T _{1/2} (α)≈0.0038 +14-8
110	281	171	1.55	≤9.85	%SF≈100	9.6 s +50-25	T _{1/2} (SF)≈9.6 +50 - 25
110	279	169	1.54	9.84 6	%α≈ 10 ;	0.18 s +5-3	T _{1/2} (α)≈1.8 +5-3
					%SF≈90		T _{1/2} (SF)≈0.20 +6-4
110	273	163	1.48	11.37 5	%α≈ 100	0.17 ms +17-6	T _{1/2} (α)≈0.00017 +17-6
110	271	161	1.46	10.899 <i>20</i>	%α≈ 100	1.63 ms +44-29	T _{1/2} (α)≈0.00163 +44-29
110	270	160	1.45	11.20 5	%a≈100;	0.10 ms +14-4	T _{1/2} (α)≈0.00010 +14-4
					%SF<0.2		T _{1/2} (SF)>0.05 +7-2
110	269	159	1.45	11.58 7	%α≈ 100	179 μs +245 - 66	T _{1/2} (α)≈0.000179 +245 - 66
110	267	157	1.43	12.28 <i>11[</i> Sy]	%α≈ 100	2.8 μs +133-12	T _{1/2} (α)≈0.0000028 +133-12

Summary of Properties for Possible Ground-States in A=266-294 (Continued)

Z	Α	Ν	N/Z	Q _α (exp) (MeV)	Branching Ratio	T _{1/2} (expt)	Partial T _{1/2} (e (secs)	xpt)
109	276	167	1.53	9.85 6	%α≈ 100	0.72 s +87-25	T _{1/2} (α)≈0.72	+87-25
109	275	166	1.52	10.480 90	%α≈ 100	9.7 ms +460-44	T _{1/2} (α)≈0.0097	+460 - 44
109	270	161	1.48	10.18 7	%α≈ 100	5.0 ms +24-3	T _{1/2} (α)≈0.0.0050	+24-3
109	268	159	1.46	10.486 35	%α≈ 100	21 ms +8-5	T _{1/2} (α)≈0.021	+8-5
109	266	157	1.44	10.996 25	%α≤100	1.7 ms +18-16	T _{1/2} (α)≈0.0017	+18 - 16
108	275	167	1.55	9.44 7	%α≈ 100	0.15s +27 - 6	T _{1/2} (α)≈0.15	+27 - 6
108	270	162	1.50	9.30 +7-3	%α≈ 100	3.6 s +8-14	T _{1/2} (α)≈3.6	+8-14
108	269	161	1.49	9.315 22	%α≈ 100	9.7 s +97-33	T _{1/2} (α)≈9.7	+97-33
108	267	159	1.47	9.978 20	%α≥ 80;	52 ms +13-8	T _{1/2} (α)=0.058	+23-14
					%SF<20		T _{1/2} (SF)>0.26	+7-4
108	266	158	1.46	10.336 20	%α≈100;	2.3 ms +13-6	T _{1/2} (α)≈0.0023	+13 - 6
					%SF<1.4		T _{1/2} (SF)>0.16	+10-5
107	272	165	1.54	9.15 6	%α≈ 100	10 s +12-4	T _{1/2} (α)≈10	+12-4
107	267	160	1.50	8.96 30	%α≈ 100	17 s +14-6	T _{1/2} (α)≈17	+14 - 6
107	266	159	1.49	9.22 4	%α≈ 100	1.7 s +82-8	T _{1/2} (α)≈1.7	+82 - 8
106	271	165	1.56	8.66 <i>8</i>	%α≈ 50;	2.4 min +43-10	T _{1/2} (α)≈2.9×10 ²	+52-12
					%SF≈50		T _{1/2} (SF)≈2.9×10 ²	+52-12
106	266	160	1.51	8.88 3	18<%α≤50;	21 s +20-12	T _{1/2} (α)=62	+166 - 44
					50<%SF ≤82		T _{1/2} (SF)=32	+20-21
105	268	163	1.55		%SF≈100	32 h +11-7	T _{1/2} (SF)≈1.15×10 ⁵	+40-26
105	267	162	1.54		%SF≈100	73 min +350-33	T _{1/2} (SF)≈4.4×10 ³	+210-20
104	267	163	1.57		%SF≈100	2.3 h +110-11	T _{1/2} (SF)≈8×10 ³	+40-4

 $2\,5\,9$

Ζ	Nuclide	Q _a (keV)	$\mathbf{T}_{_{1\!\!/_{\!\!2}}}$	Branchings	$T_{\frac{1}{1}}^{\alpha}(V-S)^{1}$
106	266 Sg	8880 <i>30</i>	21 s + <i>20–12</i>	18<%α≤50; 50<%SF≤82	9.0 s +22-18
108	266 Hs?	10336 <i>20</i>	2.3 ms + <i>13–6</i>	%α≈100; %SF<1.4	$2.7~\mathrm{ms}3$
108	270 Hs?	9300 +70-30	3.6 s +8–14	%α≈100	2.1 s +5-8
110	270 Ds?	1120050	0.10 ms + <i>14–4</i>	%α≈100; %SF<0.2	$0.08~{ m ms}3$
112	$^{282}112?$	≤10820	0.50 ms +33 - 14	%SF≈100	≥2.3 ms
112	$^{284}112?$	≤9850	101 ms +41 - 22	%SF≈100	≥0 . 98 s
114	$^{286}114?$	$10345\ 60$	0.16 <i>s</i> +7–3	%α≈40;² %SF≈60	0.17 s +7-6
114	$^{288}114?$	10090 70	0.80 s + <i>32–18</i>	%a≈100	0.84 s +50-31
116	$^{290}116?$	11000 80	15 ms +26–6	%α≈100	12 ms +7-5
116	$^{292}116?$	10800 70	18 ms + <i>16</i> -6	% α≈100	38 ms +21-13
118	$^{294}118?$	11810 60	1.8 ms +84–8	%a≈100	0.44 ms +17-12

Properties of Possible Even-Even A=266-294 Ground States

$LOG(T_{1/2}[\alpha]) vs SQRT(Q_{\alpha})$

¹ Viola-Seaborg systematics: $\log T_{1/2}(\alpha) = (aZ+b)Q^{-1/2} + (cZ+d)$ where a=1.78722, b=-21.398, c=-0.25488, and d=-28.423.

² $\Delta(\%\alpha)$ =30 assumed in obtaining $\Delta T_{1/2}(\alpha)$.

Preprint (Nov.	9,	2005) -	То	be	published	in	Nucl.	Data	Sheets	106,	251
----------------	----	---------	----	----	-----------	----	-------	------	--------	------	-----

		Index f	for $A = 266 - 2$	94	
Nuclide	Data Type	Page	Nuclide	Data Type	Page
266Sg	Adopted Levels	263	²⁸³ 113	287 115 α Decay: Tentative	331
~8	270 Hs α Decay: Tentative	264	²⁸⁴ 112	Adopted Levels: Tentative	332
^{266}Bh	Adopted Levels: Tentative	265		²⁸⁸ 114 α Decay: Tentative	332
	²⁷⁰ Mt α Decay: Tentative	266	284113	Adopted Levels: Tentative	334
266 Hs	Adopted Levels, Gammas: ?	267		$^{288}115~lpha$ Decay: Tentative	334
	$^{270}\mathrm{Ds}~\alpha$ Decay (0.10 ms): ?	268	²⁸⁵ 112	Adopted Levels: Tentative	335
	270 Ds α Decay (6.0 ms): ?	269		²⁸⁹ 114 α Decay: Tentative	336
266 Mt	Adopted Levels	270	285114	Adopted Levels: Not Observed	337
²⁶⁷ Rf	Adopted Levels: Tentative	272	²⁸⁶ 112	Adopted Levels: Not Observed	338
	²⁷¹ Sg α Decay: Tentative	272	286114	Adopted Levels: Tentative	339
²⁶⁷ Db	Adopted Levels: Tentative	273		²⁹⁰ 116 α Decay: Tentative	340
267Bh	Adopted Levels	274	287114	Adopted Levels: Tentative	341
²⁰⁷ Hs	Adopted Levels	276	0.07	291 116 α Decay: Tentative	342
	271 Ds α Decay (1.63 ms)	277	20/115	Adopted Levels: Tentative	343
967-	^{2/1} Ds α Decay (69 ms)	278	200114	Adopted Levels: Tentative	344
268D1	Adopted Levels: Tentative	280	288115	Adapted Levelse Tentative	345
200Db	Adopted Levels: Tentative	281	289114	Adopted Levels: Tentative	346
268111	σι α Decay: Tentative	282	200114	293116 a Decew Testative	347
NI t	272Bg g Docay	203	289116	Adopted Levels: Not Observed	348 950
269 0 ~	Adopted Loyals: Net Observed	200	290114	Adopted Levels: Not Observed	00U 951
2691La	Adopted Levels: Not Observed	200	290116	Adopted Levels: Not Observed	259
ns	273Ds a Decay	201 988	110	²⁹⁴ 118 a Decey: Tontative	004 959
²⁶⁹ D°	Adonted Levels	200	291116	Adonted Levels, Tentative	354
270Hs	Adopted Levels: Tentative	200	292116	Adopted Levels: Tentative	355
270Mt	Adopted Levels: Tentative	290	²⁹³ 116	Adopted Levels: Tentative	356
1110	274 Bg α Decay: Tentative	291	²⁹³ 118	Adopted Levels: Not Observed	358
²⁷⁰ Ds	Adopted Levels: Tentative	292	²⁹⁴ Ds	Adopted Levels: Not Observed	359
$^{271}S_{\sigma}$	Adopted Levels: Tentative	294	²⁹⁴ 118	Adopted Levels: Tentative	360
~8	275 Hs α Decay: Tentative	294			
^{271}Bh	Adopted Levels: Tentative	295			
	²⁷⁵ Mt α Decay: Tentative	295			
271 Ds	Adopted Levels	296			
^{272}Bh	Adopted Levels: Tentative	298			
	²⁷⁶ Mt α Decay: Tentative	298			
272 Rg	Adopted Levels	300			
^{273}Hs	Adopted Levels: Not Observed	303			
273 Ds	Adopted Levels	304			
	²⁷⁷ 112 α Decay	305			
274 Rg	Adopted Levels: Tentative	306			
975	²⁷⁸ 113 α Decay: Tentative	306			
²⁷⁵ Hs	Adopted Levels: Tentative	307			
97535	²¹³ Ds α Decay: Tentative	307			
275Mt	Adopted Levels: Tentative	309			
276	κg α Decay: Tentative	309			
-···Mt	280 Par a Docovy Tortative	310 210			
277 u a	Adopted Loyals: Net Observed	01U 910			
277Da	Adopted Levels: Not Observed	012 919			
Ds 277119	Adopted Levels	313			
278Hs	Adopted Levels: Not Observed	316			
²⁷⁸ 113	Adopted Levels: Tentative	317			
²⁷⁹ Ds	Adopted Levels: Tentative	318			
20	283 112 α Decay: Tentative	319			
279 Rg	Adopted Levels: Tentative	320			
.0	²⁸³ 113 α Decay: Tentative	320			
$^{280}\mathrm{Ds}$	Adopted Levels: Not Observed	321			
280 Rg	Adopted Levels: Tentative	322			
-	$^{284}113~\alpha$ Decay: Tentative	322			
$^{281}\mathrm{Ds}$	Adopted Levels: Tentative	323			
	$^{285}112~lpha$ Decay: Tentative	324			
281112	Adopted Levels: Not Observed	325			
$^{282}\mathrm{Ds}$	Adopted Levels: Not Observed	326			
282112	Adopted Levels: Tentative	327			
	286 114 α Decay: Tentative	327			
283112	Adopted Levels: Tentative	328			
	$^{287}114 \alpha$ Decay: Tentative	330			
283113	Adopted Levels: Tentative	331	I		

 $^{266}_{106}$ Sg₁₆₀-1

 $Q(\beta^{-})=-4540$; S(n)=7190 SY; S(p)=4060 SY; $Q(\alpha)=8880 30 2003Au03$. $Q(\beta^{-})$: estimated uncertainty=350 keV. S(n): estimated uncertainty=290 keV. S(p): estimated uncertainty=400 keV. $Q(\alpha)$: based on data from 1994La22, 1998Tu01, and 2002Tu05. Other: 8.78 MeV +5-3 from E α =8.65 MeV +5-3 (weighted av Carbon et al. 2002Tu05) with the second state of the second state (int) of two events reported by 2003Tu05.). 1994La22: ²⁴⁸Cm(²²Ne,4n) E=116, 121 MeV at the JINR U400 cyclotron. 97% ²⁴⁸Cm and 3% ²⁴⁶Cm targets. The total beam dose was =1.6×10¹⁹ particles with typical intensities of 1.3×10^{13} particles/s of 22 Ne. EVR's were separated with the DGFRS. Assignment of six α -SF correlations to 266 Sg based on: α -SF correlations with E α =8.63 MeV and 0.2 to 6.5s time intervals are unique; for the synthesis reaction used, no other candidate α -SF decay sequences with other Z,a values would have similar decay properties. Event #1: E=116 MeV Event #4: E=116 MeV $E_{\alpha} = 8.60 \text{ MeV}$ $E_{\alpha} = 8.74$ MeV $E_{SF} = 105 MeV t = 191 ms$ $E_{SF} = 118 MeV t = 6453 ms$ Event #2: E=116 MeV Event #5: E=121 MeV $E_{\alpha} = 8.54 \text{ MeV}$ $E_{\alpha} = 8.69 \text{ MeV}$ E_{SF} =89 MeV t=215 ms $E_{SF} = 103 \text{ MeV} t = 360 \text{ ms}$ Event #3: E=116 MeV Event #6: E=121 MeV $\mathbf{E}_{\alpha}=8.59~\mathrm{MeV}$ $\mathbf{E}_{\alpha}=8.60~\mathrm{MeV}$ $E_{SF} = 96 MeV t = 748 ms$ $E_{SF} = 118 MeV t = 2011 ms$ From these six events, 1994La22 obtain E_{g} =8.63 MeV 5 for ²⁶⁶Sg and $T_{1/2}$ (²⁶²Rf)=1.2 s +10-5 and an estimated $T_{1/2}({}^{266}Sg) = 10 - 30 \text{ s from } E_{\alpha}$. 1998Tu01: ²⁴⁸Cm(²²Ne,4n) E=121, 123 MeV at the GSI UNILAC. Recoiling reaction products were stopped in He gas loaded with carbon aerosols. Attached to the surface of the aerosols, the reaction products were transported within =2 s along a 10 min long capillary (i.d. 2 mm) to the On-Line Gas chemistry Apparatus (OLGA) which allows chemical separation of volatile species within ≈ 3 s. Decay Chain #17 (Isothermal temperature=400° C. Expected number of random events=0.03) $E_{\alpha} = 8.52 \text{ MeV} \Delta t = 48.9 \text{ s}$ $E_{SF} \ge 20 \text{ MeV} \quad \Delta t = 2.8 \text{ s}$ Decay Chain #18 (Isothermal temperature= 350° C. Expected number of random events=0.09) $E_{\alpha} = 8.79 \text{ MeV} \Delta t = 15.1 \text{ s}$ $E_{SF} \ge 20 \text{ MeV} \Delta t = 1.1 \text{ s}$ Decay Chain #19 (Direct catch experiment. Expected number of random events=0.45) $E_{\alpha} = 8.74 \text{ MeV} \Delta t = 3.5 \text{ s}$ $E_{SF} \ge 20 MeV \Delta t = 2.4 s$ From these three chains, 1998Tu01 obtain $T_{1/2}(^{266}Sg)=21$ s +20-12 (1 σ) and $E_{\alpha}=8.52$ MeV 3 (33%) and 8.77 MeV 4 (66%) and $T_{1/2}({}^{262}Rf) = 2.5 s + 25 - 16$ 2002Du21, 2003Tu05: daughter of 270 Hs produced by 248 Cm(26 Mg,4n) E=143.7-146.8 MeV, chemistry. See 270 Hs Adopted Levels, Gammas for details. Event #1: 12-May-2001 at 02:33:08 hrs $E_{\alpha 1} = 9.16 \text{ MeV} + 7 - 3$ - assigned to ²⁷⁰Hs $E_{\alpha 2} = 8.66 \text{ MeV} + 7 - 3$ $t_2 = 25.7$ s - assigned to ²⁶⁶Sg t(SF)=0.199 s - assigned to ²⁶²Rf $E_{SF} = 187 \text{ MeV } 6$ Event #2: 12-May-2001 at 17:09:09 hrs $E_{\alpha 1} = 8.97 \text{ MeV} + 7 - 3$ - assigned to ²⁷⁰Hs - assigned to ²⁶⁶Sg $E_{\alpha 2} = 8.64 \text{ MeV} + 7 - 3$ t_=11.9 s - assigned to ²⁶²Rf E_{SF}= 186 MeV 6 t(SF) = 1.2 sThe above properties are from 2003Tu05. Note that the life-times of the parent could not be estimated with the applied thermochromatography technique since deposition times are not measured. 2002Du21 explains the chemical implications of these experiments. 2004Vo24 observed six α -chains from $^{248}Cm(^{26}Mg,4n)$ E=142-150 MeV, chem. ^{266}Sg was expected to be produced as the daughter of ²⁷⁰Hs. Only one chain was assigned to ²⁶⁹Hs and four could be assigned to either ²⁶⁹Hs or ²⁷⁰Hs. The sixth chain is the most likely candidate for a random correlation. See ²⁶⁹Hs Adopted Levels for more details. The results of this experiment are not suitable for providing further proof for 270Hs or the daughter products.

Other: 1997Sc48 and 2002Tu05. See also 2003Kr24 for a critical evaluation of the chemistry and a description of the techniques used.

Theory: see Nuclear Science References.

Adopted Levels (continued) ²⁶⁶Sg Levels Cross Reference (XREF) Flags A ²⁷⁰Hs α Decay: Tentative E(level) XREF Jπ $T_{1/2}$ Comments 21 s +20-12 $T^{}_{1/2}:$ from 1998Tu01 (68% c.i.). 2001Ak11 note that a calculated $HF(8520\alpha)$ of 0.3 for 0.0 0 +Α $\bar{I}\alpha{\approx}33\%$ may indicate the existence of a contaminant under this peak. If this is correct and the associated $\Delta t{=}48.9$ s were excluded from consideration, $\rm T_{1/2}{=}6.4~s$ +118-26. Others: 17.8 s estimated by 2003Tu05 from Ea, 10-30 s estimated by 1994La22 from Ea, and 14.6 s +118-45 from τ =21.0 s (arithmetic mean of 48.9 s, 3.5 s, and 15.1 s (1998Tu01), 25.7 s and 11.9 s (2003Tu05)). $\rm T_{1/2}(calc){=}9.0~s~from$ Viola-Seaborg systematics for $Q(\alpha)=8.88$ MeV. $T_{1/2}(SF)\geq 11$ s (2000Ho27). $18 < \% \alpha \le 50; 50 < \% SF \le 82.$ $\%\alpha,\%SF:$ the α and SF branchings were determined as $15{\le}\%\alpha{\le}50$ by 1994La22 and $\%\alpha{>}18$ by 1998Tu01. 1994La22 set the lower limit by assuming that all of the detected fission activities were from SF decay of 266 Sg or from its α daughter, 262 Rf, and the upper limit was based on the comparison of experimental and expected cross sections. $\beta_2(theory): \ 0.230 \ from \ 1995Mo29; \ 0.240 \ from \ 2003Mu26; \ 0.262 \ from \ 2005GaZX.$ ²⁷⁰Hs α Decay: Tentative 2003Tu05 $Parent \ ^{270}Hs: \ E=0.0; \ J\pi=0+; \ T_{1/2}=3.6 \ s \ +8-14; \ Q(g.s.)=9300 \ 70; \ \%\alpha \ decay\approx 100.$ 270 Hs-Q(α): 9.30 MeV +7-3. See ²⁷⁰Hs Adopted Levels for details. ²⁶⁶Sg Levels E(level) Jπ $T_{1/2}$ Comments 0.0 0+ 20 s +20-12 $E(level), J\pi, T_{1/2}$: from the Adopted Levels. α radiations Branching: from 2/2 events. $E\alpha$ E(level) Comments 9160‡ 0.0 $\Delta E = +7 - 3$.

 ‡ Existence of this branch is questionable.

Adopted Levels: Tentative

 $Q(\beta^{-}) = -2940 \ SY; \ S(n) = 6400 \ SY; \ S(p) = 1860 \ SY; \ Q(\alpha) = 9220 \ 40 \ 2003 Au03, 2004 Mo42.$

 $Q(\beta^{-})\colon$ estimated uncertainty=350 keV.

S(n): estimated uncertainty=430 keV.

S(p): estimated uncertainty=210 keV.

 $Q(\alpha)$: from $E\alpha$ =9.08 MeV 4 (2004Mo42). Others: 9.55 MeV 9 (2003Au03. Syst) and 9.43 MeV from $E\alpha$ =9.29 MeV (2000Wi15). 2000Wi15: chemical investigation by American-Swiss collaboration aimed at the study of ^{266,267}Bh. See Adopted Levels for ²⁶⁷Bh for details. Reaction: ²⁴⁹Bk(²²Ne,5n) at LBNL. The 88-inch cyclotron provided the ²²Ne⁽⁶⁺⁾ beam at two energies; 148 and 153 MeV corresponding to 116-118 MeV and 122-124 MeV respectively in the target. The target was made using 0.81 mg/cm² ²⁴⁹Bk as oxide prepared by the molecular plating technique (1974Au05,1975Mu16). Chemical separation prior to this ensured that less than 0.5% of ²⁴⁹Cf was present. Reaction products collected in a recoil chamber located directly behind the target. This chamber was continuously swept with He gas containing KCl aerosols to collect the products. The products were then guided through a TEFLON capillary (1.4 mm, 7 min in length) to the merry-go-round (MG) rotating wheel system (1990Ho03, 1996La11) with a transport time ~0.6 s and a transport efficiency of 38% 4. See the original sources for details of the MG and the method of data collection and analysis. One atom of ²⁶⁶Bh was observed at the higher beam energy of 122-124 MeV followed by an α -decay sequence:

Event #1:

$E_{\alpha 1} = 9290$	k e V	$t_1 = 0.87 s$	_	assigned	t o	$^{266}\mathrm{Bh}$
$E_{\alpha 2} = 8540$	$k \mathrel{e} V$	$t_2 = 27.83$ s	-	assigned	t o	$^{262}\mathrm{Db}$
$E_{\alpha 3} = 8740$	k e V	$t_3 = 0.04$ s	-	a s s i g n e d	t o	$^{258}{ m Lr}$
		~ 1 1	0.5	050 I D	1	

The cross-section estimated for the 5n channel was 25-250 pb. Based on an expected unhindered half-life of $T_{1/2}^{\approx}0.5$ s for this nuclide with $Q(\alpha)=9.29$ MeV. Due to the experimental set-up, this cross-section was strongly dependent on the assumed ^{267}Bh half-life. The estimated half-life for ^{266}Bh was $T_{1/2}=1-10$ s; suggested value is within 1 s. Fission decay properties of $^{266,267}Bh$ could not be determined due to fission contamination attributed to ^{256}Fm .

2004Mo42: great granddaughter of ²⁷⁸113 produced by ²⁰⁹Bi(⁷⁰Zn,n) E=349 MeV. See ²⁷⁸113 Adopted Levels for details. Event #1: Energy of the evaporation residue=36.75 MeV

$E_{\alpha 1} = 11.68$	${\rm MeV}$	4	t ₁ =344 μs	-	assigned	t o	$^{278}113$
$E_{\alpha 2} = 11.15$	${\rm MeV}$	7	t ₂ =9.26 ms	-	assigned	t o	$^{274}\mathrm{Rg}$
$E_{\alpha 3} = 10.03$	${\rm MeV}$	7	t ₃ =7.16 ms	-	assigned	t o	$^{270}{ m Mt}$
$E_{\alpha 4} = 9.08$	${\rm MeV}$	4	$t_4 = 2.47$ s	-	assigned	t o	^{266}Bh
E(SF) = 204	.1 Me	eV	t (SF) = 40.9	s –	assigned	t o	$^{262}\mathrm{Db}$

The assignments of 2004Mo42 are the most probable ones for the reaction. Also, the identification of the parent as 278 113, α -decay daughter 274 Rg, and granddaughter 270 Mt, are all rendered plausible following a consistent comparison of the 4th and 5th events with known descendents. The observation of each isotope in the sequence should be considered as tentative and pending confirmation. Other: 1987ScZR.

Theory: see Nuclear Science References.

Assignment: 2004Mo42 note that the decay time measured corresponding to $T_{1/2}=1.7$ s +82-8 agrees to within 1 standard deviation of the value reported by 2000Wi15. Also, the discrepencies in $E\alpha(^{266}Bh)$ between 2000Wi15 and 2004Mo42 may be explained by the known wide spread in α energies for odd-odd nuclides in this region. However, the evaluators believe that with only two events the assignment should be considered as tentative.

²⁶⁶Bh Levels

Cross Reference (XREF) Flags

A $^{270}\mathrm{Mt}$ α Decay: Tentative

E(level)	XREF	T _{1/2}	Comments
x ?	А	1.7 s +82-8	 Jπ: Ω(p)=5/2-; Ω(n)=1/2+ from 1997Mo25 (theory). T_{1/2}: from 2004Mo42 (1 σ). Other: 0.6 s +29-3 from t=0.87 s (2000Wi15). T_{1/2}(calc)=1.7 s from Viola-Seaborg systematics for Q(α)=9.22 MeV from 2004Mo42. %α=100.
			%α: assumed 100% from 2/2 events. β ₀ (theory): 0.230 from 1995Mo29: 0.245 from 2003Mu26: 0.262 from 2005GaZX.

²⁷⁰Mt a Decay: Tentative 2004Mo42

Paren ²⁷⁰ Mt See ²	Parent ²⁷⁰ Mt: E=x; Jπ=?; T _{1/2} =5.0 ms +24-3; Q(g.s.)=10180 70; %α decay≈100. ²⁷⁰ Mt-Q(α): from Eα=10.03 MeV 7 (2004Mo42). Other: 10.35 MeV 50 (2003Au03. Syst.). See ²⁷⁰ Mt Adopted Levels for details.							
		²⁶⁶ Bh Levels						
E(level)	T _{1/2}	Comments						
x ?	1.7 s +82-8	$E(level), T_{1/2}$: from the Adopted Levels.						
		α radiations						
Bran	ching: presumed 10	0% based on 1/1 event.						
Eα	E(level)							
10030 70	x?							

 $^{266}_{108}\mathrm{Hs}_{158}\mathrm{-1}$

Adopted Levels, Gammas: ?

 $Q(\beta^{-})=-6710 SY; S(n)=8060 SY; S(p)=2680 SY; Q(\alpha)=10336 20 2003Au03.$ $Q(\beta^{-})$: estimated uncertainty=450 keV. S(n): estimated uncertainty=320 keV. S(p): estimated uncertainty=470 keV. $Q(\alpha)$: adopted by 2003Au03 from E α =10.18 MeV 2 (2001Ho06. Unweighted average of events 2, 3, 4, and 6). 2001Ho06: daughter of ²⁷⁰Ds produced by ²⁰⁷Pb(⁶⁴Ni,n) E=317 MeV at GSI/SHIP. See ²⁷⁰Ds Adopted Levels for details. Event # 1: (Event 5 in sequence of detection) $E_{\alpha 1} = 10987 \text{ keV } 90$ $t_1 = 0.07 ms$ assigned to ²⁷⁰Ds _ assigned to ²⁶⁶Hs $E_{\alpha \; 2} = \ 4 \; 1 \; 6 \; 8 \quad k \; e \; V \quad (\; e \; s \; c \;)$ $t_2 = 0.43 ms$ _ $t_3 = 11.02$ ms assigned to ²⁶²Sg $E_{SF} = 189 \text{ MeV}$ _ Event # 2: (Event 3 in sequence of detection) assigned to ²⁷⁰Ds $E_{\alpha 1} = 1\,1\,0\,7\,5$ keV 90 t₁=0.18 ms $E_{\alpha 2} = 10196 \text{ keV } 20$ t₂=0.87 ms assigned to ²⁶⁶Hs _ $E_{SF} = 193 \text{ MeV}$ assigned to ²⁶²Sg $t_3 = 10.26$ ms _ Event # 3: (Event 1 in sequence of detection) $E_{\alpha 1} = 1925 \text{ keV} (esc) t_1 = 0.20 \text{ ms}$ assigned to ²⁷⁰Ds E_{α2}=10173 keV 90 assigned to ²⁶⁶Hs $t_2 = 2.79$ ms _ $E_{SF} = 164 \text{ MeV}$ t₃= 8.84 ms assigned to ²⁶²Sg _ Event # 4: (Event 7 in sequence of detection) $t_1 = 2.00 ms$ assigned to ²⁷⁰Ds $E_{\alpha 1} = 11151 \text{ keV } 20$ _ $E_{\alpha 2} = 10171 \text{ keV } 20$ $t_2 = 18.22$ ms assigned to ²⁶⁶Hs _ $E_{SF} = 199 \text{ MeV}$ assigned to ²⁶²Sg $t_3 = 13.06 \text{ ms}$ Event # 5: (Event 8 in sequence of detection) assigned to ²⁷⁰Ds $E_{\alpha 1} = 12147 \text{ keV } 50$ $t_1 = 10.35 ms$ _ assigned to ²⁶⁶Hs $t_2 = 9.63 ms$ $E_{\alpha 2} = 10281 \text{ keV} 90$ _ $E_{SF} = 215 MeV$ assigned to ²⁶²Sg $t_3 = 7.77$ ms _ Event # 6: (Event 2 in sequence of detection) E_{α1}=10954 keV 20 $t_1 = 17.71 \text{ ms}$ assigned to ²⁷⁰Ds _ $E_{\alpha 2} = 10180$ keV 20 $t_2 = 0.34$ ms assigned to ²⁶⁶Hs _ $E_{SF} = 190 \text{ MeV}$ t₃=3.98 ms assigned to ²⁶²Sg _ Event # 7: (Event 4 in sequence of detection) $E_{\alpha 2} = 578 \text{ keV} (esc)$ assigned to ²⁶⁶Hs t₂=0.46 ms - assigned to ²⁶²Sg $E_{SF} = 227$ MeV $t_3 = 2.00 \text{ ms}$ Event # 8: (Event 6 in sequence of detection) $E_{\alpha 2} = 10306 \text{ keV } 90$ assigned to ²⁶⁶Hs $t_2 = 5.40 \text{ ms}$ _ $E_{SF} = 177 MeV$ assigned to ²⁶²Sg t₃=33.91 ms _

See 2001Ho06 for details regarding assignments and pertaining to ²⁷⁰Ds. No fission event was observed which may have been attributable to ²⁶⁶Hs.

Theory: see Nuclear Science References.

Assignment: daughter of ²⁷⁰Ds produced by ²⁰⁷Pb(⁶⁴Ni,n) E=317 MeV (2001Ho06). The daughter ²⁶²Sg has not been independently observed and there are no observed elemental signatures. Therefore, the evaluators consider the assignments as tentative.

 $^{266}_{108}\mathrm{Hs}_{158}\mathrm{-}2$

Adopted Levels, Gammas: ? (continued)

²⁶⁶Hs Levels

2001Ho06 do not rule out the possibility that an isomeric state may exist analogous to the one in 270 Ds. In this case, the α -decay would have two components with half-lives: $T_{1/2}=0.35$ ms +28-11 and 6.3 ms +86-23 at energies calculated to be 0.90 MeV and 0.94 MeV above the ground state. On the basis of this data however, the experimenters rule out any conclusive isomeric assignments for 266 Hs noting that theory is only indicative. If there are two states, 2001Ak11 suggest that the 6.3-ms state is more likely to be the g.s., based on the $r_0(^{262}$ Sg) parameters calculated by using HF(10180a)=1.0: $T_{1/2}=0.35$ ms. This yields $r_0=1.56$ 3 which is much higher than expected from these r_0 systematics.

Cross Reference (XREF) Flags

A $^{270}Ds~\alpha$ Decay (0.10 ms): ? B $^{270}Ds~\alpha$ Decay (6.0 ms): ?

E(level)	$J\pi$	XREF	$T_{1/2}$	Comments
0.0?	0+	AB	2.3 ms +13-6	$T_{1/2}: from 2001Ho06. See comment above on possible existence of two components in the α-decay. The evaluators note that the unweighted averages for chains 1, 2, 3, and 7 (events 2, 3, 4, and 6 above), all four assigned to the ground state of 266Hs, are τ=5.56 ms; T1/2=3.85 ms (corresponding to Eα=10.180 MeV and Q(α)=10.335 MeV). T1/2(calc)=2.7 ms from Viola-Seaborg systematics for Q(α)=10336 keV. The evaluators note that four of the measured α-energies from events 2, 3, 4 and 6 agree reasonably well to within the detector resolution of 20 keV (the difference in spread being about 17 keV to 25 keV over the individual energies). %α=100; %SF<1.4. %α,%SF: from 8/8 events. Fission branching estimated to be within 1.4% in the absence of observed SF for this nucleus (2001Ho06). 8 (theory): 0.230 from 1995Ma29: 0.242 from 2003Mu26: 0.263 from 2005GaZX$
1000? 60 1200? 60		B B		P2

²⁷⁰Ds α Decay (0.10 ms): ? 2001Ho06

Parent $^{270}Ds:$ E=0.0; J\pi=0+; T_{1/2}=0.10 ms +14-4; Q(g.s.)=11200 50; % α decay=100. See ^{270}Ds Adopted Levels for details.

²⁶⁶Hs Levels

E(level)	$\frac{J\pi}{}$	T_1/2		Comments
0.0?	0+	2.3 ms +13-6	$E(\mbox{level}),J\pi,T_{1/2}\mbox{:}$ from the Adopted Levels.	
			α radiations	-
Eα	E(l	level)		

Ľα		Elleve			
11030	50	0.0	?		

		²⁷⁰ Ds α Decay (6.0 ms): ? 2001Ho06
Paren ²⁷⁰ Ds ²⁷⁰ Ds See ²	t ²⁷⁰ Ds: E=113 -E: if 12.15 M -J: J≈10 2 est ⁷⁰ Ds Adopted 1); J π =?; T _{1/2} =6.0 ms +82-22; Q(g.s.)=11200 50; % α decay>70.0. V α feeds the ²⁶⁶ Hs g.s. nated from retardation of α -decay probability (2001Ho06). π =- (2003Au02. Syst). evels for details.
		²⁶⁶ Hs Levels
E(level)	<u>Jπ</u>	r _{1/2} Comments
0.0? 1000?†60 1200?†60 † From ΔΕ	0 + 2.3	s +13-6 $E(level), J\pi, T_{1/2}$: from the Adopted Levels.
		α radiations
Branc	hing: %IT≈30	eems possible but could not be definitely established.
Eα	E(level)	Comments
10950 [‡] 20	1200?	May correspond to α decay of the 6.0-ms state or the decay of the g.s. following γ -decay of the 6.0-ms state to the g.s. (2001Ho06).
$\begin{array}{rrrr} 11150^{\ddagger} & 20\\ 12150^{\ddagger} & 50 \end{array}$	1000? 0.0?	218γ in coincidence. HF: HF=37 due to a configuration change seems reasonable (2001Ho06).
‡ Existenc	e of this bran	1 is questionable.
		$\gamma(^{266}\mathrm{Hs})$

Comments

Branching: %IT≈30 seems possible but could not be definitely established.

^x218[†] 2187 in coincidence with 11.15 MeV α . 2001Ho06 note that E7 is close to the calculated energy of 299 keV from the 8+ to 6+ rotational level in ²⁶⁶Hs. α : =1.87 if E2 (2005KiZW,2002Ba85).

 $^{\dot{\dagger}}$ Placement of transition in the level scheme is uncertain.

 $^{x}~\gamma$ ray not placed in level scheme.

Eγ

Adopted Levels

 $S(n)=7000 SY; S(p)=570 SY; Q(\alpha)=10996 25 2003Au03.$

S(n): estimated uncertainty=580 keV. S(p): estimated uncertainty=370 keV.

S(p): estimated uncertainty=370 keV.

 $Q(\alpha)$: 2003Au03 adopted 10996 keV 25 based on the data of 1997Ho14. Based the comments associated with the input values used in the adjustment, the 11739 α and 11306 α (events 6 and 8 in table below) and several lower energy α 's reported by 1997Ho14 and the α 's reported by 1984Mo07 and 1989Mu16 (events A and B in table below) were apparently considered as arising from the decay of an isomeric state.

No new experimental data has appeared since the last evaluation (2001Ak11).

1984Og03: ²⁰⁹Bi(⁵⁸Fe,n) E=5.5 MeV/nucleon (3.6×10^{18} ions) at Dubna U400 cyclotron; off-line detection of long-lived daughters by radiochemical separation of Cm, Cf, Es, and Fm. Detected one track of ²⁵⁸Db and seven α 's from ²⁴⁶Cf ($T_{1/2}$ =35 h +39-14).

1997Ho14: measured excitation function of $^{209}\text{Bi}(^{58}\text{Fe,n})$ E=287.6, 289.8, and 292.0 MeV at the GSI UNILAC. A cross section maximum of 7.5 pb 7 was attained ($\sigma(287.6 \text{ MeV})$ =7.4 pb +48-33, $\sigma(289.8 \text{ MeV})$ =6.1 pb +49-29, and $\sigma(292.0)$ =2.5 pb +25-14). Total beam dose was 5.4×10¹⁸ ions in 17.4 days; absolute accuracy of beam energy was ±0.01 MeV/u. Event 1:

$E_{\alpha 1} = 10814$ keV	t ₁ =1.8 ms	_	assigned	t o	^{266}Mt
$E_{\alpha 2} = 10213$ keV	$t_2 = 11.5 \text{ ms}$	_	assigned	t o	$^{262}\mathrm{Bh}$
ε	t_=1.18 s	_	assigned	t o	258 Db
Event 2:	0				
$E_{\alpha 1} = 10661 \text{ keV}$	t ₁ =1.1 ms	_	assigned	t o	^{266}Mt
$E_{m0} = 9834 \text{ keV}$	$t_0 = 14.1 \text{ ms}$	_	assigned	t o	^{262}Bh
$E_{0}^{\alpha 2} = 9387 \text{ keV}$	$t_{0}^{2} = 9.6 s$	_	assigned	to	²⁵⁸ Db
Event 3:	-3				
$E_{1} = 10576$ keV	$t_{1} = 0.4 \text{ ms}$	_	assigned	t o	²⁶⁶ Mt
$E_{0} = 10379$ keV	$t_0 = 16.7 \text{ ms}$	_	assigned	t o	²⁶² Bh
$E_{0} = 9189 \text{ keV}$	$t_{a}=2.2$ s	_	assigned	to	²⁵⁸ Db
Event 4:	-3				
$E_{1} = 10561 \text{ keV}$	t.=1 9 ms	_	assigned	t o	266Mt
$E_{\alpha 1} = 100001 \text{ keV}$	t = 18.4 ms	_	assigned	to	262Bb
$E_{\alpha 2} = 10440 \text{ keV}$	$t_2 = 10.4 \text{ ms}$	_	assigned	to	258Dh
$E_{\alpha 3} = 5500$ KeV	t ₃ -0.00 s		assigneu		00
E = 10800 keV	t = 1 2 mg		aggignod	t 0	266M+
$E_{\alpha 1} = 10809$ KeV E 0762 heV	$t_1 = 1.5 \text{ ms}$	_	assigned	10	262pl
$E_{\alpha 2} = 9763 \text{ keV}$	$t_2 = 255 \text{ ms}$	-	assigned	10	258DL
E Financia Ca	t ₃ =11.2 s	-	assigned	to	200Db
Event 6:					26635
$E_{\alpha 1} = 11739$ keV	t ₁ =7.8 ms	-	assigned	to	260Mt
$E_{\alpha 2} = 6.4 \text{ MeV} (esc)$	t ₂ =6.9 ms	-	assigned	to	202Bh
$E_{\alpha 3} = 9179 \text{ keV}$	t ₃ =1.85 s	-	assigned	t o	² ³ °Db
Event 7:					966
$E_{\alpha 1} = 10456$ keV	t ₁ =4.5 ms	-	assigned	t o	²⁰⁰ Mt
$E_{\alpha 2} = 10372$ keV	$t_2 = 17.3 ms$	-	assigned	t o	²⁶² Bh
$E_{\alpha 3} = 1.0 \text{ MeV} (esc)$	$t_3 = 11.2$ s	-	assigned	t o	²⁵⁸ Db
Event 8:					
$E_{\alpha 1} = 11306$ keV	$t_1 = 2.0 ms$	-	assigned	t o	²⁶⁶ Mt
$E_{\alpha 2} = 10001$ keV	$t_2 = 45 ms$	-	assigned	t o	${}^{262}Bh$
$E_{\alpha 3} = 0.6 \text{ MeV} (esc)$	t ₃ =1.38 s	-	assigned	t o	²⁵⁸ Db
Event 9:					
$E_{\alpha 1} = 10484$ keV	$t_1 = 0.2 ms$	-	assigned	t o	^{266}Mt
$E_{\alpha 2} = 9902 \text{ keV}$	$t_2 = 7.5 ms$	-	assigned	t o	${}^{262}Bh$
ε	t ₃ =7.0 s	_	assigned	t o	258 Db
Event 10:					
$E_{\alpha 1} = 11682$ keV	t ₁ =0.2 ms	-	assigned	t o	$^{266}{ m Mt}$
$E_{\alpha 2} = 9831 \text{ keV}$	$t_2 = 278 \text{ ms}$	_	assigned	t o	$^{262}\mathrm{Bh}$
$E_{\alpha 3} = 1.1 \text{ MeV} (esc)$	$t_3 = 0.11$ s	_	assigned	t o	$^{258}\mathrm{Db}$
Event 11:	0				
$E_{\alpha 1} = 10859$ keV	$t_1 = 0.7 ms$	_	assigned	t o	^{266}Mt
$E_{\alpha 2} = 9803 \text{ keV}$	$t_{2} = 21.1 \text{ ms}$	_	assigned	t o	$^{262}\mathrm{Bh}$
Event 12:	2		-		
$E_{\alpha 1} = 10848$ keV	t_=2.5 ms	_	assigned	t o	^{266}Mt
$E_{n,0}^{u,1} = 10143$ keV	$t_0 = 225 \text{ ms}$	_	assigned	t o	^{262}Bh
$E_{n,2} = 9064 \text{ keV}$	$t_{0}^{2} = 4.19$ s	_	assigned	to	²⁵⁸ Db
Event A (1982Mu15.1984M	u07,1988Mu15	,19	89Mu16):		
$E_{1} = 11.10 \text{ MeV}$	$t_{1}=5.0 \text{ ms}$	_	assigned	to	^{266}Mt
$E_{\alpha} = 1.1 \text{ MeV} (esc)$	$t_0 = 22.3 \text{ ms}$	_	assigned	to	²⁶² Bh
-α2- 1.1 μετ (ευτ) ε	$t_2 = 12.9$ s	_	assigned	to	²⁵⁸ Db

Continued on next page

Adopted Levels (continued)

Event B (1982Mu15,1984Mu07,1988Mu15,1989Mu16):

 $E_{\alpha 1}$ = 5.8 MeV (esc) t_1 = 4.8 ms – assigned to ²⁶⁶Mt t_1 =13.2 ms - assigned to ^{262}Bh t_3 =12.9 s - assigned to ^{258}Db $E_{\alpha 2} = 10.21 \text{ MeV}$

c

Only the decay data for the first three members of the chains are given.

1997Hol4 obtain $\rm T_{1/2}{=}1.7~ms$ +6-4 from the arithmetic mean of 14 decay times.

Theory: see Nuclear Science References.

Assignment: ²⁰⁹Bi(⁵⁸Fe,n) E=288-292 MeV, excit (1997Ho14). ²⁰⁹Bi(⁵⁸Fe,n) E=5.5 MeV/nucleon, chem; parent of ²⁵⁸Rf (observed SF decay of ²⁵⁸Rf, following ²⁵⁸Db ε decay to ²⁵⁸Rf) (1984Og03). IUPAC/IUPAP TWG (1992Ba77) assessment was that 1982Mu15 gave confidence that element 109 had been observed. The work of 19840g03 agrees reasonably well and could be considered a confirmation.

²⁶⁶Mt Levels

E(level)	T _{1/2}	Comments
x	1.7 ms +18-16	$T_{1/2}$: 1.7 ms +6-4 was obtained by 1997Ho14 from the arithmetic mean of the decay time of fourteen α groups with lifetimes between 0.2 ms and 7.8 ms. 1997Ho14 pointed out that, in view of the observed isomeric states in neighboring odd-mass nuclei, the possibility of existence of isomeric states with very similar half-lives could not be excluded. Other possibilities, such as a short-lived isomer decaying in flight, were also not ruled out. Additionally, taking into account the the dispersion of the measured lifetimes resulting in the adopted value, the uncertainty of measured $T_{1/2}$ was increased by 2001Ak11. $T_{1/2}(calc)=123$ µs if $Q(\alpha)=10.996$ keV and 78 µs if $Q(\alpha)=11.08$ MeV (E $\alpha=10.92$ MeV. Unweighted average of 13 E α 's) from Viola-Seaborg systematics. % α \$100.
		%α: only α decay has been observed. The SF events detected were interpreted by 1984Og03 as being from ²⁵⁸ Rf, the ε decay daughter of ²⁵⁸ Sg which is the granddaughter of ²⁶⁶ Mt by α decays. From the systematics of SF half-lives, 1984Og03 deduced that the nucleus decays mostly by α. 2000Ho27 recommended T _{1/2} (SF)>5.3 ms based on the data of 1988Mu15 and 1997Ho14. Calculations by 1997Mo25 for T _{1/2} (α)/T _{1/2} (β) predict %ε+%β ⁺ =0.48.

 β_2 (theory)=0.230 from 1995Mo29; β_2 =0.237 from 2003Mu26; β_2 =0.255 from 2005GaZX.

Adopted Levels: Tentative

 $Q(\beta^{-})=-790 SY; S(n)=4740 SY; S(p)=5220 SY; Q(\alpha)=7800 SY 2003Au03.$

 $Q(\beta^{-})\text{: estimated uncertainty=740 keV.}$

S(n): estimated uncertainty=790 keV.

S(p): estimated uncertainty=870 keV.

 $Q(\alpha):$ estimated uncertainty=300 keV other: 2004Og12 estimate $Q(\alpha){\leq}8.22$ MeV.

2004Og12,2004OgZZ: as α decay product of ²⁸⁷114 (15 events) and ²⁸³112 (7 events). See for ²⁸⁷114 and ²⁸³112 Adopted Levels for details. ²⁸⁷114 was synthesized using ²⁴²Pu+⁴⁸Ca at beam energies of 235, 238 and 244 MeV with 5 measurements made at each energy. ²⁸³112 was observed using ²³⁸U+⁴⁸Ca at 230 and 234 MeV. One special case attributed to ²⁸⁷114 in the ²⁴²Pu reaction at a beam energy of 244 MeV, lasting for 6.5 min, of the type EVR- α 1- α 2- α 3- α 4-SF warrants mention. Generally, α decay is blocked below ²⁷⁹Ds which fissions rather than α decays (% α =10). The evaluators suggest that this longer chain which terminates with ²⁷¹Sg may, if confirmed, be one incidence of this 10% branch. The α energy for ²⁷⁹Ds from this event is 9.7 MeV 6 with a lifetime of 0.2831 s. Another exception to the fissioning of ²⁷⁹Ds appears in the case of a similar EVR- α 1- α 2- α 3- α 4-SF event originating from ²⁸³112 in the ²³⁸U reaction at 234 MeV. Here, the sequence ends with the fission of ²⁶⁷Rf. The α energy for ²⁷⁹Ds from this event is 9.8 MeV 3 with a lifetime of 0.2775 s. Although both exceptions require further investigation, their radioactive properties agree well with each other and the evaluators suggest that if confirmed, they could represent the 10% α decay branch for ²⁷⁹Ds. Estimated Q(α)<8.22 MeV for α -decay branch if it exists.

2005Gr19, 2002Lo15: no EVR- α - α correlations with $\Delta t(EVR-\alpha)<20$ s or $\Delta t(\alpha-\alpha)<20$ s were observed in any of the ⁴⁸Ca + ²³⁸U irradiations. See ²⁸³112 Adopted Levels for details.

Theory: see Nuclear Science References.

Assignment: the assignments for Z=112, Z=114 (and Z=116) and their daughters are based on measured excitation functions and in some cases consistency of observed properties produced by cross-bombardments. In particular, the decay properties of 283 112 are consistent through the various measurements using the DGFRS, independent of whether they were observed as primary nuclei or as α decay daughters of parents one (Z=114) or two (Z=116) 'levels' up. In the case of 287 114, the second α in the decay chain has an energy of 9.54 MeV 6 which agrees well with the four measured α 's (20040g07, 20040g12) in 11 out of 14 cases. The other three α energies are 8.94, 9.36 and 9.32 MeV which the experimenters suggest may be indicative of transitions to different excited states in the daughter nucleus 279 Ds. Note that 2005Gr19 did not observe any SF decays or EVR- α - α correlations in any 48 Ca + 238 U irradiations.

²⁶⁷Rf Levels

Cross Reference (XREF) Flags

A ²⁷¹Sg α Decay: Tentative

E(level)	XREF	Comments
x ?	Α	 Jπ: Ω(n)=13/2- from 1997Mo25 (theory). T_{1/2}=2.3 h +110-11. T_{1/2}: from one SF event (evaluators. ΔT_{1/2} at 68% confidence level). 2.3 h +980-17 (2004Og12) if 95% confidence level used. T_{1/2}(calc)=2.5 h from Viola-Seaborg systematics for Q(α)=7.8 MeV if α-decay branch. %SF=100. %SF: presumed from one SF event (2004Og12). β₀(theory): 0.221 from 1995Mo29; 0.248 from 2005GaZX.
		271 Sg g Decay: Tentative 2004Og12

Parent ²⁷¹Sg: E=x; $J\pi$ =?; $T_{1/2}$ =2.4 min +43-10; Q(g.s.)=8660 80; % α decay=50.0. ²⁷¹Sg- $T_{1/2}$: from 2004Og12. ²⁷¹Sg- $Q(\alpha)$: from 2004Og12. See ²⁷¹Sg Adopted Levels for details.

²⁶⁷Rf Levels

E(level)

x ?

Comments

 $T_{1/2}{=}2.3$ h +110-11. E(level), $T_{1/2}{:}$ from the Adopted Levels.

Adopted Levels: Tentative

 $Q(\beta^{-})=-1910 SY; S(n)=6820 SY; S(p)=3170 SY; Q(\alpha)=7900 SY 2003Au03.$

 $Q(\beta^{-})$: estimated uncertainty=540 keV.

S(n): estimated uncertainty=590 keV.

S(p): estimated uncertainty=710 keV.

 $Q(\alpha)$: estimated uncertainty=300 keV.

2003OgZY and 2004Og03: identification of new nuclides: ²⁸⁷115, ²⁸³113, ²⁷⁹Rg, ²⁷⁵Mt and ²⁶⁷Db. ²⁶⁷Db is the final nuclide observed in the 287 115 decay produced via 243 Am(48 Ca,4n) E=253 MeV. The α decay of its parent, 271 Bh, was not observed. See ²⁸⁷115 Adopted Levels for for experimental details.

Reaction: ²⁴³Am(⁴⁸Ca,4n) E=253 MeV corresponding to an excitation energy of 42.4 to 46.5 MeV at the target center.

 $^{287}115$ was formed at a cross-section of 0.9 pb +32-8.

Energy of the evaporation residue=12.2 MeV

 $\mathrm{E_{SF}}{=}\,2\,0\,6~\mathrm{MeV}$ t=105.96 min assigned to ²⁶⁷Db

Theory: 1997Mo25, 2003Mu15, 2003Ge09, 2004Ba86, 2004GuZW and Nuclear Science References.

Assignment: the evaluators note that the identification of Z=115 and all associated nuclides in the chain should be treated as tentative until confirmed in independent experiments.

²⁶⁷Db Levels

E(level)

x ?

Comments

 $J\pi$: $\Omega(p)=1/2-$ from 1997Mo25 (theory).

T_{1/2}=73 min +350-33.

 $T_{1/2}\text{: from one SF event (2004Og03). }T_{1/2}\text{(calc)=155 min from Viola-Seaborg systematics for }Q(\alpha)=7.9~MeV ~if~a-branch$ assumed. %SF≈100

%SF: from 1/1 event (2004Og03).

 β_2 (theory): 0.230 from 1995Mo29; 0.234 from 2003Mu26; 0.267 from 2005GaZX.

Adopted Levels

 $Q(\beta^{-})=-3860 SY; S(n)=7410 SY; S(p)=2090 SY; Q(\alpha)=8964 30 2003Au03,2000Wi15.$

 $Q(\beta^-):$ estimated uncertainty=280 keV.

S(n): estimated uncertainty=330 keV. S(p): estimated uncertainty=390 keV.

 $Q(\alpha)$: from quoted average energy (5 events) $E\alpha$ =8.830 MeV 3 (2000Wi15). Others: 8957 keV from $E\alpha$ =8823 keV (2000Ei05, uncertainties not stated; as estimated by evaluators, unweighted average of 6 events); 8959 keV from $E\alpha$ =8825 keV (evaluators; unweighted average of 11 events) and 9370 keV 200 from systematics (2003Au03).

1984Zv02, 1995Sc53: chemical investigations based on the premise that Bh is a member of Group VII of the periodic table. These comprised the first two attempts made to chemically study Bh using an oxide hydroxide form. Reactions: ²⁴⁹Bk(²²Ne,4n) (1984Zv02) and ²⁵⁴Es(¹⁶O,3n) (1995Sc03). The attempts were unsuccessful due to insufficient sensitivity of the set-up (also 2005ScZZ). They are mentioned here for completeness.

2000Wi15: chemical investigation by American-Swiss collaboration aimed at the study of ^{266,267}Bh; see data set for ²⁶⁶Bh for details. Reaction: 249 Bk(22 Ne,5n) at LBNL. The 88-inch cyclotron provided the 22 Ne(⁶⁺⁾ beam at two energies; 148 and 153 MeV corresponding to 116-118 MeV and 122-124 MeV respectively in the target. The target was made using 0.81 mg/cm² 249Bk as oxide prepared by the molecular plating technique (1974Au05,1975Mu16). Chemical separation prior to this ensured that less than 0.5% of 249 Cf was present. Reaction products collected in a recoil chamber located directly behind the target. This chamber was continuously swept with He gas containing KCl aerosols to collect the products. The products were then guided through a TEFLON capillary (1.4 mm, 7 min in length) to the merry-go-round (MG) rotating wheel system (1990Ho03, 1996La11) with a transport time ≈0.6 s and a transport efficiency of $38 \pm 4\%$. See the original sources for details of the MG and the method of data collection and analysis. A total of five α -decay sequences were observed attributed to ^{267}Bh : three atoms at an incident energy of 116-118 MeV and two more events at the higher beam energy of 122-124 MeV. The corresponding cross-sections were 58 pb +33-15, and 96 pb +55-25, respectively, assuming α 's as the primary decay mode. It was not possible to determine if more than one $^{267}Bh \alpha$ -group was present. In all cases, properties of the daughter nuclei were consistent with 263 Db (T_{1/2}=27 s, E\alpha=8.35 MeV) and 259 Lr (T_{1/2}=6.34 s, E\alpha=8.45 MeV). Fission decay properties of ^{266,267}Bh could not be determined due to fission contamination attributed to ²⁵⁶Fm. Event #1 (Beam energy 116-118 MeV):

267.01

nt #1 (Beam energy 116-118 MeV

	$E_{\alpha 1} = 8.83$ MeV $t_1 = 5.26$ s	-	assigned	tο	20'Bh		
	$E_{\alpha 2} = 8.47 \text{ MeV} t_2 = 59.04 \text{ s}$	_	assigned	t o	$^{263}\mathrm{Db}$	o r	$^{259}\mathrm{Lr}$
Event	#2 (Beam energy 116-118 MeV):						
	$E_{\alpha 1} = 8.87 MeV t_1 = 24.67 s$	-	assigned	t o	^{267}Bh		
	$E_{\alpha 2} = 8.39 \text{ MeV} t_2 = 35.02 \text{ s}$	-	assigned	t o	²⁶³ Db		
Event	#3 (Beam energy 116-118 MeV):						
	$E_{\alpha 1} = 8.87 \text{ MeV} t_1 = 45.15 \text{ s}$	-	assigned	t o	$^{267}\mathrm{Bh}$		
	$E_{\alpha 2} = 8.39 \text{ MeV} t_2 = 24.49 \text{ s}$	-	assigned	t o	$^{263}\mathrm{Db}$		
Event	#4 (Beam energy 122-124 $\mathrm{MeV}):$						
	$E_{\alpha 1} = 8.73 \text{ MeV} t_1 = 2.71 \text{ s}$	-	assigned	t o	$^{267}\mathrm{Bh}$		
	$E_{\alpha 2} = 8.46 \text{ MeV} t_2 = 51.90 \text{ s}$	-	assigned	t o	$^{263}\mathrm{Db}$	o r	$^{259}\mathrm{Lr}$
Event	#5 (Beam energy 122-124 MeV):						
	$E_{\alpha 1} = 8.84 \text{ MeV} t_1 = 21.83 \text{ s}$	-	assigned	t o	^{267}Bh		
	$E_{\alpha 2} = 8.36 \text{ MeV} t_2 = 26.49 \text{ s}$	-	assigned	t o	$^{263}\mathrm{Db}$		
The ex	xperimenters estimate that one in	fiv	e α-α corre	latic	ons repo	orteo	d for th

The experimenters estimate that one in five $\alpha-\alpha$ correlations reported for the present nucleus is random. Based on this it was further estimated that 0.0016 triple- α correlations are random.

2000Ei05: an international collaboration performed this chemical investigation at the Paul Scherrer Institute in Switzerland using online gas chromatography on the relevant oxychlorides. Reaction: 249 Bk(22 Ne,4n) at a beam energy at target center of 119 MeV I. The target was prepared at LBNL and the 22 Ne beam was provided by the Phillips Cyclotron at the Paul Scherrer Institute. The target was irradiated over 4 weeks by 1.6×10^{12} ions per second. 176 Re was simultaneously produced in the reaction 259Tb(22 Ne,5n) which served as a yield monitor for the chemical separation process. All reaction products were transported via C-aerosol clusters to the OLGA III (online gas chromatographic apparatus) (1991Ga28) coupled to ROMA (rotating wheel multidetector analyzer). Six genetically linked α -decay chains were observed four at an isothermal temperature of 180° C (beam dose 1.0×10^{18} 22 Ne ions), two at 150° C (beam dose 1.0×10^{18} 22 Ne ions) and none at 75° C (beam dose 1.0×10^{18} 22 Ne ions). The events included three of the α -SF type and one with $\alpha 1-\alpha 2$ -SF. Due to the passage of a fraction of 212 Pb/ 212 Bi through the chromatography column decays from 212 Po (E $\alpha = 8.785$ MeV) partially obscured the detection of 267 Bh. It was estimated that 1.3 of the 4 chains observed at the isothermal temperatures, and taking into account the random correlation factor, the experimenters adopted the yield observed at 180° C as the 100% 'relative' yield.

,

Adopted Levels (continued)

Event	#1 (Isothermal tem	perature 150°	C):			
	$E_{\alpha 1} = 8.81 \text{ MeV}$	t ₁ =24.5 s	-	assigned	t o	$^{267}\mathrm{Bh}$
	$E_{SF} = 82 \text{ MeV}$	t(SF) = 21.1	s –	assigned	t o	$^{263}\mathrm{Db}$
Event	#2 (Isothermal tem	perature 150°	C):			
	$E_{\alpha 1} = 8.85 \text{ MeV}$	$t_1 = 34.4$ s	-	assigned	t o	$^{267}\mathrm{Bh}$
	$E_{SF} = 46 \text{ MeV}$	t(SF) = 98.9	s –	assigned	t o	$^{263}\mathrm{Db}$
Event	#3 (Isothermal tem	perature 180°	C):			
	$E_{\alpha 1} = 8.72 \text{ MeV}$	$t_1 = 2.9$ s	-	assigned	t o	$^{267}{ m Bh}$
	$E_{\alpha 2} = 8.40 \text{ MeV}$	$t_2 = 29.9$ s	-	assigned	t o	²⁶³ Db
Event	#4 (Isothermal tem	perature 180°	C):			
	$E_{\alpha 1} = 8.84 \text{ MeV}$	$t_1 = 26.7$ s	-	assigned	t o	$^{267}\mathrm{Bh}$
	$E_{\alpha 2} = 8.35 \text{ MeV}$	$t_2 = 73.4$ s	-	assigned	t o	$^{263}\mathrm{Db}$
Event	#5 (Isothermal tem	perature 180°	C):			
	$E_{\alpha 1} = 8.91 \text{ MeV}$	$t_1 = 10.5$ s	-	assigned	t o	^{267}Bh
	$E_{\alpha 2} = 8.37 \text{ MeV}$	$t_2 = 0.8 s$	-	assigned	t o	²⁶³ Db
	$E_{\alpha 3} = 8.41 \text{ MeV}$	$t_3 = 14.6$ s	-	assigned	t o	^{259}Lr
Event	#6 (Isothermal tem	perature 180°	C):			
	$E_{\alpha 1} = 8.81 \text{ MeV}$	$t_1 = 18.4$ s	-	assigned	t o	$^{267}\mathrm{Bh}$
	$E_{se} = 101 + 86 \text{ MeV}$	t(SF) = 16.3	s –	assigned	t o	²⁶³ Db

The purpose of this experiment was the chemical study and characterisation of Bh in the form of its oxychloride. It was possible to conclude that Bh, presumably from BhO_3Cl behaves like a typical member of Group VII of the periodic table. It shows a lower volatility than its Re or Tc homologues as expected. The standard adsorption enthalpy of BhO_3Cl was evaluated to be $-75 \text{ kJ mol}^{-1} + 9-6$ (68% c.i.) with $T_{1/2}=17$ s for this nucleus. Other: 2002Tu05.

Theory: see papers above, 2003GaZR, and Nuclear Science References.

Assignment: ²⁴⁹Bk(²²Ne,4n), E=117 MeV I and 123 MeV I, chem (2000Wi15); ²⁴⁹Bk(²²Ne,4n), E=119 MeV I, chem (2000Ei05). The two sets of data agree well, and when taken together are consistent.

²⁶⁷Bh Levels

E(level)	T _{1/2}	Comments
ſ	17 s +14-6	 Jπ: Ω(p)=5/2- from 1997Mo25 (theory). T_{1/2}: from 2000Wi15 using maximum-likelihood technique (1991Gr05). T_{1/2}=14 s +10-4 for six events (from 2000Ei05 by evaluators; uncertainties not reported by experimenters) in agreement taking into account uncertainties. Combining all 11 events, T_{1/2}=14 s +6-4 (evaluators) in agreement taking into account uncertainties. T_{1/2}(calc)=10.7 s from Viola-Seaborg systematics if Q(α)=8964 keV and 0.62 s if Q(α)=9.37 MeV. %α=100. %α: from 11/11 events. Fission decay properties of ²⁶⁷Bh could not be determined by 2000Wi15 due to fission contamination attributed to ²⁵⁶Fm. β₂(theory): 0.230 from 1995Mo29; 0.240 from 2003Mu26; 0.270 from 2005GaZX.

 $^{267}_{108}$ Hs $_{159}$ -1

 $Q(\beta^-)=-5140 \ SY; \ S(n)=6500 \ SY; \ S(p)=2770 \ SY; \ Q(\alpha)=9978 \ 20 \ 2003 Au03, 1998 Ho13.$

 $Q(\beta^-) \text{: estimated uncertainty=550 keV.}$

- S(n): estimated uncertainty=300 keV. S(n): estimated uncertainty=230 keV.
- S(p). estimated uncertainty=250 kev.
- $Q(\alpha)$: from E α =9829 keV 20 (1998Ho13). Other: 10120 keV 70 (2003Au03. Syst.); 10000 keV from average E α =9850 keV (2004Mo40).
- 2000Fi12 cite 1996He07 which does not contain any information on ²⁶⁷Hs. The evaluators believe this was a preliminary result of the work finally reported in 1998Ho13 and cited as a private communication, reference 20 in 1995La20.
- 1995La20: ²⁶⁷Hs produced by ²³⁸U(³⁴S,5n) E=186 MeV at Dubna. The Z=108 compound nuclei were produced at an excitation energy of about 50 MeV to allow for the evaporation of 4 or 5 neutrons required to create ²⁶⁷Hs. The evaporation residues (EVR's) were separated by the Dubna Gas Filled Recoil Separator (DGFRS; see 1996LaZY for details) filled with hydrogen to a pressure of 1.0 torr. These separated EVR's passed through a time-of-flight (tof) system composed of two multiwire proportional chambers in a 1.5 torr pentane filled module, and were finally implanted in a 120×40 mm² position sensitive detector (psd) array. The cross-section for the reaction was 2.5 pb with an estimated uncertainty of =3. Three time and position correlated chains of α particle events were observed and ascribed to the decay of ²⁶⁷Hs. The energies were E1=9740 keV 60, E2=9860 keV 60, and 9870 keV 60. The calculated maximum likelihood half-life was T_{1/2}=19 ms +29-10. Two other correlated out-of-beam events linking the decays of ²⁶³Sg, ²⁵⁹Rf, and ²⁵⁵No were observed. Nine EVR-SF event pairs were also observed with no apparent connection to the preceding hs decays. The most probable origin of these decays could be the 0.9 ms SF isomer of ²⁴⁰Am with smaller contributions possibly from the 14-ms ²⁴²Am and 1.0-ms ²⁴⁴Am produced in transfer reactions with cross-sections of the order of 10-100 nb (see 19890gZU).
- 1998Ho13: daughter of 271 Ds produced by 208 Pb(64 Ni,n). See 271 Ds adopted levels for experimental details. A total number of 38 α -decays were measured and assigned to nine decay chains of Ds. Decay of 271 Ds by consistency of lower chain member energies and lifetimes with known 255 No, 259 Rf, and 263 Sg data. The measured α energies and emission times are grouped as follows: five events with an average energy of E1=10738 keV 20, two events with an average energy of E2=10682 keV 20, one escape and one event with energy E3=10709 keV 20 with a long life-time of 81 ms corresponding to a half-life of 56 ms +270-26. The emission times for the first two groups were 0.2-4.4 ms and 81 ms for the last event which 1998Ho13 take as being a sign of an isomeric state in 271 Ds. The second member of each chain corresponds to decay of 267 Hs. 1998Ho13 also suggest the existence of two 267 Hs daughter states.
- 2003Gi05: daughter of 271 Ds produced by 208 Pb(64 Ni,n). Confirmation of 271 Ds was reported by experiments done at LBNL. See 271 Ds Adopted Levels for experimental details. Two position and time correlated event chains were assigned to 271 Ds. No such event sequences were seen at the other two beam energies. The two corresponding 267 Hs α decay energies originating from 1.6-ms 271 Ds were 9.89 MeV (following α decay) and 9.88 MeV (following an escape event) Both these states decay to 0.12-s 263 Sg with life-times of 15 ms and 32 ms, respectively.
- 2004Fo08: daughter of 271 Ds produced by 208 Pb(64 Ni,n). See 271 Ds Adopted Levels for experimental details. Data are in good agreement with 1998Ho13, 2003Gi05, and 2004Mo40. Seven chains observed; average energy of α 's assigned to 267 Hs in three chains 9877 keV consistent with the known 9882-keV transition. The full energy 9830 α event in another chain can be assigned to the known 9829-keV transition.

2004Mo40,2004Mo27: daughter of ²⁷¹Ds produced by ²⁰⁸Pb(⁶⁴Ni,n). See ²⁷¹Ds adopted levels for experimental details. A total of 14 decay chains attributed to the decay of ²⁷¹Ds over three experiments. 13 decays detected as second generation decays were attributed to ²⁶⁷Hs and the results are in agreement with 1998Ho13. Evidence has been offered for an isomeric state in the daughter ²⁶⁷Hs. See also 2004Mo43.

Theory: see Nuclear Science References.

Assignment: ²³⁸U(³⁴S,5n), E=186 MeV; grandparent of ²⁵⁹Rf (E α =8.80 MeV 2, T_{1/2}=2.6 s) and ²⁵⁵No (E α =8.10 MeV 2, T_{1/2}=110 s) from 1995La20. Confirmed by 1998Ho13 as daughter of ²⁷¹Ds produced ²⁰⁸Pb(⁶⁴Ni,n), E=311.7 MeV, 313.0 MeV, and 315.5 MeV.

Adopted Levels (continued)

²⁶⁷Hs Levels

 $T_{1/2}(calc)=24.1 ms from Viola-Seaborg systematics support 52-ms state as being the g.s. 2004Fo08, based on the observation of two short ²⁶⁷Hs lifetimes (0.482 ms and 2.45 ms), suggest the possibility of a short-lived ²⁶⁷Hs state with <math>T_{1/2}=0.94$ ms +12-450. This state was not reported in the earlier work of 1998Ho13 and 2004Mo40.

Cross Reference (XREF) Flags

A ²⁷¹Ds α Decay (1.63 ms) B ²⁷¹Ds α Decay (69 ms)

E(level)	XREF	T	Comments
0.0	AB	52 ms +13-8	Jπ: 1998Ho13 propose 9/2+ as the analog Nilsson state of the ²⁷¹ Ds 9/2+[615]. 2003Au02 suggest 3/2+ based on systematics.
			T _{1/2} : mean value obtained by 2004Mo40 from τ=77 ms +31-7 (2004Mo40) and τ=72 ms +28-16 (1998Ho13). Others: maximum likelihood T _{1/2} =19 ms +29-10 (1995La20) and 55 ms +32-18 (2004Fo08; calculated using MLDS code). 2000Fi12 adopted 26 ms +20-10, an average (unweighted?) of 19 ms +29-10 (1995La20) and 33 ms +19-9 (from reference 20 in 1995La20). T _{1/2} (calc)=24.1 ms from Viola-Seaborg systematics for Q(α)=9.98 MeV. Predicted T _{1/2} (β ⁺)=38.1 s (1997Mo25; finite-range droplet model, folded-Yukawa single particle potential); T _{1/2} (α)=17.4 s and T _{1/2} (SF)=17.4 s (1995Ho27; syst.). %α≥80; %SF<20 (1995La20). %SF: estimated from lack of observed SF (1995La20). %ε+%β ⁺ =18.6, %α=40.7, and %SF=40.7 from
			predicted partial $T_{1/2}$'s not consistent. β_2 (theory):0.230 from 1995Mo29; 0.240 from 2003Mu26; 0.262 from 2005GaZX.
57? 7	А		Reported by 1998Ho13 but not by 2004Mo40. E(level): from 1.63-ms ²⁷¹ Ds α decay. Jz: 1998Ho13 propose Jz=11/2+ for 69-ms ²⁷¹ Ds as a member of the 9/2[615] band corresponding
			to the 10.681 MeV transition to the first rotational state also with $11/2$ + in 267 Hs.
x ?	В		Reported by 2004Mo40 but not by 1998Ho13. Based on the long decay time (5999 ms) of the $9.31-\text{MeV} 2^{63}\text{Sg} \alpha$ associated with the the decay of this state, 2004Mo40 suggests that an isomeric state of 2^{63}Sg may be fed. This event had $Q(\alpha)=9.88$ MeV, $E\alpha=9.73$ MeV (chain #3). $T_{1/2}=0.80$ s $+380-37$. T_{100} from 2004Mo40 corresponding to an α -decay energy of 10.44 MeV 6 from the decay of the
			69-ms ²⁷¹ Ds level.
			$\% \alpha > 0$ (2004Mo40).

²⁷¹Ds α Decay (1.63 ms) 1998Ho13,2004Mo40

Parent ²⁷¹Ds: E=0; $J\pi=?$; $T_{1/2}=1.63$ ms +44-29; Q(g.s.)=10899 20; % α decay \approx 100.

 271 Ds-Q(α): 2003Au03 adopted 10870 keV 20 assuming the 69-ms state of 271 Ds was the ground state.

- 1998Ho13: see ²⁷¹Ds Adopted Levels for experimental details. The measured α energies and emission times were as follows: five events with an average energy of E1=10738 keV 20, two events with an average energy of E2=10682 keV 20 and one event with energy E3=10709 keV 20. The emission times for the first two groups were 0.2-4.4 ms and 81 ms for the last event which 1998Ho13 take as being a sign of an isomeric state in ²⁷¹Ds. The second member of each chain corresponds to decay of ²⁶⁷Hs. 1998Ho13 also suggest the existence of two ²⁶⁷Hs daughter states.
- 2004Mo40,2004Mo27: see ²⁷¹Ds Adopted Levels for details. A total of 14 decay chains attributed to the decay of ²⁷¹Ds over three experiments. The energy centers of peaks in the α spectra were deduced to be at 10.45 and 10.73 MeV; the latter is in good agreement with 10.74 MeV from 1998Ho13. Measured lifetimes of the α 's from ²⁷¹Ds could be divided into two groups; one with decay times less than 10 ms (11 events) and another with decay times greater than 10 ms (3 events). The mean lifetimes for both groups agree with the results of 1998Ho13 as do the number ratios of the two groups: 11/3 (2004Mo40) and 11/2 (1998Ho13). Other: 2004Fo08.

²⁶⁷Hs Levels

Decay scheme from 1998Ho13 who propose $J\pi=11/2+$ for 69-ms 271 Ds as a member of the 9/2[615] band corresponding to the 10.681 MeV transition to the first rotational state also with 11/2+ in 267 Hs.

E(level)	T _{1/2}	Comments
0.0	52 ms +13-8	$E(level), T_{1/2}$: from the Adopted Levels.

Continued on next page (footnotes at end of table)

²⁷¹Ds α Decay (1.63 ms) 1998Ho13,2004Mo40 (continued)

²⁶⁷Hs Levels (continued)

E(level)

Comments

57? 7 Not reported by 2004Mo40. $E(level): \text{ from } \Delta E(\alpha).$

α radiations

1998Ho13 derive $HF(10738\alpha) \approx 3$ and $HF(10682\alpha) \approx 6$ using theoretical $T_{1/2}$'s calculated by the WKB method with the potentials of 1959Ig05.

Eα [†]	E(level)	Iα ^{‡§}		
10682# 20	57?	≈ 2.9		
10738 20	0 0	≈71		

 † From 1998Ho13 (relative uncertainties of 3 keV for 10738 and 6 keV for 10682 α). E α to g.s. in good agreement with 10.73 MeV from 2004Mo40.

 ${\dot {\Xi}}$ Based on five events for 10.74–MeV and two events for 10.68–MeV $\alpha 's.$

§ For α intensity per 100 decays, multiply by $\approx\!1.00.$

[#] Existence of this branch is questionable.

²⁷¹Ds α Decay (69 ms) 1998Ho13,2004Mo40

 $Parent \ ^{271}Ds; \ E=x; \ J\pi=?; \ T_{1/2}=69 \ ms \ +56-21; \ Q(g.s.)=10899 \ 20; \ \%\alpha \ decay \leq 100.$

 $^{271}\text{Ds-Q}(\alpha)$: 2003Au03 adopted 10870 keV 20 assuming the 69-ms state of ^{271}Ds was the ground state.

1998Ho13: see ²⁷¹Ds Adopted Levels for experimental details. The measured α energies and emission times were as follows: five events with an average energy of E1=10738 keV 20, two events with an average energy of E2=10682 keV 20 and one event with energy E3=10709 keV 20. The emission times for the first two groups were 0.2-4.4 ms and 81 ms for the last event which 1998Ho13 take as being a sign of an isomeric state in ²⁷¹Ds. The second member of each chain corresponds to decay of ²⁶⁷Hs. 1998Ho13 also suggest the existence of two ²⁶⁷Hs

daughter states. 2004Mo40,2004Mo27: see ²⁷¹Ds Adopted Levels for details. A total of 14 decay chains attributed to the decay of ²⁷¹Ds over three experiments. The energy centers of peaks in the α spectra were deduced to be at 10.45 and 10.73 MeV; the latter is in good agreement with 10.73 MeV from 1998Ho13. Measured lifetimes of the α 's from ²⁷¹Ds could be divided into two groups; one with decay times less than 10 ms (11 events) and another with decay times greater than 10 ms (3 events). The mean lifetimes for both groups agree with the results of 1998Ho13 as do the number ratios of the two groups: 11/3 (2004Mo40) and 11/2 (1998Ho13).

²⁶⁷Hs Levels

Decay scheme from 2004Mo40. 10.71-MeV α from 69-ms 271 Ds observed by 1998Ho13 but not assigned as feeding 0.8-s 267 Hs state.

E(level) [†]	$T_{1/2}^{\dagger}$	Comments
(0, 0)	59 mg + 12 9	
(0.0) v2	52 ms +15-8	Not reported by 1008He12
х:		
		$T_{1/2} = 0.80 \text{ s} + 380 - 37.$
[†] From th	ne Adopted Levels	·
		α radiations
Bran	ching: to explain	the decay properties of 271 Ds, 2004Mo40 suggest the 69-ms level decays by an isomeric
tra	ansition to the g.s	s. of $^{271}\mathrm{Ds}$ and also $lpha$ decays to the possible isomeric state in $^{267}\mathrm{Hs}.$
Eα	E(level)	Comments
10440 ± 60	x ?	Eα: from 2004Mo40.

Continued on next page (footnotes at end of table)

 \ddagger Existence of this branch is questionable.

Adopted Levels: Tentative

 $S(p)=730 SY; Q(\alpha)=12280 SY 2003Au03.$

S(p): estimated uncertainty=500 keV.

 $Q(\alpha) \text{: estimated uncertainty=110 keV.}$

1995Gh05,1995Gh04: Berkeley/SASSY2 cold fusion experiment. $^{209}Bi(^{59}Co,n) E=5.1 MeV/A$. Total of 1.5×10^{18} projectile particles. Observed one position and time correlated chain of α particles. Determined α energies and time intervals between successive particles. The event corresponded to a production cross-section of ≈ 1 pb. Data consistent with decay of ^{267}Ds assuming that the granddaughter ^{259}Sg decays by ε to produce known ^{259}Db and ^{255}Lr . The measured α energy and emission time for the event were E1=11.60 MeV 10 (Q(α)=11.78 MeV 10), t1=4 μ s. Decay of ^{263}Hs missed due to a malfunctioning transient recorder. 1995Gh05 suggest that the next member of the chain, ^{259}Sg , undergoes undetected ε decay to ^{259}Db . This nuclear assignment relies on the observation of ^{259}Ds and ^{255}Lr . ^{263}Hs , the expected daughter is unknown and was not observed; the grand-daughter ^{259}Sg is known but was not observed by 1995Gh05. The 2.2 MeV α was interpreted by 1995Gh05 as a partial escape peak attributed to ^{259}Db (assumed to be the ε daughter of ^{259}Sg). Finally, 1999Ar21 point out that the possibility of the observed 11.6 MeV α belonging to ^{212}Po cannot be ruled out.

Assignment: IUPAC/IUPAP JWP assessment (2001Ka70): there were experimental difficulties and other problems associated with this experiment. Therefore, the evaluators consider the assignment to ²⁶⁷Ds as tentative.

²⁶⁷Ds Levels

E(level)

x?

Comments

Jpt: 2003Au02 suggest 9/2+ from systematics. $\Omega(n){=}11/2{-}$ from 1997Mo25 (theory). T $_{1/2}{=}2.8~\mu s$ +133-12.

 $T_{1/2}: \text{ from t1=4 } \mu \text{s} (1995\text{Gh05}); \text{ uncertainty estimated by the evaluators. } T_{1/2}(\alpha)=300 \ \mu \text{s} \text{ predicted by 1997Mo25} (finite-range droplet model, folded-Yukawa single particle potential). Other: 2.8 \ \mu \text{s} +130-13 (2003\text{AuO2}) \text{ and} 3 \ \mu \text{s} +6-2 (2000\text{Fil2}). \\ T_{1/2}(\text{calc})=0.34 \ \mu \text{s} \text{ from Viola-Seaborg systematics for } Q(\alpha)=12.28 \ \text{MeV} \text{ and } 3.9 \ \mu \text{s} \text{ for } Q(\alpha)=11.78 \ \text{MeV}.$

%a≈100.

% α : from one event. Predicted β (1997Mo25; finite-range droplet model, folded-Yukawa single particle potential) and SF (1995Ho27, systematics, and 1997Sm03, macroscopic-microscopic model) half-lives much longer than those predicted and observed for α emission. No spontaneous fission events observed in 1995Gh05.

 $\beta_2(theory): \ 0.220 \ from \ 1995Mo29; \ 0.234 \ from \ 2003Mu15; \ 0.254 \ from \ 2005GaZX.$

Adopted Levels: Tentative

 $Q(\beta^{-})=-150 SY; S(n)=5210 SY; S(p)=3640 SY; Q(\alpha)=8200 SY 2003Au03.$

 $Q(\beta^{-})\text{:}$ estimated uncertainty=760 keV.

S(n): estimated uncertainty=710 keV.

S(p): estimated uncertainty=780 keV.

 $Q(\alpha)$: estimated uncertainty=300 keV.

2003OgZY and 2004Og03: identification of new nuclides: ²⁸⁸115, ²⁸⁴113, ²⁸⁰Rg, ²⁷⁶Mt, ²⁷²Bh, and ²⁶⁸Db. ²⁶⁸Db observed as α-decay daughter of parent ²⁷²Bh and α-decay grand-daughter of ²⁷⁶Mt. Reaction: ²⁴³Am(⁴⁸Ca,3n) E=248 MeV corresponding to an excitation energy of 38.0 to 42.5 MeV at the target center. Experiments performed by the Dubna-LLNL collaboration. ²⁸⁸115 was formed at a cross-section of 2.7 pb +48-16.

Experiments were done at the U400 cyclotron with the Dubna gas-filled recoil seperator (DGFRS) at FLNR-JINR. The evr's recoiling from the target were separated by DGFRS in flight from the ⁴⁸Ca beam ions, scattered particles and transfer-reaction products with a transmission efficiency of 35% for 115 nuclei.

Detection system: multiwire proportional counter for tof measurement; semi-conductor focal-plane detector array with 12 vertical position- sensitive strips, which measured the decay of the implanted recoils. This detection system surrounded by eight side detectors with no position sensitivity. The α spectrum was measured in the range 9.6 to 11.0 MeV. The resolution of the detector system was FWHM=60-100 keV for α particles absorbed in the focal-plane detector; 140-200 keV for α 's escaping the focal-plane detector and registered by the side detectors.

Three similar decay chains with five consecutive α decays were detected in a time interval of 20 s (in the beam-off mode following the first recoil expected to belong to Z=115) terminated by an SF event with a release of total kinetic energy of \approx 220 MeV. These events were assigned to the (⁴⁸Ca,3n) channel with the production of the parent nuclide ²⁸⁸115; the sixth and final event in the chain was assigned to ²⁶⁸Db which decays by SF/electron capture (ϵ). Properties of ²⁶⁸Db from the three chains are listed below by event. The identification of Z=115 and 113 and all associated nuclides in the chain should be treated as tentative until confirmed by independent experiments. Event #1: Energy of the evaporation residue=10.4 MeV

Event #3: Energy of the evaporation residue=9.1 MeV

 E_{SF} =140 MEV t=16.8 h - assigned to ²⁶⁸Db Total TKE for fission fragments =220 MeV.

Total TKE for fission fragments ≈ 220 MeV.

2004DmZZ: chemical identification of Db as α decay product of Z=115 carried out in Dubna in collaboration with scientists from Switzerland and USA. Radiochemical separation by isolation of Group V elements for Z=105 at FLNR/JINR using the U400 cyclotron in June 2004. A 32 cm² rotating target was made from 99.9% enriched ²⁴³Am in oxide form deposited on a 1.5 μ m Ti foil to a thickness of 1.2 mg/cm² of ²⁴³Am. The ⁴⁸Ca beam impinged on the target center at an energy of 247 MeV with an average intensity of 5×10¹² ions/sec. Recoils from the reaction products were passed through a collimator and stopped in a copper catcher 50 mm in diameter with an estimated collection efficiency of close to 100%. A total of 8 identical runs were made over 20 to 45 hours. Following each irradiation and after cleaning, micro-cuts of the upper layer were radiochemically analyzed for Group V elements after dissolving these micro-layers in a solution of HNO₃. α -particles and SF fragments were detected (efficiency for fission fragments =90%) by placing the sample in a detector arrangement consisting of four identical chambers each with a total beam dose of 3.4×10^{18} ⁴⁸Ca ions, 15 SF events were detected over 910 hours. The total TKE for fission and T_{1/2}(SF) are:

TKE = 235 MeV $T_{1/2}(SF) = 32 \text{ h} + 11 - 7$

The average neutron multiplicity (v) per fission was ≈ 4.2 . The ninth experiment was carried out under similar conditions but with no chemical separation of products, to determine SF background. An analysis of all data lead to the unambiguous conclusion that all 15 events were due to 268 Db. Deduced cross-section: ≈ 4 pb in reasonable agreement with DGFRS value for 3n channel ≈ 3 pb. Separation efficiency for chemical study was $\approx 80\%$ as compared to $\approx 35\%$ using kinematic techniques (DGFRS, 2004Og03).

The evaluators suggest that this experiment offers independent support for the synthesis of Z=115 and its decay products as suggested by this collaboration in 2004Og03. The experimenters note that yield of super-heavy isotopes provided by this method is a factor of 5 higher than that realized by kinematic techniques.

Other data: ²⁴⁸Cm average TKE=181 MeV, v=3.14; ²⁵²Cf average TKE=185 MeV, v=3.75 (2004DmZZ). Theory: 1997Mo25, 2003Mu15, 2003Ge09, 2004Ba86, 2004GuZW and Nuclear Science References.

Assignment: final descendent of ²⁸⁸115 produced by ²⁴³Am(⁴⁸Ca,3n) E=248 MeV (2003OgZY,2004Og03) and E=243 MeV, chem (2004DmZZ). The evaluators suggest that 2004DmZZ offers independent support to the synthesis of ²⁸⁸115 (2004Og03) having precisely determined the atomic number for Z=105 by isolation of Group V elements. The properties are in agreement with ²⁶⁸Db measured in the three chains seen earlier by 2004Og03, thereby providing evidence in favor of the synthesis of ²⁸⁸115 and daughters. However, since the identification relies on the measurement of SF fragments, the possibility that the observed nucleus is actually ²⁶⁸Rf following (undetected) ε from the parent ²⁶⁸Db, cannot be excluded.

Adopted Levels: Tentative (continued)

²⁶⁸Db Levels

Cross Reference (XREF) Flags

A $^{272}Bh\ \alpha$ Decay: Tentative

E(level)	XREF	T _{1/2}	Comments
x?	A	32 h +11-7	 Jπ: Ω(p)=1/2-; Ω(n)=13/2+ from 1997Mo25 (theory). T_{1/2}: value adopted from 2004DmZZ based on 15/15 SF events observed. Other: 16 h 19-6 from 20040g03 based on 3/3 events observed; 29 h +9-6 based on 18/18 events (evaluators). T_{1/2}(calc)=12.5 h from Viola-Seaborg systematic for Q(α)=8.2 MeV. %SF=100. %SF: assumed although α-decay not excluded (20040g03). β₂(theory): 0.221 from 1995Mo29; 0.226 from 2003Mu26; 0.249 from 2005GaZX.

²⁷²Bh a Decay: Tentative 2004Og03,2003OgZY

Parent $^{272}Bh;$ E=x; J\pi=?; T $_{1/2}$ =10 s +12-4; Q(g.s.)=9150 60; % α decay=100. See ^{272}Bh Adopted Levels for details.

²⁶⁸Db Levels

9020 60 x?

 $^{268}_{109}\mathrm{Mt}_{159}\mathrm{-1}$

Adopted Levels

 $Q(\beta^-) = -4720 \ SY; \ S(n) = 6750 \ SY; \ S(p) = 830 \ SY; \ Q(\alpha) = 10486 \ 35 \ 2003 Au 03, 2004 Mo 26.$

 $Q(\beta^-)\colon$ estimated uncertainty=590 keV.

S(n): estimated uncertainty=630 keV. S(p): estimated uncertainty=330 keV.

Q(α): from Eα=10329 keV 35 (2004Mo26. Arithmetic mean of 12 events). Other: 11.44 MeV 10 (2003Au03. Syst.).

As α decay daughter of $^{272}\text{Rg}.$ See ^{272}Rg Adopted Levels for experimental details.

1995Ho04: GSI/SHIP cold fusion experiment. See 272 Rg Adopted Levels for details. Three position and time correlated chains of α particle events. Determined α energies and time intervals between successive particles. Assigned to decay of 272 111 by consistency of lower chain member energies and lifetimes with known Db and Lr data. Second member of each chain corresponds to α decay of 268 Mt. The measured α energies and emission times for the three events were:

Event #1: 8-Dec-1994

11.0110	#11 0 Dee 1	001				
	$E_{\alpha 1} = 533$	keV (esc+155-keV X-ray)	t ₁ =3.600 ms	- assigned	t o	272 Rg
	$E_{\alpha 2} = 10259$	k e V	$t_2 = 71 \text{ ms}$	- assigned	$t \ o$	²⁶⁸ Mt
	$E_{\alpha 3} = 9475$	k e V	t ₃ =98 ms	- assigned	$t \ o$	²⁶⁴ Bh
	$E_{\alpha 4} = 1969$	k e V (e s c)	$t_4 = 1.969$ s	- assigned	$t \ o$	²⁶⁰ Db
Event	#2: 13-Dec-	1994				
	$E_{\alpha 1} = 4612$	k e V (e s c)	t ₁ =0.696 ms	- assigned	$t \ o$	272 Rg
	$E_{\alpha 2} = 10097$	k e V	$t_2 = 171 \text{ ms}$	- assigned	$t \ o$	²⁶⁸ Mt
	$E_{\alpha 3} = 9618$	k e V	t ₃ =334 ms	- assigned	$t \ o$	²⁶⁴ Bh
	$E_{\alpha 4} = 9146$	k e V	$t_4 = 953 \text{ ms}$	- assigned	$t \ o$	²⁶⁰ Db
Even	t #3: 17-Dec	-1994				
	$E_{\alpha,1} = 10820$	k e V	$t_1 = 2.042 \text{ ms}$	- assigned	t o	272 Rg
	$E_{\alpha 2} = 10221$	k e V	$t_2 = 72 \text{ ms}$	- assigned	t o	^{268}Mt
	$E_{\alpha 3} = 9621$	k e V	t ₃ =1.452 s	- assigned	t o	²⁶⁴ Bh
	$E_{\alpha 4} = 9200$	k e V	$t_4 = 573 \text{ ms}$	- assigned	$t \ o$	²⁶⁰ Db
	$E_{\alpha 5} = 8463$	k e V	t ₅ =66.3 s	- assigned	t o	^{256}Lr

These are consistent with one parent state and two daughter states. The second event has been suggested as a candidate for an isomeric state of ²⁶⁸Mt (2002Ho11).

IUPAC/IUPAP JWP assessment (2001Ka70): insufficient internal redundancy to warrant conclusive observations.

2002Ho11: experiments repeated at GSI/SHIP, using the UNILAC with the same reaction ²⁰⁹Bi(⁶⁴Ni,n) at a beam energy of 320 MeV. See ²⁷²Rg Adopted Levels for details. Three events were observed:

Event #1: Energy of the evaporation residue=41.76 MeV

	$E_{\alpha 1} = 3$	503	k e V	(esc)	t ₁ =3.36	ms	-	assigned	tо	272Rg
	$E_{\alpha 2} = 10$	294	k e V		$t_2 = 4.23$	ms	-	assigned	t o	$^{268}{ m Mt}$
	$E_{\alpha 3} = 9$	385	k e V		t ₃ =944 n	ns	-	assigned	t o	$^{264}\mathrm{Bh}$
	$E_{\alpha 4} = 9$	156	k e V		t ₄ =364 n	ns	-	assigned	t o	$^{260}\mathrm{D}\mathrm{b}$
	$E_{\alpha 5} = 8$	465	keV		$t_5 = 55.8$	s	-	assigned	t o	²⁵⁶ Lr
Event	#2: Ene	rgy o	f the	evaporat	tion residu	e=36.8	55	MeV		
	$E_{\alpha 1} = 11$	008	keV		$t_1 = 1.38$	ms	-	assigned	t o	272 Rg
	$E_{\alpha 2} = 6$	953	keV		t $_2 = 7.32$	ms	-	assigned	t o	268 Mt
	$E_{\alpha 3} = 9$	514	keV		t $_3 = 2.99$	s	-	assigned	t o	^{264}Bh
	$E_{\alpha 4} = 1$	706	k e V	(e s c)	$t_4 = 14.98$	8 s	-	assigned	t o	²⁶⁰ Db
	$E_{\alpha 5} =$	877	k e V	(e s c)	t $_5 = 4.7$. 0	s	-	assigned	t o	²⁵⁶ Lr
Event	#3: Ene	rgy o	f the	evaporat	tion residu	e=39.1	19	MeV		
	$E_{\alpha 1} = 11$	046	keV		$t_1 = 2.70$	ms	-	assigned	t o	272 Rg
	$E_{\alpha 2} =$	765	keV	(e s c)	$t_2 = 37.14$	4 ms	-	assigned	t o	268 Mt
	$E_{\alpha 3} = 9$	113	keV		$t_3 = 3.01$	s	-	assigned	t o	^{264}Bh
	$E_{\alpha 4} = 9$	129	keV		$t_4 = 4.06$	s	-	assigned	t o	²⁶⁰ Db
	$E_{\alpha 5} = 8$	423	keV		t $_5 = 20.6$	s	-	assigned	t o	$^{256} m Lr$
Four eve	nt avera	age (i	ncludi	ing data	points fro	m firs	tε	experiment)	for	$t_{2} = 60 \text{ ms.}$

IUPAC/IUPAP JWP assessment (2003Ka71): priority of discovery of Z=111 by 1995Ho04 is now confirmed owing to additional convincing observations reported in 2002Ho11.

2004Fo08: cold fusion experiment done at LBNL using the ${}^{208}Pb({}^{65}Cu,n)$ reaction. See ${}^{272}Rg$ Adopted Levels for details. One EVR- $\alpha 1-\alpha 2-\alpha 3-\alpha 4-\alpha 5...$ Event was observed:

Energy of evaporation residue=28.58 MeV

ΔE a

$E_{\alpha 1} = 1$	1042	keV	20	$t_1 = 0.263$	3 ms	-	assigned	t o	$^{272}\mathrm{Rg}$
$E_{\alpha 2} = 1$	0114	keV	20	t $_2 = 12.6$	ms	-	assigned	t o	$^{268}{ m Mt}$
$E_{\alpha 3} =$	993	keV	(e s c)	$t_3 = 1.16$	s	-	assigned	t o	$^{264}\mathrm{Bh}$
$E_{\alpha 4} =$	9416	keV	20	$t_4 = 1.45$	s	-	assigned	t o	$^{260}\mathrm{Db}$
$E_{\alpha 5} =$	8613	keV	20	t ₅ =3.16	s	-	assigned	t o	$^{256}{ m Lr}$
ssumed	by the	e eval	uators.						

2004Mo26 (in a collaboration with French and Chinese scientists): see 272 Rg Adopted Levels for experimental details. Using the reaction 209 Bi(64 Ni,n), as in 2002Ho11, three beam energies were employed: 323 MeV (9 events), 326 MeV (no event at a beam dose of 2.5×10^{18} ions), 320 MeV (3 events) and repeat runs at 323 MeV (2 more events). A total of 14 correlated decay sequences were observed with two 'escaped' α 's (events 3 and 8). The cross-section at each of these energies was: 2.6 pb +23-15 (320 MeV); 2.5 pb +12-9 (323 MeV); and 0.0 pb +11-0 (326 MeV) with varying target thicknesses.

Continued on next page

Adopted Levels (continued)

Event	1: Feb. 17, 2003; E=(323	8 MeV); tof=48.3 m	ns; E(EVR)=33.1 MeV
	$E_{1} = 11.08 \text{ MeV}$	t,=11.0 ms	- assigned to ²⁷² Rg
	$E_{\alpha 2} = 10.36 \text{ MeV}$	$t_{0} = 9.20 \text{ ms}$	- assigned to ²⁶⁸ Mt
	$E_{0} = 9.81 \text{ MeV}$	$t_{a}^{2}=1.38$ s	- assigned to ²⁶⁴ Bh
	$E_{i} = 9.17 \text{ MeV}$	$t_{1} = 1.93$ s	- assigned to ²⁶⁰ Db
	$E_{\alpha 4} = 8.39 \text{ MeV}$	$t_4 = 11.00$ s	- assigned to 256 Lr
Front	$2 \cdot F_{\alpha 5} = 0.00 \text{ meV}$	$V_5 = 11.0$ S MoV): tof=45.8 r	res E(EVR)=33.0 MoV
Livent	E -11 04 MoV	t = 4, 42 mg	272Pg
	$E_{\alpha 1} = 11.04$ MeV	$t_1 = 4.42 \text{ ms}$	- assigned to 10 kg
	$E_{\alpha 2} = 10.68$ MeV	$t_2 = 13.0 \text{ ms}$	- assigned toMt
	$E_{\alpha 3} = 9.60 \text{ MeV}$	t ₃ =1.45 s	- assigned toBh
	$E_{\alpha 4} = 9.05 \text{ MeV}$	t ₄ =10.9 s	- assigned to 200Db
_	$E_{\alpha 5} = 8.37 \text{ MeV}$	t ₅ =21.9 s	- assigned to 200Lr
Event	3: Feb. 20, 2003; E=(323	8 MeV); tof=46.5 1	ns; E(EVR)=33.2 MeV
	$E_{\alpha 1} = 11.56 \text{ MeV}$	t ₁ =14.9 ms	- assigned to 272Rg
	$E_{\alpha 2} = 1.12 \text{ MeV} (esc)$	$t_2 = 122$ ms	- assigned to ²⁶⁸ Mt
	$E_{\alpha 3} = 9.85 \text{ MeV}$	$t_3 = 21.8 ms$	 assigned to ²⁶⁴Bh
	$E_{\alpha 4} = 9.34 \text{ MeV}$	$t_4 = 0.505 s$	- assigned to ²⁶⁰ Db
	$E_{\alpha 5} = 8.65 \text{ MeV}$	t ₅ =33.5 s	- assigned to ²⁵⁶ Lr
Event	4: Feb. 26, 2003; E=323	MeV; tof=47.3 ns	; E(EVR)=30.5 MeV
	$E_{\alpha 1} = 11.25 \text{ MeV}$	t ₁ =1.42 ms	- assigned to ²⁷² Rg
	$E_{\alpha 2} = 10.43 \text{ MeV}$	t_=36.6 ms	 assigned to ²⁶⁸Mt
	$E_{\alpha 2} = 9.66 \text{ MeV}$	t_=1.87 s	- assigned to ²⁶⁴ Bh
	$E_{r,4} = 9.40 \text{ MeV}$	t_=1.52 s	- assigned to ²⁶⁰ Db
	$E_{r} = 3.12 \text{ MeV} (esc)$	$t_{r} = 46.8$ s	 assigned to ²⁵⁶Lr
Event	5: Feb 26 2003: $E=323$	MeV: $tof=46.3$ ns	E(EVR)=31.6 MeV
Liene	$E_{-}=10$ 82 MeV	t = 7 11 ms	- assigned to 272 Rg
	E = 10.29 MeV	t = 0.715 ms	- assigned to ^{268}Mt
	$E_{\alpha 2} = 10.20$ MeV	$t_2 = 0.513$ ms	- assigned to ²⁶⁴ Bh
	$E_{\alpha 3} = 5.57$ MeV E = 221 MeV	$t_3 = 0.545$ s	- assigned to 260Dh
E	$E_{SF}=251$ MeV	$t_4 = 1.71$ s	- assigned toDb
Event	6: Apr. 6, 2003; E=323 1	Mev; to1=47.5 fis;	E(EVR)=32.7 MeV
	$E_{\alpha 1} = 11.31$ MeV	t ₁ =2.82 ms	- assigned to Kg
	$E_{\alpha 2} = 10.78 \text{ MeV}$	t ₂ =44.0 ms	- assigned to 200Mt
	$E_{\alpha 3} = 9.58 \text{ MeV}$	t ₃ =0.442 s	- assigned to 200Bh
D ($E_{\alpha 4} = 8.81 \text{ MeV}$	t ₄ =48.5 s	- assigned to 200Db
Event	7: Apr. 15, 2003; E=323	MeV; tof=47.5 ns	E(EVR) = 32.7 MeV
	$E_{\alpha 1} = 10.58 \text{ MeV}$	t ₁ =1.17 ms	- assigned to 2.2 Kg
	$E_{\alpha 2} = 10.35 \text{ MeV}$	t ₂ =38.3 ms	- assigned to 200Mt
	$E_{\alpha 3} = 9.31 \text{ MeV}$	t ₃ =3.6 ms	- assigned to ²⁶⁴ Bh
	$E_{\alpha 4} = 9.01 \text{ MeV}$	t ₄ =4.87 s	- assigned to ²⁶⁰ Db
	$E_{\alpha 5} = 8.50 \text{ MeV}$	t ₅ =45.8 s	 assigned to ²⁵⁶Lr
Event	8: Apr. 15, 2003; E=323	MeV; tof=46.0 ns	; E(EVR)=31.1 MeV
	$E_{\alpha 1} = 10.96 MeV$	t ₁ =8.89 ms	 assigned to ²⁷²Rg
	$E_{\alpha 2} = 2.76 \text{ MeV} (esc)$	$t_2 = 26.2 \text{ ms}$	 assigned to ²⁶⁸Mt
	$E_{SF} = 208 MeV$	$t_3 = 0.967 s$	- assigned to ²⁶⁴ Bh
Event	9: Apr. 16, 2003; E=323	MeV; tof=47.0 ns	; E(EVR)=31.1 MeV
	$E_{\alpha 1} = 11.06 \text{ MeV}$	t ₁ =5.11 ms	- assigned to ²⁷² Rg
	$E_{\alpha 2} = 10.43 \text{ MeV}$	$t_2 = 19.1 \text{ ms}$	- assigned to ²⁶⁸ Mt
	$E_{\alpha 3} = 9.50 \text{ MeV}$	$t_3 = 1.34$ s	- assigned to ²⁶⁴ Bh
	$E_{\alpha 4} = 9.10 \text{ MeV}$	t ₄ =3.69 s	- assigned to ²⁶⁰ Db
	$E_{\alpha 5} = 8.41 \text{ MeV}$	$t_5 = 48.5 s$	- assigned to ²⁵⁶ Lr
Event	10: Apr. 30, 2003: $E=320$	0 MeV: tof=47.5 r	ns: E(EVR)=31.0 MeV
	E = 10.21 MeV	t = 1.00 ms	- assigned to 272 Bg
	$E_{\alpha 1} = 10.03 \text{ MeV}$	$t_1 = 1.00 \text{ ms}$ $t_1 = 8.81 \text{ ms}$	$-$ assigned to ^{268}Mt
	$E_{\alpha 2} = 10.05$ MeV E = 206 MeV	$t_2 = 0.01 \text{ ms}$	- assigned to 264Ph
E	E _{SF} =208 MeV	1 ₃ =4.95 s	- assigned to $ -$
Lvent	E 10 05 Max	t 0 772	, $E(EVR)=52.2$ MeV
	$E_{\alpha 1} = 10.85 \text{ MeV}$	t ₁ =0.773 ms	- assigned to 222 Rg
	$E_{\alpha 2} = 10.34 \text{ MeV}$	t ₂ =32.4 ms	- assigned to ²⁰⁰ Mt
	$E_{\alpha 3} = 8.87 \text{ MeV}$	t ₃ =1.91 s	- assigned to ²⁶⁴ Bh
	$E_{\alpha 4} = 8.50 \text{ MeV}$	$t_4 = 21.0$ s	- assigned to ²⁶⁰ Db
Event	12: May 8, 2003; E=320	MeV; tof=47.0 ns	; E(EVR)=32.4 MeV
	$E_{\alpha 1} = 11.00 \text{ MeV}$	$t_1 = 6.92 ms$	- assigned to ²⁷² Rg
	$E_{\alpha 2} = 10.58 \text{ MeV}$	$t_2 = 35.5 ms$	- assigned to ²⁶⁸ Mt
	$E_{\alpha 3} = 9.34 \text{ MeV}$	$t_3 = 1.00$ s	- assigned to ²⁶⁴ Bh
	$E_{\alpha 4} = 9.14 \text{ MeV}$	t ₄ =1.14 s	- assigned to ²⁶⁰ Db
	0.4	-	

Continued on next page

Adopted Levels (continued)

Event	13: May 8. 2	2003: E=323 N	MeV: tof=44.8 ns	E(EVR) = 28.9	MeV
	$E_{-1} = 11.01$	MeV	t,=6.84 ms	- assigned	to ²⁷² Rg
	$E_{\alpha 2} = 9.40$	MeV	$t_{0} = 37.2 \text{ ms}$	- assigned	to ²⁶⁸ Mt
	$E_{\alpha 3} = 9.56$	MeV	$t_3 = 1.23$ s	- assigned	to ²⁶⁴ Bh
	$E_{\alpha,4} = 8.29$	MeV	$t_4 = 0.334$ s	- assigned	to ²⁶⁰ Db
Event	14: May 12,	2003; E=323	MeV; tof=47.8 r	ns; E(EVR)=33.	0 MeV
	$E_{\alpha 1} = 11.08$	MeV	t ₁ =4.46 ms	- assigned	to ²⁷² Rg
	$E_{\alpha 2} = 10.28$	MeV	t ₂ =3.35 ms	- assigned	t o ²⁶⁸ Mt
	$E_{\alpha 3} = 9.63$	MeV	t ₃ =0.81 s	- assigned	t o ²⁶⁴ Bh
	$E_{\alpha 4} = 9.13$	MeV	t ₄ =2.42 s	- assigned	to ²⁶⁰ Db
	$E_{\alpha 5} = 8.63$	MeV	t ₅ =6.85 s	- assigned	to ²⁵⁶ Lr
Projec	tile energies	in parenthes	es are uncertain	due to target	deterioration.

Theory: see Nuclear Science References.

Assignment: daughter of ²⁷²Rg produced by ²⁰⁹Bi(⁶⁴Ni,n) E=318 and 230 MeV (1995Ho04), 320 MeV (2002Ho11), and 320, 323, and 326 MeV (2004Mo26). ²⁰⁸Pb(⁶⁵Cu,n) E=321 MeV (2004Fo08). IUPAC/IUPAP JWP assessment (2003Ka71): priority of discovery of Z=111 by 1995Ho04 is now confirmed owing to additional convincing observations reported in 2002Ho11. The work of 2004Fo08 and 2004Mo26 provide further support to ²⁷²Rg through its decay to the previously unknown daughters ²⁶⁸Mt (this nucleus) and ²⁶⁴Bh to the known nuclides ²⁶⁰Db and ²⁶⁸Lr (evaluators).

²⁶⁸Mt Levels

Cross Reference (XREF) Flags

A $^{272}\mathrm{Rg}$ α Decay

E(level)	XREF	T _{1/2}	 Jπ: 2003Au02 suggest 5+,6+ based on systematics. Ω(p)=11/2-; Ω(n)=1/2+ from 1997Mo25 (theory). T_{1/2}: from 2004Mo26 (arithmetic mean of all 14 events; t₂=30 ms). Others: 42 ms +29-12 (2002Ho11); 27 ms +8-5 from average t₂=38.2 ms (21 events. Evaluators). 2002Ho11 do not exclude the presence of isomeric states (e.g., 171 ms). 2004Mo26 tentatively assigned all of the decays to one state since the decay time distribution exhibited no clear peculiarities. 2004Mo26 note that 1995Ho04 observed one fairly long-lived α-decay (171 ms) with an energy 0.16 MeV lower than the other two events. 2004Mo26 also observed a 122-ms event but the α escaped. These two decays may indicate an isomeric state in ²⁶⁸Mt and, if excluded, the results of 2002Ho11 and 2004Mo26 are consistent within uncertainties. T_{1/2}(calc)=2.2 ms from Viola-Seaborg systematics for Q(α)=10486 keV. %α=100. %α: 21 α-decay events observed in four experiments; no SF decay reported. β₂(theory): 0.221 from 1995Mo29; 0.236 from 2003Mu26; 0.253 from 2005GaZX. 				
x Pare ²⁷² R ²⁷² R	A nt 272 Rg:: $g=T_{1/2}$: from $g=Q(\alpha)$: from $g=Q(\alpha)$: from	21 ms +8-5 $E=x; J\pi=?; T_{1/2}$ m 2004Mo26. om Ea=10986 k http://wide.org					
			268Mt Lovels				
			Mt Levels				
E(level)	т,	/2	Comments				
x	21 ms	+8-5 E(lev	rel), $T_{1/2}$: from the Adopted Levels.				
			a radiations				
Εα	E(lev	el)	Comments				
10986 35	x	Eα: un	nweighted average of 14 events (2004Mo26).				

Adopted Levels: Not Observed

 $Q(\beta^{-})=-1810 SY; S(n)=5140 SY; S(p)=4210 SY; Q(\alpha)=8800 SY 2003Au03.$

 $Q(\beta^{-}) \text{: estimated uncertainty}{=}780 \ keV.$

 $S(n) {:}\ estimated\ uncertainty=850\ keV.$

S(p): estimated uncertainty=840 keV.

 $Q(\alpha)$: estimated uncertainty=500 keV.

The data of 1999Ni03 cited by 2000Fi12 have been retracted (2002Ni10) and have not been confirmed in a repeated experiment at LBNL (2003Gr26). Also, 2001MoZU and 2000HoZZ found no evidence for ²⁹³118 in ²⁰⁸Pb(⁸⁶Kr,n) reaction at 457.6 MeV (2001MoZU) and at 453.9 and 456.7 MeV (2000HoZZ). The statistical analysis of 2000Sc26 also indicate that the data of 1999Ni03 do not originate from radioactive decays with an error probability of less than 5%.
$^{269}_{108} Hs_{161} - 1$

 $Q(\beta^{-})=-4660; S(n)=6310 SY; S(p)=3280 SY; Q(\alpha)=9315 22 2003Au03.$

 $Q(\beta^-)\colon$ estimated uncertainty=560 keV.

S(n): estimated uncertainty=430 keV. S(n): estimated uncertainty=400 keV.

S(p): estimated uncertainty=400 kev.

Q(α): from Eα=9176 keV 21; unweighted average of: 9.23 MeV 2 (1996Ho13), 9.18 MeV 2 (2002Ho11), 9.17 MeV 4 and 9.25 MeV 7 (2004MoZU), 9.18 MeV +7-3 and 9.10 MeV +7-3 (2003Tu05) and 9.12 MeV (2004Vo24), assuming g.s. to g.s. transition. Other: 9.63 MeV 10 (2003Au03. Syst).

1996Ho13: granddaughter of ²⁷⁷112 produced by ²⁰⁸Pb(⁷⁰Zn,n), E=343.8 MeV (E*=10.1 MeV; σ =1.0 pb +18-4) at GSI/SHIP. Two EVR- α 1- α 2- α 3- α 4- α 5- α 6 events observed. One event retracted by 2002Ho11; σ revised to 0.4 pb +9-3. See ²⁷⁷112 Adopted Levels for details.

1996La12: missing daughter of ²⁷³Ds produced by ²⁴⁴Pu(³⁴S,5n) E=190 MeV at Dubna using DGFRS in collaboration with LLNL. Observed one EVR-α1-α3-α4 event. See ²⁷³Ds Adopted Levels for details.

IUPAC/IUPAP 2001 JWP (2001Ka70): see ²⁷³Ds and ²⁷⁷112 Adopted Levels for conclusions on Z=110 and 112, respectively. 2002Holl: granddaughter of ²⁷⁷112. The experiment of 1996Hol3 was redone at GSI/SHIP. The ²⁰⁸Pb(⁷⁰Zn,n) reaction was again used at projectile energies of 346.1 MeV (E*=12.0 MeV; σ =0.5 pb +11-4; 1 event) and 343.8 MeV (E*=10.1 MeV; σ <2.6 pb; 0 events). One EVR- α 1- α 2- α 3- α 4-SF event observed. Retracted one event observed by 1996Hol3. See ²⁷⁷112 Adopted Levels for details.

IUPAC/IUPAP 2003 JWP (2003Ka71): see ²⁷³Ds and ²⁷⁷112 Adopted Levels for conclusions on Z=110 and 112, respectively. 2003Tu05, 2002Du21: ^{269,270}Hs produced by ²⁴⁸Cm(²⁶Mg,xn), E=143.7-146.8 MeV (σ(²⁶⁹Hs)≈6 pb, σ(²⁷⁰Hs)≈4 pb) at GSI using UNILAC with *In situ* Volatilization and Online detection (IVO) as part of a large international

collaboration. Three decay chains were attributed to 269 Hs and two decay chains were tentatively assigned to 270 Hs. Overall efficiency of system assumed to be 40%. Chemically separated Hs atoms were identified by observing genetically linked decay chains. From the measured $E\alpha=9.16$ MeV +7-3, an α -decay half-life of 3.6 s +8-14 was estimated for 270 Hs (see 270 Hs Adopted Levels for details).

Event #1: 12-May-2001 at 09:55:03 hrs

$E_{\alpha 1} = 9180 \text{ MeV} + 7 -$	3	-	assigned	t o	^{269}Hs
$E_{\alpha 2} = 8.69 \text{ MeV} + 7 - $	3 t ₂ =4.4 s	-	assigned	t o	$^{265}{ m S}{ m g}$
$E_{\alpha 3} = 8.50 \text{ MeV} + 7 - $	3 t ₃ =2.4 s	-	assigned	t o	$^{261}{ m R}{ m f}$
$E_{\alpha 4} = 8.21 \text{ MeV} + 7 - 60000000000000000000000000000000000$	3 t ₄ =55.6 s	-	assigned	t o	257 N o
Event #2: 12-MAY-200	1 at 22:00:28 hrs				
$E_{\alpha 1} = 9.10 \text{ MeV} + 7 - $	3	-	assigned	t o	$^{269}\mathrm{Hs}$
$E_{\alpha 2} = 8.68 \text{ MeV} + 7 - $	3 t ₂ =9.3 s	-	assigned	t o	$^{265}{ m S}{ m g}$
$E_{SF} = 179 MeV 6$	$t_3 = 7.9$ s	-	assigned	t o	$^{261}{ m R}{ m f}$
Event #3: 13-May-2001	at 10:02:07 hrs				
$E_{\alpha 1} = 8.88 \text{ MeV} + 7 - $	3 (partial Eα)	-	assigned	t o	$^{269}\mathrm{Hs}$
$E_{\alpha 2} = 8.90 \text{ MeV} + 7 - $	3 t ₂ =17.1 s	-	assigned	t o	$^{265}{ m S}{ m g}$
$E_{\alpha 3} = 8.50 \text{ MeV} + 7 - $	3 t ₃ =0.846 s	-	assigned	t o	$^{261}{ m R}{ m f}$

The above properties are from 2003Tu05. Note that the life-times of the parent could not be estimated with the applied thermochromatography technique since deposition times are not measured. Two more possible candidates for ²⁶⁹Hs are shown in 2002Du21 but not included here since the parent (in the first event) and daughter (in the second event) were not seen. 2002Du21 also explains the chemical implications of these experiments and proposes strong qualitative evidence in support of Hs being an ordinary member of Group VIII of the periodic table. It is suggested that it may behave like its lighter homologue, Os. See also 2004Ga18.

2002Holl tentatively assigned the α -decay and SF event in the two ²⁷⁷112 chains to the g.s. of ²⁶¹Rf. With the three additional chains noted above, 2003Tu05 calculated $T_{1/2}$ =4.2 s +34-13 and %SF≈40 for the decay of ²⁶¹Rf and suggest the previously observed 78-s state is a metastable state.

2004MoZU: granddaughter of ²⁷⁷112. Confirmatory experiments performed by the Japanese group at RIKEN with ²⁰⁸Pb(⁷⁰Zn,¹n), E=345.9 MeV (σ=0.44 pb +59-29). Two EVR-α1-α2-α3-α4-SF events observed. Confirmed results of 2002Ho11. See ²⁷⁷112 Adopted Levels for details.

2004Vo24: 269,270 Hs produced by 248 Cm(26 Mg,xn), E=142-150 MeV at GSI using the UNILAC with Continuously Working Arrangement for Clusterless Transport of *In-Situ* Produced Volatile Oxides (CALLISTO). Experiment done in two parts of the beam time (305 hours; $2.82 \times 10^{18} \ ^{26}$ Mg⁵ ions). In the first part two 248 Cm segments (0.6 mg/cm² each) and one Gd segment (30.6% enriched 152 Gd; 0.8 mg/cm²) were irradiated by 1.18×10^{18} particles at E=144-149 MeV. After 25 beam shifts the 152 Gd-target segment was replaced with a 248 Cm/ 152 Gd-hybrid segment (0.5 mg/cm²; 4% enriched Gd) to enhance the Hs production and irradiated by 1.64×10^{18} particles at E=142-160 MeV. Recoils stopped in He/O₂ mixture resulting *in-situ* formation of volatile oxides. Transport yield estimated as ~70% and deposition on 290 NaOH-coated also estimated at ~70%. Detector resolution 80-120 keV. For data analysis a time window of five times the respective half-lives and an energy window of ±150 keV around the known α energies were used. One correlated $\alpha-\alpha-\alpha$ chain and five $\alpha-SF$ chains observed; one $\alpha-SF$ chain a most likely candidate for a random correlation.

Continued on next page

Adopted Levels (continued)

Event #1: 269 Hs. October 30, 2002 (Probability to encounter this at random: <4×10³) $E_{\alpha 1} = 9.12 \text{ MeV}$ - assigned to ²⁶⁹Hs $\mathrm{E}_{\alpha\,2}{=}\,8.65~\mathrm{MeV}$ t_2=24.886 s – assigned to $^{265}\mathrm{Sg}$ - assigned to ²⁶¹Rf E_{α3}=escape $E_{\alpha 4}^{0}$ = 8.20 MeV t₄ = 8.029 s - assigned to ²⁵⁷No Event #2: ^{269,270}Hs. October 29, 2002 $E_{\alpha 1} = 9.284 \text{ MeV}$ - assigned to ^{269,270}Hs - assigned to ^{265,266}Sg $E_{\alpha 2} = e s c a p e$ - assigned to ^{261,262}Rf $E_{SF} = 31 MeV t_3 = 10.484 s$ Event #3: ^{269,270}Hs. November 8, 2002; 8:00 a.m. $E_{\alpha 1} = 9.124$ MeV - assigned to ^{269,270}Hs $E_{\alpha 2}^{\alpha} = e s c a p e$ - assigned to ^{265,266}Sg $E_{SF} = 31$ MeV $t_3 = 17.721$ s - assigned to ^{261,262}Rf Event #4: ^{269,270}Hs. November 10, 2002 - assigned to ^{265,266}Sg $E_{\alpha 2} = 8.695 \text{ MeV}$ $E_{SF} = 51 \text{ MeV } t_3 = 13.599 \text{ s}$ - assigned to ^{261,262}Rf Event #4: ^{269,270}Hs. November 8, 2002; 9:20 a.m. $E_{\alpha 2} = 8.902 \text{ MeV}$ - assigned to ^{265,266}Sg - assigned to ^{261,262}Rf $E_{SF} = 85 MeV t_3 = 14.561 s$

Other: 2000OgZS.

Theory: see Nuclear Science References.

Assignment: ²⁴⁸Cm(²⁶Mg,5n), E=143.7-146.8 MeV, chem (2003Tu05, 2002Du21); E=142-150 MeV, chem (2004Vo24). Granddaughter of ²⁷⁷112 produced by produced by ²⁰⁸Pb(⁷⁰Zn,n) E=343.8 MeV (1996Ho13), 346.1 MeV (2002Ho11), and 345.9 MeV (2004MoZU). Chemical extraction established that element 108 was produced. The ²⁷⁷112 decay chain seems to be well established through ²⁶⁵Sg; see ²⁷⁷112 Adopted Levels for details.

²⁶⁹Hs Levels

Cross Reference (XREF) Flags

A 273 Ds α Decay

E(level)	XREF	T_1/2	Comments
x	Α	9.7 s +97-33	$\begin{split} & T_{1/2}: \text{ from arithmetic mean } \tau = 14.04 \text{ s of } \tau = 19.7 \text{ s } (1996\text{Hol3}), 22.0 \text{ s } (2002\text{Hol1}), \text{ and } 14.2 \text{ s } \\ & \text{ and } 0.270 \text{ s } (2004\text{MoZU}). \text{ T}_{1/2}(\text{calc}) = 1.9 \text{ s from Viola-Seaborg systematics assuming} \\ & Q(\alpha) = 9315 \text{ keV}. \end{split}$ Of the available data, the g.s. may have properties close to the T_{1/2} = 0.187 s, & Q(\alpha) = 9.390 MeV state observed in 2004MoZU, when compared against Viola-Seaborg systematics. & \$\alpha = 100.\$ \$\alpha \alpha = \alpha = 0.231 from \$2003Mu26\$; 0.260 from \$2005GaZX\$. \$\begin{aligned} \beta_2(\text{theory}): \$0.231\$ from \$1995Mo29\$; 0.237\$ from \$2003Mu26\$; 0.260 from \$2005GaZX\$. \$\end{aligned}
Pare 273D	nt ²⁷³ Ds:	E=0; $J\pi$ =?; $T_{1/2}$ =0.1'	273Ds α Decay 1996Ho13,2002Ho11,2004MoZU 7 ms +17-6; Q(g.s.)=11370 50; %α decay=100. based on systematics
See	²⁷⁷ 112 Ad	opted Levels for det	cails. Other: 1996La12.
			²⁶⁹ Hs Levels
E(level)	T	1/2	
x	9.7 s	+97-33	
			_ α radiations
Eα	E(lev	el)	Comments
11200 20	x	Eα: from 20 of 117 ke overlaps	02Ho11. Others: 11083 keV 20 (1996Ho13) and 11.14 MeV 7 and 11.15 MeV 7 (2004MoZU). Difference V 28 between 2002Ho11 and 1996Ho13 suggestive of two transitions; however, data from 2004MoZU both values.

Adopted Levels

 $S(n)=6830 SY; S(p)=1330 SY; Q(\alpha)=11580 70 2003Au03.$

S(n): estimated uncertainty=520 keV.

S(p): estimated uncertainty=340 keV.

 $Q(\alpha)$: based on 1995Ho03. Unweighted average of three events from 1995Ho03: $E\alpha$ =11112 keV 20; $Q(\alpha)$ =11280 keV 20. Retraction of second event by 2002Ho11 does not affect the value.

1995Ho03: GSI/SHIP cold fusion experiment, 208 Pb(62 Ni,n) E=5 MeV/A by an international collaboration. Reaction cross-section was 3.5 pb +27-18 (4 events). Total of 2.2×10^{18} projectile particles on 99.0% enriched Pb target. Eight targets were mounted on a wheel 310 mm in diameter rotating at 1125 rpm. EVR's separated by velocity filter SHIP. Observed four position and time correlated chains of α particle events. Determined α energies and time intervals between successive particles. Assigned to decay of 269 Ds by consistency of lower chain member energies and lifetimes with known Hs, Sg, Rf and No data. The measured α energies (to within ±20 keV) and emission times for the nuclei in each α -decay sequence were:

Licht # 11 (b Hotember 1001)	Event	#	1:	(9	November	1994)
------------------------------	-------	---	----	----	----------	-------

$E_{\alpha 1} = 11132$	k e V	t ₁ =393 μs	_	assigned	t o	$^{269}\mathrm{Ds}$
$E_{\alpha 2} = 10574$	k e V	t ₂ =583 μs	_	assigned	t o	$^{265}\mathrm{Hs}$
$E_{\alpha 3}^{\alpha 2} = 9576$	k e V	$t_3 = 72 \text{ ms}$	_	assigned	t o	$^{261}\mathrm{Sg}$
$E_{\alpha 4} = 2113$	k e V ($e s c$)	$t_4 = 779 \text{ ms}$	_	assigned	t o	$^{257}{ m R}{ m f}$
Event # 2: (11 No	vember 1994)					
$E_{\alpha 1} = 1939$	k e V ($e s c$)	$t_1 = 201 \ \mu s$	_	assigned	t o	$^{269}\mathrm{Ds}$
$E_{\alpha 2} = 10534$	k e V	$t_2 = 2015 \ \mu s$	_	assigned	t o	$^{265}\mathrm{Hs}$
$E_{\alpha 3} = 9524$	k e V	$t_3 = 373 \text{ ms}$	_	assigned	t o	$^{261}\mathrm{Sg}$
Event # 3: (12 No	vember 1994)	-				
$E_{\alpha 1} = 11095$	k e V	$t_1 = 142 \ \mu s$	_	assigned	t o	$^{269}\mathrm{Ds}$
$E_{\alpha 2} = 10519$	k e V	$t_2 = 126 \ \mu s$	_	assigned	t o	$^{265}\mathrm{Hs}$
$E_{\alpha 3} = 9554$	k e V	t ₃ =156 ms	_	assigned	t o	$^{261}\mathrm{Sg}$
$E_{\alpha 4} = 8705$	k e V	$t_4 = 26.1$ s	-	assigned	t o	$^{257}{ m R}{ m f}$
$E_{\alpha,5} = 8144$	k e V	$t_5 = 224$ s	_	assigned	t o	$^{253}{ m No}$
Event # 4: (17 No	vember 1994)					
$E_{\alpha 1} = 11110$	k e V	$t_1 = 241 \ \mu s$	_	assigned	t o	$^{269}\mathrm{Ds}$
$E_{\alpha 2} = 10571$	k e V	$t_2 = 2324 \ \mu s$	_	assigned	t o	$^{265}\mathrm{Hs}$
$E_{\alpha 3} = 9468$	k e V	$t_3 = 34 \text{ ms}$	_	assigned	t o	$^{261}\mathrm{Sg}$
$E_{\alpha 4} = 8615$	KeV	t ₄ =13.9 s	_	assigned	t o	$^{257}{ m R}{ m f}$
$E_{\alpha 5} = 8022$	k e V	t ₅ =42.7 s	_	assigned	t o	²⁵³ No
Assignments are consistent with one parent and one daughter state.						

Assignments are consistent who one parent and one daughter state: Other: excitation functions for (a) 268 Rf with 50 Ti+ 208 Pb within a projectile energy range (4.52 to 5.10)×A MeV; (b) 266 Hs with 58 Fe+ 208 Pb; and decay of 265 Hs (see 265 Hs data set).

2002Holl: retraction of second event dated 11 November 1994 following reanalysis of original data from which this sequence could not be reconstructed.

Theory: see Nuclear Science References.

Assignment: IUPAC/IUPAP JWP assessment (2003Ka71) maintains priority of discovery of Z=110 to GSI collaboration. Even with the subsequent retraction of the second event sequence, the extant chains remain persuasive.

²⁶⁹Ds Levels

E(level) Comments

x

 $J\pi$: 2003Au02 suggest 3/2+ based on systematics.

- $T_{1/2}=179 \ \mu s \ +245-66.$
- $T_{1/2}$: from arithmetic mean τ =241 µs based on 393 µs, 142 µs, and 241 µs. Other: 2000Fi12 adopted 0.17 ms +17-6 based on the data of 1995Ho03. $T_{1/2}(\text{calc})$ =11 µs and 51 µs for Q(α)=11.58 MeV and Q(α)=11.280 MeV, respectively, from Viola-Seaborg systematics.
- Ground state is consistent with the observations. Given that the three α -energies and decay times agree well with each other (with two α -energies to within the detector resolution of 20 keV) leading to a redundancy in measurement, a high likelyhood exists that the data describe a single parent (to daughter) state. $\%\alpha\approx100$.

%α: predicted β (1997Mo25) and SF (1995Ho27,1997Sm03) half-lives much longer than those predicted and observed for α emission. No spontaneous fission events observed by 1995Ho03. α channel is expected to be 100% with the non-observation of proton evaporation believed to be competitive and energetically possible.

 $\beta_2(theory); \ 0.221 \ from \ 1995Mo29; \ 0.232 \ from \ 2003Mu15; \ 0.250 \ from \ 2005GaZX.$

 $Q(\beta^{-}) = -5600; \ S(n) = 7250 \ SY; \ S(p) = 3600 \ SY; \ Q(\alpha) = 9300 \ +7-3 \ 2003 Au 03, 2003 Tu 05.$ $Q(\beta^{-})$: estimated uncertainty=610 keV. S(n): estimated uncertainty=310 keV S(p): estimated uncertainty=500 keV. Q(α): from Eα=9.16 MeV +7-3 (2003Tu05). Other: 9.30 MeV 3 (2003Au03. Based on preliminary data later reported in 2003Tu05). 2002Du21, 2003Tu05: first report of ²⁷⁰Hs from chemical investigations employing gas chromatography undertaken by a large international collaboration at GSI using the UNILAC facility. 269,270 Hs observed with two decay chains attributed tentatively to ²⁷⁰Hs and three decay chains to ²⁶⁹Hs (see ²⁶⁹Hs Adopted Levels for details). Assuming an overall efficiency of $\approx 40\%$, a production cross-section of 4 pb for 270 Hs and 6 pb for 269 Hs was estimated, accurate to within a factor of about 3. Reaction: ^{26}Mg beam at 143.7-146.8 MeV on ^{248}Cm . Following chemical separation Hs atoms were identified by observing genetically linked decay chains. From the measured $E\alpha=9.16$ MeV +7-3, an α -decay half-life of 3.6 s +8-14 was estimated for ²⁷⁰Hs. Event #1: 12-May-2001 at 02:33:08 hrs - assigned to ²⁷⁰Hs $E_{\alpha 1} = 9.16 \text{ MeV} + 7 - 3$ $E_{\alpha 2} = 8.66 \text{ MeV} + 7 - 3$ - assigned to ²⁶⁶Sg t_2=25.7 s E_{SF} =187 MeV 6 t(SF)=0.199 s – assigned to ^{262}Rf Event #2: 12-May-2001 at 17:09:09 hrs $E_{\alpha 1} = 8.97 \text{ MeV} + 7 - 3$ - assigned to ²⁷⁰Hs - assigned to ²⁶⁶Sg $E_{\alpha 2} = 8.64 \text{ MeV} + 7 - 3$ t₂=11.9 s E_{SF}= 186 MeV 6 t(SF)=1.2 s - assigned to ²⁶²Rf The above properties are from 2003Tu05. Note that the life-times of the parent could not be estimated with the

The above properties are from 2003Tu05. Note that the life-times of the parent could not be estimated with the applied thermochromatography technique since deposition times are not measured. 2002Du21 also explains the chemical implications of these experiments and proposes strong qualitative evidence in support of Hs being an ordinary member of Group VIII of the periodic table. It is suggested that it may behave like its lighter homologue, Os.

2004Vo24 observed six α -chains from ²⁴⁸Cm(²⁶Mg,4n) E=142-150 MeV, chem. One chain was assigned to ²⁶⁹Hs; four could be assigned to ²⁶⁹Hs or ²⁷⁰Hs; and the sixth chain is the most likely candidate for a random correlation. See ²⁶⁹Hs Adopted Levels for more details. Results of this experiment are not suitable for providing further proof for ²⁷⁰Hs.

Other: 2004Ga18.

Theory: see Nuclear Science References.

Assignment: ²⁴⁸Cm(²⁶Mg,4n) E=144-147 MeV (2002Du21,2003Tu05). 2003Tu05 consider their assignment as tentative. Measurements by 2004Vo24 are not suitable for providing further prove for ²⁷⁰Hs.

²⁷⁰Hs Levels

E(level)	T_1/2	Comments
0.0?	3.6 s +8-14	J\pi: 0+ if g.s. $T_{1/2}$: $T_{1/2}(\alpha)$ estimated by 2003Tu05 from measured Q(α)=9.30 MeV +7-3. $T_{1/2}(calc)=2.1$ s from Viola-Scaborg systematics with Q(α)=9.30 MeV
		π α = 100. % α = 100.
		$\beta_2(theory); \ 0.231$ from 1995Mo29; 0.233 from 2003Mu26; 0.257 from 2005GaZX.

 $Q(\beta^{-}) = -1860 \ SY; \ S(n) = 6580 \ SY; \ S(p) = 1140 \ SY; \ Q(\alpha) = 10180 \ 70 \quad 2003 Au 03, 2004 Mo 42.$ $Q(\beta^{-})$: estimated uncertainty=610 keV. S(n): estimated uncertainty=770 keV. S(p): estimated uncertainty=550 keV. Q(α): from Eα=10.03 MeV 7 (2004Mo42). Other: 10.35 MeV 50 (2003Au03. Syst.). 2004Mo42: granddaughter of 278 113 produced by 209 Bi(70 Zn,n) E=349 MeV. See 278 113 Adopted Levels for details. Event #1: Energy of the evaporation residue=36.75 MeV assigned to ²⁷⁸113 $E_{\alpha 1} = 11.68 \text{ MeV} 4$ $t_1 = 344 \ \mu s$ _ assigned to ²⁷⁴Rg $E_{\alpha 2} = 11.15 \text{ MeV} 7$ $t_2 = 9.26$ ms _ assigned to ²⁷⁰Mt $E_{\alpha 3} = 10.03 \text{ MeV} 7$ $t_3 = 7.16 \text{ ms}$ _ $E_{\alpha 4}^{\alpha 0} = 9.08 \text{ MeV } 4$ t₄=2.47 s _ assigned to ²⁶⁶Bh E(SF) = 204.1 MeVt(SF)=40.9 s assigned to ²⁶²Db Theory: see Nuclear Science References. Assignments: the assignments are the most probable ones for the reaction. Also, the identification of the parent as 278 113, α -decay daughter 274 Rg, and grand-daughter 270 Mt, are all rendered plausible following a consistent

comparison of the 4th and 5th events with known descendents. The observation of each isotope in the sequence should be considered as tentative and pending confirmation.

²⁷⁰Mt Levels

Cross Reference (XREF) Flags

A $^{274}\mathrm{Rg}$ α Decay: Tentative

E(level)	XREF	T _{1/2}	Comments
x ?	A	5.0 ms +24-3	$ \begin{array}{l} J\pi:\;\Omega(p)=11/2+;\;\Omega(n)=3/2+\;from\;1997Mo25\;(theory).\\ T_{1/2}:\;4.96\;ms\;+237-23\;corresponding\;to\;\Delta t=7.16\;ms\;(2004Mo42;\;experimental uncertainty\;not\;given);\;uncertainty estimated by the evaluators.\;T_{1/2}(calc)=14\;ms\;from\;Viola-Seaborg\;systematics\;for\;Q(\alpha)=10.18\;MeV.\\ \%\alpha=100.\\ \%\alpha:\;assumed\;100\%\;from\;1/1\;event.\\ \beta_2(theory):\;0.222\;from\;1995Mo29;\;0.233\;from\;2003Mu26;\;0.255\;from\;2005GaZX. \end{array}$

²⁷⁴Rg a Decay: Tentative 2004Mo42

Parent $^{274} \rm Rg:$ E=x; J\pi=?; $T_{1/2}=6~\rm ms$ +31-3; Q(g.s.)=11320 70; %a decay=100. $^{274} \rm Rg-T_{1/2}:$ 6.4 ms +308-29. See $^{278} \rm 113$ Adopted Levels for details.

²⁷⁰Mt Levels

E(level)	T_1/2
x ?	5.0 ms +24-3

α radiations

Eα E(level)

11150 70 x?

 $S(n)=8450 SY; S(p)=2010 SY; Q(\alpha)=11200 50 2003Au03.$ S(n): estimated uncertainty=320 keV. S(p): estimated uncertainty=620 keV. $Q(\alpha)$: based on E α =11031 keV 50 (2001Ho06). 2001Ho06: experiments done at GSI using SHIP by an international collaboration from Germany, Slovakia, Poland, and Russia using the reaction ${}^{64}\mathrm{Ni}{}^{+207}\mathrm{Pb}$. Eight events measured at an estimated cross-section of 13 pb 5. The ${}^{64}\mathrm{Ni}{}^{+1}$ beam was provided by the UNILAC at an energy of 317 MeV corresponding to an excitation energy of 14 MeV at the center of the target. A total beam dose of 1.3×10^{18} ions was collected over a period of 7.3 days. The 207 Pb target was enriched to 92.4%. Of the eight events, six were of the type $EVR-\alpha 1-\alpha 2-SF$ and two of the type $EVR-\alpha 2-SF$: Event # 1: (Event 5 in sequence of detection) $E_{\alpha 1} = 10987 \text{ keV } 90$ t₁=0.07 ms assigned to ²⁷⁰Ds $E_{\alpha 2} = 4168 \text{ keV} (esc)$ $t_2 = 0.43$ ms assigned to ²⁶⁶Hs _ $E_{SF} = 189$ MeV t₃=11.02 ms assigned to ²⁶²Sg _ Event # 2: (Event 3 in sequence of detection) $t_1 = 0.18 ms$ assigned to ²⁷⁰Ds $E_{\alpha 1} = 11075 \text{ keV } 90$ E_{α2}=10196 keV 20 $t_2 = 0.87$ ms assigned to ²⁶⁶Hs assigned to ²⁶²Sg $E_{SF} = 193 \text{ MeV}$ $t_3 = 10.26$ ms _ Event # 3: (Event 1 in sequence of detection) assigned to ²⁷⁰Ds $E_{\alpha 1} = 1925 \text{ keV} (esc) t_1 = 0.20 \text{ ms}$ assigned to ²⁶⁶Hs $E_{\alpha 2} = 10173 \text{ keV } 90$ $t_2 = 2.79$ ms _ $E_{SF} = 164 \text{ MeV}$ $t_3 = 8.84 \text{ ms}$ _ assigned to ²⁶²Sg Event # 4: (Event 7 in sequence of detection) $E_{\alpha 1} = 11151 \text{ keV } 20$ $t_1 = 2.00 \text{ ms}$ assigned to ²⁷⁰Ds assigned to ²⁶⁶Hs $E_{\alpha 2} = 10171 \text{ keV } 20$ $t_2 = 18.22$ ms _ $E_{SF} = 199 MeV$ assigned to ²⁶²Sg $t_3 = 13.06$ ms _ Event # 5: (Event 8 in sequence of detection) $E_{\alpha 1} = 12147 \text{ keV } 50$ assigned to ²⁷⁰Ds $t_1 = 10.35 \text{ ms}$ t₂=9.63 ms $E_{\alpha 2} = 10281 \text{ keV } 90$ assigned to ²⁶⁶Hs _ $E_{SF} = 215 MeV$ $t_3 = 7.77 ms$ assigned to ²⁶²Sg _ Event # 6: (Event 2 in sequence of detection) assigned to ²⁷⁰Ds $t_1 = 17.71$ ms $E_{\alpha 1} = 10954$ keV 20 $E_{\alpha 2} = 10180$ keV 20 assigned to ²⁶⁶Hs $t_2 = 0.34$ ms $E_{SF} = 190 \text{ MeV}$ t₃=3.98 ms assigned to ²⁶²Sg Event # 7: (Event 4 in sequence of detection) $E_{\alpha 2} = 578 \text{ keV} (esc)$ assigned to ²⁶⁶Hs $t_2 = 0.46 \text{ ms}$ _ $E_{SF} = 227$ MeV assigned to ²⁶²Sg $t_3 = 2.00 \text{ ms}$ _ Event # 8: (Event 6 in sequence of detection) $E_{\alpha 2} = 10306$ keV 90 $t_{2} = 5.40 \text{ ms}$ - assigned to ²⁶⁶Hs $E_{SF} = 177 MeV$ t₃=33.91 ms - assigned to ²⁶²Sg

2001Ho06 have suggested two groups for the six α -decays assigned to ²⁷⁰Ds: events 1, 2, and 3 listed above belong to g.s. $0+\rightarrow 0+\rightarrow 0+$ transitions in all three isotopes and events 4, 5, and 6 to states originating from a K-isomer (as in the case of the longest lived state, seen in event 6) or γ -decay. See 2001Ho06 for details regarding assignments. No fission branch observed for ²⁷⁰Ds.

2002Holl reanalyzed all GSI data for Z=110, 111, and 112 taken since 1994. The data of 2001Ho06 were exactly reproduced.

Theory: see Nuclear Science References.

Assignment: ${}^{207}Pb({}^{64}Ni,n)$ E=317 MeV (2001Ho06). The daughter (${}^{266}Hs$) and granddaughter (${}^{262}Sg$) have not been independently observed. In the absence of observed elemental signatures the evaluators consider the assignments as tentative.

²⁷⁰Ds Levels

E(level)	Jπ	T _{1/2}	Comments
0.0?	0+	0.10 ms +14-4	T _{1/2} : 100 μs +140-40 from 2001Ho06; arithmetic mean for the three events assigned to the ²⁷⁰ Ds g.s. (events listed as 1, 2, and 3 above). T _{1/2} (calc)=0.078 ms from Viola-Seaborg systematics for Q(α)=11.20 MeV. %α=100; %SF<0.2.

 $\%\alpha :$ from 8/8 events. No SF decay observed.

Continued on next page

Adopted Levels: Tentative (continued)

²⁷⁰Ds Levels (continued)

E(level)	T_1/2	Comments
1130?	6.0 ms +82-22	 E(level): if 12.15-MeV α feeds the ²⁶⁶Hs g.s. (2001Ho06). Jπ: J=10 2 estimated from retardation of α-decay probability (2001Ho06). π=- (2003Au02. Syst). T_{1/2}: from 2001Ho06; unweighted average for events 4, 5 and 6 attributed to isomeric state. %α>70; %IT≤30? %α,%IT: %IT=30 seems possible but could not be definitely established (2001Ho06). configuration: possible high-spin K-isomer. In calculations by 2001Ho06 for ²⁶⁶Hs and ²⁷⁰Ds, the lowest two neutron quasiparticle states are at 1.31 and 1.34 MeV for ²⁷⁰Ds and at 0.90 and 0.94 MeV for ²⁶⁶Hs. These states are formed a pair in orbits with asymptotic Nilsson quantum numbers v[613]_{7/2+} and v[615]_{9/2+}, respectively, and raising the neutron with spin and angular momentum in the same direction into the orbit v[725]_{11/2-}. Resulting Jπ's are 9- and 10-, respectively. β₂(theory): 0.221 from 1995Mo29; 0.228 from 2003Mu15; 0.248 from 2005GaZX.

 $Q(\beta^{-}) = -3060 \ SY; \ S(n) = 5140 \ SY; \ S(p) = 4720 \ SY; \ Q(\alpha) = 8660 \ 80 \ 2003 Au 03, 2004 Og 12.$

 $Q(\beta^-)\colon$ estimated uncertainty=780 keV.

S(n): estimated uncertainty=900 keV.

 $S(p) {:}\ estimated\ uncertainty=970\ keV.$

 $Q(\alpha): \mbox{ from } E\alpha \mbox{=} 8.53 \mbox{ MeV } 8 \mbox{ (2004Og12). Other: } 8.7 \mbox{ MeV } 3 \mbox{ (2003Au03. Syst.).}$

2004Og12,2004OgZZ: as α decay product of ²⁸⁷114 (15 events) and ²⁸³112 (7 events). See for ²⁸⁷114 and ²⁸³112 Adopted Levels for details. ²⁸⁷114 was synthesized using ²⁴²Pu+⁴⁸Ca at beam energies of 235, 238 and 244 MeV with 5 measurements made at each energy. ²⁸³112 was observed using ²³⁸U+⁴⁸Ca at 230 and 234 MeV. One special case attributed to ²⁸⁷114 in the ²⁴²Pu reaction at a beam energy of 244 MeV, lasting for 6.5 min, of the type EVR- α 1- α 2- α 3- α 4-SF warrants mention. Generally, α decay is blocked below ²⁷⁹Ds which fissions rather than α decays (% α =10). The evaluators suggest that this longer chain which terminates with ²⁷¹Sg may, if confirmed, be one incidence of this 10% branch. The α energy for ²⁷⁹Ds from this event is 9.7 MeV 6 with a lifetime of 0.2831 s. Another exception to the fissioning of ²⁷⁹Ds appears in the case of a similar EVR- α 1- α 2- α 3- α 4-SF event originating from ²⁸³112 in the ²³⁸U reaction at 234 MeV. Here, the sequence ends with the fission of ²⁶⁷Rf. The α energy for ²⁷⁹Ds from this event is 9.8 MeV 3 with a lifetime of 0.2775 s. Although both exceptions require further investigation, their radioactive properties agree well with each other and the evaluators suggest that if confirmed, they could represent the 10% α decay branch for ²⁷⁹Ds.

2005Gr19, 2002Lo15: no EVR- α - α correlations with $\Delta t(EVR-\alpha)<20$ s or $\Delta t(\alpha-\alpha)<20$ s were observed in any of the ⁴⁸Ca + ²³⁸U irradiations. See ²⁸³112 Adopted Levels for details.

Theory: see Nuclear Science References.

Assignment: the assignments for Z=112, Z=114 (and Z=116) and their daughters are based on measured excitation functions and in some cases consistency of observed properties produced by cross-bombardments. In particular, the decay properties of ²⁸³112 are consistent through the various measurements using the DGFRS, independent of whether they were observed as primary nuclei or as α decay daughters of parents one (Z=114) or two (Z=116) 'levels' up. In the case of ²⁸⁷114, the second α in the decay chain has an energy of 9.54 MeV 6 which agrees well with the four measured α 's (2004Og07, 2004Og12) in 11 out of 14 cases. The other three α energies are 8.94, 9.36 and 9.32 MeV which the experimenters suggest may be indicative of transitions to different excited states in the daughter nucleus ²⁷⁹Ds. Assignments to this nucleus should be taken as tentative. Note that 2005Gr19 did not observe any SF decays or EVR- α - α correlations in any ⁴⁸Ca + ²³⁸U irradiations.

²⁷¹Sg Levels

Cross Reference (XREF) Flags

A $^{275}\mathrm{Hs}$ α Decay: Tentative

E(level)	XREF	T 1/2	Comments
x ?	A	2.4 min +43-10	 Jπ: Ω(n)=3/2+ from 1997Mo25 (theory). T_{1/2}: from 2 half-lives/1 α events (2004Og12,2004OgZZ). T_{1/2}(calc)=46.2 s (0.77 min) from Viola-Seaborg systematics for Q(α)=8.66 MeV. %α=50; %SF=50. %α,%SF: from 2 half-lives/1 α events (2004Og12). β₂(theory): 0.212 from 1995Mo29; 0.218 from 2003Mu26; 0.219 from 2005GaZX.
Pare ²⁷⁵ H ²⁷⁵ H See	ent ²⁷⁵ Hs: $s-T_{1/2}$: from $s-Q(\alpha)$: from 2^{275} Hs Add	E=x; $J\pi$ =?; $T_{1/2}$ =0.15 s om 2004Og12. om 2004Og12. opted Levels for details	275Hs α Decay: Tentative 2004Og12 +27-6; Q(g.s.)=9440 70; %α decay=100.
E(level)		T _{1/2}	Comments

x? 2.4 min +43-10 E(level), $T_{1/2}$: from the Adopted Levels.

 $Q(\beta^{-})=-2310 SY; S(n)=6620 SY; S(p)=2770 SY; Q(\alpha)=9500 SY 2003Au03.$

 $Q(\beta^{-})$: estimated uncertainty=650 keV.

S(n): estimated uncertainty=730 keV.

S(p): estimated uncertainty=830 keV. $Q(\alpha)$: estimated uncertainty=300 keV.

2003OgZY and 2004Og03: identification of new nuclides: 287 115, 283 113, 279 Rg, 275 Mt and 267 Db. The α decay of 271 Bh, the penultimate descendent of $^{287}115$ produced via $^{243}Am(^{48}Ca,4n)$ E=253 MeV was not observed; see $^{287}115$ Adopted Levels for experimental details. However, the SF decay of 267 Db (T_{1/2}=73 min +350-33. TKE=206 MeV) and the α decay of 275 Mt (T_{1/2}=9.7 ms +46-44. E α =10.33 MeV 9) were observed.

Theory: see Nuclear Science References.

Assignment: the evaluators note that the identification of Z=115 and all associated nuclides in the chain should be treated as tentative until confirmed in independent experiments.

²⁷¹Bh Levels

Cross Reference (XREF) Flags

A $^{275}\mathrm{Mt}$ α Decay: Tentative

Comments

E(level)x?

XREF

А

 $J\pi$: $\Omega(p)=1/2-$ from 1997Mo25 (theory).

 $T_{1/2}\text{: 40 s (2003Au03. Syst.). } T_{1/2}(\text{calc}) = 0.25 \text{ s from Viola-Seaborg systematics for } Q(\alpha) = 9.5 \text{ MeV}.$ %α=?

 $\beta_2(theory);\; 0.221$ from 1995Mo29; 0.228 from 2003Mu26; 0.238 from 2005GaZX.

²⁷⁵Mt a Decay: Tentative 2004Og03

Parent ${}^{275}Mt$: E=x; J\pi=?; T_{1/2}=10 ms +50-5; Q(g.s.)=10480 90; % a decay \approx 100. 275 Mt-T_{1/2}: 9.7 ms +460-44 (2004Og03). $^{275}Mt-Q(\alpha)$: from 2004Og03. See ²⁷⁵Mt Adopted Levels for details.

²⁷¹Bh Levels

E(level)

x ?

 α radiations

 $E\alpha$

10330 90

Adopted Levels

 $S(n)=6820 SY; S(p)=2250 SY; Q(\alpha)=10899 20 2003Au03.$

- S(n): estimated uncertainty=310 keV. S(n): estimated uncertainty=550 keV.
- S(p): estimated uncertainty=550 kev
- $Q(\alpha)$: from E α =10738 keV 20 (1998Ho13); 10738 keV 3 (68% c.i.). 2003Au03 adopted 10870 keV 20 based on input values of 10870 keV 20 and 10899 keV 20 from the E α 's of 1998Ho13 and apparently used the level scheme proposed by 2000Fi12 who assigned the 69-ms state of ²⁷¹Ds as the g.s.
- 2000Fi12 cite 1996He07 which does not contain any information on ²⁷¹Ds. The evaluators believe this was a
- preliminary result of the work finally reported in 1998Ho13 and cited as a private communication, reference 20 in 1995La20.
- 1998Ho13: GSI/SHIP cold fusion experiment, 208 Pb(64 Ni,n) at a detection efficiency of 100% for α -decay and fission events. Nine position and time correlated chains of α particles were observed: two at a beam energy of 311.7 MeV, six at 313.0 MeV, and one at 315.5 MeV. The cross-sections at these energies were 7.4 pb +94-48, 15 pb +9-6, and 3.6 pb +68-3 respectively. A total number of 38 α -decays were measured and assigned to nine decay chains. Determined α energies and time intervals between successive particles. Assigned to decay of 271 Ds by consistency of lower chain member energies and lifetimes with known 255 No, 259 Rf, and 263 Sg data. The measured α energies and emission times are grouped as follows: five events with an average energy of E1=10738 keV 20, two events with an average energy of E2=10682 keV 20, and one escape and one event with energy E3=10709 keV 20 with a long life-time of 81 ms corresponding to $T_{1/2}$ =56 ms +270-26. The emission times for the first two groups were 0.2-4.4 ms and 81 ms for the last event which 1998Ho13 take as being a sign of an isomeric state in 271 Ds. The second member of each chain corresponds to decay of 267 Hs. Analysis by 2000Sc26 confirms the assignment. 1998Ho13 also suggest the existence of two 267 Hs daughter states.
- 2003Gi05: confirmation of 271 Ds was reported by experiments done at LBNL with the Berkeley Gas Filled Separator (BGS) at the 88-inch cyclotron facility. The BGS was incorporated to enhance the collection of EVR's produced by the reaction. The same production reaction, 208 Pb(64 Ni,n), was studied at energies of 306.7, 309.2 and 312.8 MeV at the center of the target. A cross-section of 8.3 pb +11-5 was deduced at a beam energy of 309.2 MeV in agreement with data of 1998Ho13. Two position and time correlated event chains were assigned to 271 Ds. No such event sequences were seen at the other two beam energies. The two corresponding 267 Hs α decay energies originating from 1.6-ms 271 Ds were 9.89 MeV (following α decay) and 9.88 MeV (following an escape event). Both these states decay to 0.12-s 263 Sg with life-times of 15 ms and 32 ms, respectively. Uncertainties of energy and time measurements are not given; strip detectors had an average energy resolution of 70 keV for 5 to 9 MeV α 's.
- 2004Fo08: 271 Ds was studied at LBNL with the Berkeley Gas Filled Separator (BGS) at the 88-inch cyclotron facility as part of an experiment to produce 272 111 via the 208 Pb(65 Cu,n) reaction and and compare the resultant cross section with that of the 209 Bi(64 Ni,n) reaction (2002Ho11,2004Mo14) and confirm the assignment of 272 111 by 1995Ho04. 208 Pb(64 Ni,n) at 317.0 MeV (7.7 pb +100-52) and 319.8 MeV (20 pb +15-11) using a 98.4% enriched 208 Pb target. Estimated uncertainties for E α were \approx 20 keV for α 's fully stopped in the focal plane and \approx 45 keV for α particle events "reconstructed" from the sum of focal plane and upstream detector events. Data are in good agreement with 1998Ho13, 2003Gi05, and 2004Mo40. Seven chains observed; average energy of α 's assigned to 271 Ds in three chains was 10753 keV and assigned to known transition of 10738 keV. 10688 keV 45 from one chain may be either the known 10682 or 10738 keV α 's.
- 2004Mo40,2004Mo27: ²⁷¹Ds was studied at the RIKEN Linear Accelerator (RILAC) using the Gas Filled Recoil Separator (GARIS) with efficiency estimated to be 80% 15. Production reaction: ²⁰⁸Pb(⁶⁴Ni,n) at E=310, 313, 316 and 320 MeV using a 98.4% enriched ²⁰⁸Pb target. The cross-sections at these energies (laboratory frame) were 1.8 pb +41-15, 8.0 pb +60-40, 17 pb +7-6, and <3.7 pb, respectively. The maximum cross-section was observed at a primary beam energy of 316 MeV. The difference of about 3 MeV from the result of 1998Ho13 is not considered significant due to statistical uncertainties in the estimation. A total of 14 decay chains attributed to the decay of ²⁷¹Ds over three experiments. The position resolution was better than ±0.9 mm for an energy deposit >2 MeV. 13 decays detected as second generation decays were attributed to ²⁶⁷Hs and the results are in agreement with 1998Ho13. Method proposed by 2000Sc26 used in analysis. The energy centroids in the α spectra were deduced to be at 10.45 and 10.73 MeV; the latter is in good agreement with 10.73 MeV from 1998Ho13. Measured lifetimes of the α's from ²⁷¹Ds could be divided into two groups; one with decay times less than 10 ms (11 events) and another with decay times greater than 10 ms (3 events). The mean lifetimes for both groups agree with the results of 1998Ho13 as do the number ratios of the two groups: 11/3 (2004Mo40) and 11/2 (1998Ho13). Note that Q(β⁻)values corresponding to their average T_{1/2}'s were not presented by 2004Mo40. See also 2004Mo43.

Theory: see Nuclear Science References.

Assignment: 208 Pb(64 Ni,n), E=311.7 MeV, 313.0 MeV, and 315.5 MeV; great grandparent of 259 Rf (E α =8.80 MeV 2, T $_{1/2}$ =2.6 s), 255 No (E α =8.10 MeV 2, T $_{1/2}$ =110 s) from 1998Ho13. Assignment accepted in IUPAP/IUPAC JWP assessment (2001Ka70).

Adopted Levels (continued)

²⁷¹Ds Levels

Level scheme from 1998Ho13 and 2004Mo40. 2000Fi12 adopted a level scheme with the 69-ms state as the ground state. $T_{1/2}(calc)=0.41$ ms from Viola-Seaborg systematics supports conclusion that the 69-ms state is less likely to be the g.s.

E(level)	T _{1/2}	Comments
0.0	1.63 ms +44-29	J π : 1998Ho13 propose 9/2+[615] based on theory which predicts that the 9/2[615] Nilsson orbital lies closer to the Fermi level in ²⁷¹ Ds. 2003Au02 suggest 9/2+ based on systematics; $\Omega(n)=3/2+$ from 1997Mo25 (theory).
		T _{1/2} : mean value from 2004Mo40 based on τ=2.9 ms +13-7 (2004Mo40) and and τ=1.8 ms +8-4 (1998Ho13). Other: 1.6 ms +9-5 (2004Fo08; calculated using MLDS code). T _{1/2} (calc)=0.41 ms from Viola-Seaborg systematics for Q(α)=10.90 MeV. %α≈100 (1998Ho13).
		$\% \alpha$: no SF events observed. Predicted β (1997Mo25; finite-range droplet model, folded-Yukawa single particle potential) and SF (1995Ho27, systematics, and 1997Sm03, macroscopic-microscopic model) half-lives much longer than those predicted and observed for α emission.
		$eta_2({ m theory})$: 0.221 from 1995Mo29; 0.230 from 2003Mu15; 0.248 from 2005GaZX.
x	69 ms +56-21	$J\pi$: 1998Ho13 suggest 13/2- as a suitable candidate for the assignment of the 69-ms state; in 267 Hs the 13/2- state is predicted to be high in energy and, therefore, hindrance of α transitions to states closer to g.s. could be expected and are in agreement with the data. 2003Au02 suggest 11/2- based on systematics.
		T _{1/2} : mean value from 2004Mo40 based on τ=124 ms +169-45 (2004Mo40) and τ=65 ms +120-26 (1998Ho13).
		$\alpha_{\alpha,\%}$ IT: to explain the decay properties of ²⁷¹ Ds, 2004Mo40 suggest that this level decays by an isomeric transition to the g.s. of ²⁷¹ Ds and also α decays to the possible isomeric state in ²⁶⁷ Hs. No SF events observed (1998Ho13). Predicted β (1997Mo25; finite-range droplet model, folded-Yukawa single particle potential) and SF (1995Ho27, systematics, and 1997Sm03, macroscopic-microscopic model) half-lives much longer than those predicted and observed for α emission.

 $Q(\beta^{-})=-950 \ SY; \ S(n)=5410 \ SY; \ S(p)=3040 \ SY; \ Q(\alpha)=9150 \ 60 \ 2003 Au 03, 2004 Og 03.$

 $Q(\beta^-) \text{: estimated uncertainty} = 840 \ keV.$

S(n): estimated uncertainty=830 keV. S(p): estimated uncertainty=890 keV.

Q(α): from Eα=9.02 MeV 6 (2004Og03). Other: 9.30 MeV 30 (2003Au03. Syst).

2003OgZY and 2004Og03: identification of new nuclides: ²⁸⁸115, ²⁸⁴113, ²⁸⁰Rg, ²⁷⁶Mt, ²⁷²Bh, and ²⁶⁸Db. ²⁷²Bh observed as α -decay daughter of parent ²⁷⁶Mt and α -decay grand-daughter of ²⁸⁰Rg. Reaction: ²⁴³Am(⁴⁸Ca,3n) E=248 MeV corresponding to an excitation energy of 38.0 to 42.5 MeV at the target center. Experiments performed by the Dubna-LLNL collaboration. ²⁸⁸115 was formed at a cross-section of 2.7 pb +48-16.

Experiments were done at the U400 cyclotron with the Dubna gas-filled recoil seperator (DGFRS) at FLNR-JINR. The evr's recoiling from the target were separated by DGFRS in flight from the ⁴⁸Ca beam ions, scattered particles and transfer-reaction products with a transmission efficiency of 35% for 115 nuclei.

Detection system: multiwire proportional counter for tof measurement; semi-conductor focal-plane detector array with 12 vertical position- sensitive strips, which measured the decay of the implanted recoils. This detection system surrounded by eight side detectors with no position sensitivity. The α spectrum was measured in the range 9.6 to 11.0 MeV. The resolution of the detector system was FWHM=60-100 keV for α particles absorbed in the focal-plane detector; 140-200 keV for α 's escaping the focal-plane detector and registered by the side detectors.

Three similar decay chains with five consecutive α decays were detected in a time interval of 20 s (in the beam-off mode following the first recoil expected to belong to Z=115) terminated by an SF event with a release of total kinetic energy of \approx 220 MeV. These events were assigned to the (48 Ca,3n) channel with the production of the parent nuclide 288 115; the fifth and penultimate event in the chain was assigned to 272 Bh. Properties of 272 Bh from the three chains are listed below by event.

Event #1: Energy of the evaporation residue=10.4 MeV

 $E_{\alpha} = 9230 \text{ keV}$ t = 24.0 s - assigned to ^{272}Bh

Event #2: Energy of the evaporation residue=11.0 MeV $E_{\alpha} = 9020 \text{ keV} \qquad t = 2.964 \text{ s} - \text{assigned to } ^{272}\text{Bh}$

Event #3: Energy of the evaporation residue=9.1 MeV

E₁₀ = 8970 keV t=15.388 s - assigned to ²⁷²Bh

Theory: 1997Mo25, 2003Mu15, 2003Ge09, 2004Ba86, 2004GuZW and Nuclear Science References.

Assignment: descendent of ²⁸⁸115 produced by ²⁴³Am(⁴⁸Ca,3n) E=248 MeV (2003OgZY,2004Og03) and E=243 MeV, chem (2004DmZZ). The evaluators suggest that 2004DmZZ offers independent support to the synthesis of ²⁸⁸115 (2004Og03) having precisely determined the atomic number for Z=105 by isolation of Group V elements. The properties are in agreement with ²⁶⁸Db measured in the three chains seen earlier by 2004Og03, thereby providing evidence in favor of the synthesis of ²⁸⁸115 and daughters. However, since the identification relies on the measurement of SF fragments, the possibility that the observed nucleus is actually ²⁶⁸Rf following (undetected) ε from the parent ²⁶⁸Db, cannot be excluded.

²⁷²Bh Levels

Cross Reference (XREF) Flags

A $^{276}\mathrm{Mt}$ α Decay: Tentative

E(level)	XREF	T _{1/2}	Comments
κ ?	A	10 s +12-4	 Jπ: Ω(p)=1/2-; Ω(n)=3/2+ from 1997Mo25 (theory). T_{1/2}: from 9.8 s +117-35 (2004Og03). T_{1/2}(calc)=2.8 s from Viola-Seaborg systematics for Q(α)=9.15 MeV. %α=100. %α: assumed from one event. β₂(theory): 0.221 from 1995Mo29; 0.224 from 2003Mu26; 0.224 from 2005GaZX.

²⁷⁶Mt α Decay: Tentative 2004Og03,2003OgZY

Parent $^{276} Mt:$ E=x; J\pi=?; T_{1/2}=0.72 s +87-25; Q(g.s.)=9850 60; %a decay=100. $^{276} Mt-T_{1/2}$: from 2004Og03. $^{276} Mt-Q(a)$: from 2004Og03. See $^{276} Mt$ Adopted Levels for details.

		²⁷⁶ Mt α Decay: Tentative 2004Og03,2003OgZY (continued)
		²⁷² Bh Levels
E(level)	T_1/2	Comments
x ?	10 s +12-4	$E(level), T_{1/2}$: from the Adopted Levels.
		α radiations
Εα	E(level)	Comments
9710 60	x ?	Eα: from 2004Og03.

Adopted Levels

 $S(p)=250 SY; Q(\alpha)=11150 35 2003Au03,2004Mo26.$

S(p): estimated uncertainty=350 keV.

 $Q(\alpha)$: from E α =10986 keV 35 (2004Mo26. Unweighted average of all events). Other: 11.44 MeV 10 (2003Au03. Syst.). 1995Ho04: GSI/SHIP cold fusion experiment. ²⁰⁹Bi(⁶⁴Ni,n) E=5.0 MeV/A. Three beam energies were employed: 316.1 MeV (0 event observed), 318.1 MeV (1 event observed) and 320.0 MeV (2 events observed). A total of 2.2×10^{18} projectile particles yielded a total of three position and time correlated chains of α particle events. Determined α energies and time intervals between successive particles. Assigned to decay of ²⁷²Rg by consistency of lower chain member energies and lifetimes with known Db and Lr data. The measured α energies and emission times for the three events were:

Event #1: 8-Dec-1994

$E_{\alpha 1} = 533$ k	keV (esc+155-keV X-ray)	$t_1 = 3.600 \text{ ms}$	- assigned	t o ²⁷² Rg
$E_{\alpha 2} = 10259$ k	k e V	$t_2 = 71 \text{ ms}$	- assigned	t o ²⁶⁸ Mt
$E_{\alpha,3} = 9475$ k	k e V	t ₃ =98 ms	- assigned	to ²⁶⁴ Bh
$E_{\alpha 4} = 1969 k$	keV (esc)	t ₄ =1.969 s	- assigned	t o ²⁶⁰ Db
Event #2: 13-Dec-19	994	•		
$E_{\alpha 1} = 4612$ k	keV (esc)	t ₁ =0.696 ms	 assigned 	t o ²⁷² Rg
$E_{\alpha 2} = 10097$ k	k e V	$t_2 = 171 \text{ ms}$	- assigned	t o ²⁶⁸ Mt
$E_{\alpha 3} = 9618$ k	k e V	$t_3 = 334 \text{ ms}$	- assigned	t o ²⁶⁴ Bh
$E_{\alpha 4} = 9146$ k	k e V	t ₄ =953 ms	- assigned	t o ²⁶⁰ Db
Event #3: 17-Dec-	1994	*		
$E_{\alpha 1} = 10820$ k	k e V	$t_1 = 2.042 \text{ ms}$	- assigned	t o ²⁷² Rg
$E_{\alpha 2}^{\alpha 1} = 10221$ k	k e V	$t_{2} = 72 \text{ ms}$	- assigned	t o ²⁶⁸ Mt
$E_{\alpha 3}^{\alpha 2} = 9621$ k	k e V	$t_3 = 1.452$ s	- assigned	t o ²⁶⁴ Bh
$E_{\alpha 4} = 9200 k$	k e V	$t_4 = 573 \text{ ms}$	- assigned	t o ²⁶⁰ Db
$E_{\alpha 5} = 8463$ k	k e V	$t_5 = 66.3$ s	- assigned	t o ²⁵⁶ Lr
These are consistent w	vith one parent state and one	daughter state.	Identification o	f other daughter states prevented

by the missing α energies in two of the three events due to escape of α from detector.

1998Ho13 also summarize results from previous experiments and observe that the upper limit cross-section for

 $E^{*}=11.1$ MeV (no events) was 2.9 Pb (68% c.i.). Cross-sections for events measured at 318 MeV (1 event) and 320 MeV (2 events) were 1.7 Pb 33-14 and 3.5 Pb +46-23, respectively.

IUPAC/IUPAP JWP assessment (2001Ka70): insufficient internal redundancy to warrant conclusive observations. 2002Ho11: experiments repeated at GSI/SHIP, using the UNILAC with the same reaction ²⁰⁹Bi(⁶⁴Ni,n) at a beam energy of 320 MeV. The irradiation proceeded over 13 days with a total beam dose of 2.2×10¹⁸ ions. Three events were observed:

Event #1: Energy of the evaporation residue=41.76 MeV

	$E_{\alpha 1} = 3503$	keV (esc)	t ₁ =3.36 ms	_	assigned	t o	$^{272}\mathrm{Rg}$
	$E_{\alpha 2} = 10294$	k e V	t ₂ =4.23 ms	-	assigned	t o	$^{268}\mathrm{Mt}$
	$E_{\alpha 3} = 9385$	k e V	$t_3 = 944$ ms	-	assigned	t o	$^{264}\mathrm{Bh}$
	$E_{\alpha 4} = 9156$	k e V	$t_4 = 364 ms$	-	assigned	t o	260 Db
	$E_{\alpha 5} = 8465$	k e V	t ₅ =55.8 s	-	assigned	t o	$^{256} Lr$
Event	#2: Energy	of the evaporat	ion residue=36.	55	MeV		
	${\rm E}_{\alpha \ 1} \!=\! 1 1 0 0 8$	k e V	$t_1 = 1.38 ms$	-	assigned	t o	272 Rg
	$E_{\alpha 2} = 6953$	k e V	$t_2 = 7.32$ ms	-	assigned	t o	$^{268}{ m Mt}$
	$E_{\alpha 3} = 9514$	k e V	$t_3 = 2.99$ s	-	assigned	t o	^{264}Bh
	$E_{\alpha 4} = 1706$	keV (esc)	$t_4 = 14.98$ s	-	assigned	t o	$^{260}\mathrm{Db}$
	$E_{\alpha 5} = 877$	keV (esc)	$t_5 = 47.0$ s	-	assigned	t o	$^{256} m Lr$
Event	#3: Energy	of the evaporat	ion residue=39.	19	MeV		
	$E_{\alpha 1} = 11046$	k e V	$t_1 = 2.70 ms$	-	assigned	t o	272 Rg
	$E_{\alpha 2} = 765$	keV (esc)	$t_2 = 37.14$ ms	-	assigned	t o	$^{268}{ m Mt}$
	$E_{\alpha 3} = 9113$	k e V	$t_3 = 3.01$ s	-	assigned	t o	^{264}Bh
	$E_{\alpha 4} = 9129$	k e V	$t_4 = 4.06$ s	-	assigned	$\mathbf{t} \mathbf{o}$	$^{260}\mathrm{Db}$
	$E_{\alpha 5} = 8423$	k e V	$t_5 = 20.6$ s	-	assigned	$\mathbf{t} \mathbf{o}$	$^{256}{ m Lr}$

5 event average (including data points from 1995Ho04) for $t_1=2.3$ ms. Two event average (two data points indicating redundancy within current experiment) for $E\alpha=11027$ keV. At a beam energy of 320 MeV, a total of 3.3×10^{18} projectiles were delivered over 5 events from both experiments corresponding to an average cross-section of 2.9 pb +19-13.

IUPAC/IUPAP JWP assessment (2003Ka71): priority of discovery of Z=111 by 1995Ho04 is now confirmed owing to additional convincing observations reported in 2002Ho11.

2004Fo08: cold fusion experiment done at LBNL using the ${}^{208}\text{Pb}({}^{65}\text{Cu,n})$ reaction. The cross-section was estimated to be 1.7 pb +39-14. The ${}^{65}\text{Cu}{}^{5+}$ beam was provided by the 88-inch cyclotron at a beam energy of 326.9 MeV corresponding to an energy of 321.1 MeV (E*=13.2 MeV) at target center. Recoil products were separated by the BGS. Two runs lasting 5 days each resulted in a total beam dose of 6.6×10^{17} ions. One EVR- $\alpha 1-\alpha 2-\alpha 3-\alpha 4-\alpha 5...$ Event was observed and attributed to the decay of ${}^{272}\text{Rg}$ with the following properties:

Adopted Levels (continued)

Energy of evaporation residue=28.58 MeV

$E_{\alpha 1} = 1$	1042	keV	20	$t_1 = 0.263$	ms ms	-	assigned	t o	$^{272}\mathrm{Rg}$
$E_{\alpha 2} = 1$	0114	keV	20	$t_2 = 12.6$	ms	-	assigned	t o	$^{268}\mathrm{Mt}$
$E_{\alpha 3} =$	993	keV	(e s c)	$t_3 = 1.16$	s	-	assigned	t o	$^{264}\mathrm{Bh}$
$E_{\alpha 4} =$	9416	keV	20	$t_4 = 1.45$	s	-	assigned	t o	$^{260}\mathrm{Db}$
$E_{\alpha 5} =$	8613	keV	20	t ₅ =3.16	s	-	assigned	t o	$^{256}{ m Lr}$
a a a a a a	hr th	orrol	notora						

 ΔE assumed by the evaluators.

2004Mo26 (in a collaboration with French and Chinese scientists): the RILAC was upgraded and the gas filled recoil seperator GARIS was installed for heavy element research. Using the reaction $^{209}\text{Bi}(^{64}\text{Ni},\text{n})$, as in the GSI experiment. Three beam energies were employed: 323 MeV (9 events), 326 MeV (no event at a beam dose of 2.5×10^{18} ions), 320 MeV (3 events), and repeat runs at 323 MeV (2 more events). A total of 14 correlated decay sequences were observed. The cross-sections at each of these energies were 2.6 pb +23-15 (320 MeV); 2.5 pb +12-9 (323 MeV); 0.0 pb +11-0 (326 MeV). The total beam time was 50 days with a beam intensity of 5×10^{12} /s from RILAC. The reaction products were separated in-flight by GARIS filled with He at a pressure of 86 Pa, after which they were guided into a detector system consisting of 2 foil detectors with micro-channel plates (MCP's) and a Si semi-conductor (SSD) box. The detectors were used for the dual purpose of tof and in anti-coincidence mode as a veto for signals coming from the MCP's. The largest probability for accidental signals was determined to be 2.3×10^{-8} with estimates given for different types of events. Event 1: Feb. 17, 2003; E=(323 MeV); tof=48.3 ns; E(EVR)=33.1 MeV

	$E_{\alpha 1} = 11.08 \text{ MeV}$	t ₁ =11.0 ms – assigned to ²⁷² Rg
	$E_{\alpha 2} = 10.36 \text{ MeV}$	t ₂ =9.20 ms – assigned to ²⁶⁸ Mt
	$E_{m,2} = 9.81 \text{ MeV}$	$t_2 = 1.38$ s - assigned to ^{264}Bh
	$E_{1}^{\alpha s} = 9.17 \text{ MeV}$	$t_{i}=1.93$ s - assigned to 260 Db
	$E_{} = 8.39 \text{ MeV}$	$t_4 = 11.9$ s = assigned to 256 Lr
Front	$2_{\alpha 5} = 0.00 \text{ MeV}$	$(5^{-11.0})^{-11.0} = (5^{-11.0})^{-11.0} $
Livent	E -11 04 MoV	t = 4, 42 mg aggig and $t = 272$ Pg
	$E_{\alpha 1} = 11.04$ MeV	$t_1 = 4.42 \text{ ms}^2 = \text{assigned to}^2 \text{ Rg}^2$
	$E_{\alpha 2} = 10.08$ MeV	$t_2 = 15.0 \text{ ms} - \text{assigned} t_0 - Mt$
	$E_{\alpha 3} = 9.60 \text{ MeV}$	$t_3 = 1.45$ s – assigned to $264Bh$
	$E_{\alpha 4} = 9.05 \text{ MeV}$	$t_4 = 10.9 \text{ s}$ - assigned to 200Db
	$E_{\alpha 5} = 8.37 \text{ MeV}$	t ₅ =21.9 s - assigned to ²⁵⁶ Lr
Event	3: Feb. 20, 2003; E=(32	3 MeV); tof=46.5 ns; E(EVR)=33.2 MeV
	$E_{\alpha 1} = 11.56 \text{ MeV}$	t ₁ =14.9 ms - assigned to ²⁷² Rg
	$E_{\alpha 2}$ = 1.12 MeV (esc) t ₂ =122 ms - assigned to ²⁶⁸ Mt
	$E_{\alpha 3} = 9.85 \text{ MeV}$	t ₃ =21.8 ms – assigned to ²⁶⁴ Bh
	$E_{\alpha 4} = 9.34 \text{ MeV}$	t ₄ =0.505 s – assigned to ²⁶⁰ Db
	$E_{\alpha 5} = 8.65 \text{ MeV}$	t ₅ =33.5 s — assigned to ²⁵⁶ Lr
Event	4: Feb. 26, 2003; E=323	3 MeV; tof=47.3 ns; E(EVR)=30.5 MeV
	$E_{\alpha 1} = 11.25 \text{ MeV}$	t ₁ =1.42 ms – assigned to ²⁷² Rg
	$E_{x,0} = 10.43$ MeV	$t_0 = 36.6 \text{ ms}$ – assigned to 268Mt
	$E_{0}^{\alpha 2} = 9.66 \text{ MeV}$	$t_0 = 1.87$ s - assigned to 264 Bh
	$E_{A} = 9 40 \text{ MeV}$	$t_{s} = 1.52$ s $-$ assigned to 260 Db
	$E_{\alpha 4} = 3.12 \text{ MeV}$ (esc) t_{-46} 8 s = assigned to 256 Lr
Event	5. Feb 26 2003: E=323	$M_{\rm EV}$ tof-46.3 ps: E(EVR)-31.6 MeV
плени	E = 10.82 MeV	t = 7 11 ms = assigned to 272 Rg
	$E_{\alpha 1} = 10.02$ MeV	$t_1 = 7.11 \text{ ms}^2 = \text{assigned to}^2 \text{ kg}^2$
	$E_{\alpha 2} = 10.29$ MeV	$t_2=0.715$ ms – assigned to -5.00
	$E_{\alpha 3} = 9.57$ MeV	$t_3 = 0.545$ s $-$ assigned to Bh
	E _{SF} =231 MeV	$t_4 = 1.71$ s $-$ assigned to 200Db
Event	6: Apr. 8, 2003; E=323	MeV; tof=47.5 ns; $E(EVR)=32.7$ MeV
	$E_{\alpha 1} = 11.31 \text{ MeV}$	$t_1=2.82 \text{ ms}$ – assigned to $2^{1/2}$ Rg
		1 0/0
	$\mathrm{E}_{\alpha2}\!=\!10.78~\mathrm{MeV}$	$t_2 = 44.0 \text{ ms}$ - assigned to $\frac{268}{Mt}$
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$t_2=44.0 \text{ ms}$ - assigned to ${}^{268}\text{Mt}$ $t_3=0.442 \text{ s}$ - assigned to ${}^{264}\text{Bh}$
	$\begin{array}{l} {\rm E}_{\alpha\ 2} = 1\ 0\ .\ 7\ 8\ \ {\rm MeV} \\ {\rm E}_{\alpha\ 3} = & 9\ .\ 5\ 8\ \ {\rm MeV} \\ {\rm E}_{\alpha\ 4} = & 8\ .\ 8\ 1\ \ {\rm MeV} \end{array}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Event	$\begin{array}{l} {\rm E}_{\alpha2} = 10\;.\;7\;8\;\;{\rm MeV}\\ {\rm E}_{\alpha3} = \;9\;.\;5\;8\;\;{\rm MeV}\\ {\rm E}_{\alpha4} = \;8\;.\;8\;1\;\;{\rm MeV}\\ 7:\;{\rm Apr.}\;15,\;2003;\;{\rm E} = 323 \end{array}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Event	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Event	$\begin{array}{l} {\rm E}_{\alpha2}{=}10.78{\rm MeV}\\ {\rm E}_{\alpha3}{=}9.58{\rm MeV}\\ {\rm E}_{\alpha4}{=}8.81{\rm MeV}\\ 7:{\rm Apr},15,2003;{\rm E}{=}323\\ {\rm E}_{\alpha1}{=}10.58{\rm MeV}\\ {\rm E}_{\alpha2}{=}10.35{\rm MeV}\\ {\rm E}_{\alpha3}{=}9.31{\rm MeV}\\ {\rm E}_{\alpha4}{=}9.01{\rm MeV}\\ {\rm E}_{\alpha5}{=}8.50{\rm MeV}\\ \end{array}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Event	$\begin{array}{l} {\rm E_{a2}=10.78} {\rm MeV} \\ {\rm E_{a3}=} 9.58 {\rm MeV} \\ {\rm E_{a4}=} 8.81 {\rm MeV} \\ 7: \; {\rm Apr.} \; 15, \; 2003; \; {\rm E=323} \\ {\rm E_{a1}=10.58} {\rm MeV} \\ {\rm E_{a2}=10.35} {\rm MeV} \\ {\rm E_{a3}=} \; 9.31 {\rm MeV} \\ {\rm E_{a4}=} \; 9.01 {\rm MeV} \\ {\rm E_{a5}=} \; 8.50 {\rm MeV} \\ {\rm S: \; Apr.} \; 15, \; 2003; \; {\rm E=323} \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Event	$\begin{array}{l} E_{\alpha2} = 10.78{\rm MeV}\\ E_{\alpha3} = 9.58{\rm MeV}\\ E_{\alpha4} = 8.81{\rm MeV}\\ 7:{\rm Apr},15,2003;E = 323\\ E_{\alpha1} = 10.58{\rm MeV}\\ E_{\alpha2} = 10.35{\rm MeV}\\ E_{\alpha3} = 9.31{\rm MeV}\\ E_{\alpha4} = 9.01{\rm MeV}\\ E_{\alpha5} = 8.50{\rm MeV}\\ 8:{\rm Apr},15,2003;E = 323\\ 8:{\rm Apr},15,2003;E = 324\\ 8:{\rm Apr},15,2003;15,15,15,15,15,15,15,15,15,15$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Event Event	$\begin{split} & E_{\alpha2} = 10 \ .78 \ \text{MeV} \\ & E_{\alpha3} = \ 9 \ .58 \ \text{MeV} \\ & E_{\alpha3} = \ 9 \ .58 \ \text{MeV} \\ & E_{\alpha4} = \ 8 \ .81 \ \text{MeV} \\ & 7: \ \text{Apr. 15, 2003; E=323} \\ & E_{\alpha1} = 10 \ .58 \ \text{MeV} \\ & E_{\alpha2} = 10 \ .35 \ \text{MeV} \\ & E_{\alpha3} = \ 9 \ .31 \ \text{MeV} \\ & E_{\alpha3} = \ 9 \ .31 \ \text{MeV} \\ & E_{\alpha4} = \ 9 \ .01 \ \text{MeV} \\ & E_{\alpha5} = \ 8 \ .50 \ \text{MeV} \\ & 8: \ \text{Apr. 15, 2003; E=323} \\ & E_{\alpha1} = 10 \ .96 \ \text{MeV} \\ & E_{\alpha2} = \ 2 \ .76 \ \text{MeV} \end{split}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Event Event	$\begin{array}{l} E_{\alpha2} = 10.78{\rm MeV}\\ E_{\alpha3} = 9.58{\rm MeV}\\ E_{\alpha4} = 8.81{\rm MeV}\\ 7:{\rm Apr}.15,2003;E=323\\ E_{\alpha1} = 10.58{\rm MeV}\\ E_{\alpha2} = 10.35{\rm MeV}\\ E_{\alpha3} = 9.31{\rm MeV}\\ E_{\alpha4} = 9.01{\rm MeV}\\ E_{\alpha5} = 8.50{\rm MeV}\\ 8:{\rm Apr}.15,2003;E=323\\ E_{\alpha1} = 10.96{\rm MeV}\\ E_{\alpha2} = 2.76{\rm MeV}(escE_{\alpha2} = 2.8{\rm MeV}\\ \end{array}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Event Event	$\begin{array}{l} E_{\alpha2} = 10.78{\rm MeV}\\ E_{\alpha3} = 9.58{\rm MeV}\\ E_{\alpha4} = 8.81{\rm MeV}\\ 7:{\rm Apr.}15,2003;E = 323\\ E_{\alpha1} = 10.58{\rm MeV}\\ E_{\alpha2} = 10.35{\rm MeV}\\ E_{\alpha2} = 10.35{\rm MeV}\\ E_{\alpha3} = 9.31{\rm MeV}\\ E_{\alpha4} = 9.01{\rm MeV}\\ E_{\alpha4} = 9.01{\rm MeV}\\ 8:{\rm Apr.}15,2003;E = 323\\ E_{\alpha1} = 10.96{\rm MeV}\\ E_{\alpha2} = 2.76{\rm MeV}(escE_{\rm SF} = 208{\rm MeV}\\ 9:{\rm Apr.}16.2003;E = 323\\ \end{array}$	$ \begin{array}{r} t_2 = 44.0 \ \text{ms} & - \ \text{assigned} \ \text{to} \ \ ^{268}\text{Mt} \\ t_3 = 0.442 \ \text{s} & - \ \text{assigned} \ \text{to} \ \ ^{264}\text{Bh} \\ t_4 = 48.5 \ \text{s} & - \ \text{assigned} \ \text{to} \ \ ^{264}\text{Bh} \\ t_4 = 48.5 \ \text{s} & - \ \text{assigned} \ \text{to} \ \ ^{260}\text{Db} \\ 3 \ \text{MeV}; \ \text{tof} = 47.5 \ \text{ns}; \ \text{E}(\text{EVR}) = 32.7 \ \text{MeV} \\ t_1 = 1.17 \ \text{ms} & - \ \text{assigned} \ \text{to} \ \ ^{272}\text{Rg} \\ t_2 = 38.3 \ \text{ms} & - \ \text{assigned} \ \text{to} \ \ ^{264}\text{Bh} \\ t_3 = 3.6 \ \text{ms} & - \ \text{assigned} \ \text{to} \ \ ^{264}\text{Bh} \\ t_4 = 4.87 \ \text{s} & - \ \text{assigned} \ \text{to} \ \ ^{264}\text{Bh} \\ t_5 = 45.8 \ \text{s} & - \ \text{assigned} \ \text{to} \ \ ^{266}\text{Db} \\ t_5 = 45.8 \ \text{s} & - \ \text{assigned} \ \text{to} \ \ ^{256}\text{Lr} \\ 3 \ \text{MeV}; \ \text{tof} = 46.0 \ \text{ns}; \ \text{E}(\text{EVR}) = 31.1 \ \text{MeV} \\ t_1 = 8.89 \ \text{ms} & - \ \text{assigned} \ \text{to} \ \ ^{268}\text{Mt} \\ t_3 = 0.967 \ \text{s} & - \ \text{assigned} \ \text{to} \ \ ^{264}\text{Bh} \\ 3 \ \text{MeV}; \ \text{tof} = 47.0 \ \text{ns}; \ \text{E}(\text{EVR}) = 31.1 \ \text{MeV} \\ \end{array}$
Event Event	$\begin{array}{l} E_{\alpha2} = 10 .78 {\rm MeV} \\ E_{\alpha3} = 9 .58 {\rm MeV} \\ E_{\alpha4} = 8 .81 {\rm MeV} \\ 7: {\rm Apr.} 15, 2003; E = 323 \\ E_{\alpha1} = 10 .58 {\rm MeV} \\ E_{\alpha2} = 10 .35 {\rm MeV} \\ E_{\alpha3} = 9 .31 {\rm MeV} \\ E_{\alpha4} = 9 .01 {\rm MeV} \\ E_{\alpha4} = 9 .01 {\rm MeV} \\ E_{\alpha5} = 8 .50 {\rm MeV} \\ 8: {\rm Apr.} 15, 2003; E = 323 \\ E_{\alpha1} = 10 .96 {\rm MeV} \\ E_{\alpha2} = 2 .76 {\rm MeV} ({\rm esc} \\ E_{\rm SF} = 208 {\rm MeV} \\ 9: {\rm Apr.} 16, 2003; E = 323 \\ E_{\alpha1} = 10 .6 {\rm MeV} \\ \end{array}$	$ \begin{array}{c} t_{2}=44.0 \mbox{ ms} & -\mbox{ assigned to } 2^{68} \mbox{Mt} \\ t_{3}=0.442 \mbox{ s} & -\mbox{ assigned to } 2^{64} \mbox{Bh} \\ t_{4}=48.5 \mbox{ s} & -\mbox{ assigned to } 2^{60} \mbox{Db} \\ 3\ MeV; \ tof=47.5 \mbox{ ns; } E(EVR)=32.7 \ MeV \\ t_{1}=1.17 \mbox{ ms} & -\mbox{ assigned to } 2^{72} \mbox{Rg} \\ t_{2}=38.3 \mbox{ ms} & -\mbox{ assigned to } 2^{68} \mbox{Mt} \\ t_{3}=3.6 \mbox{ ms} & -\mbox{ assigned to } 2^{64} \mbox{Bh} \\ t_{4}=4.87 \mbox{ s} & -\mbox{ assigned to } 2^{64} \mbox{Bh} \\ t_{5}=45.8 \mbox{ s} & -\mbox{ assigned to } 2^{56} \mbox{Lr} \\ 3\ MeV; \ tof=46.0 \mbox{ ns; } E(EVR)=31.1 \mbox{ MeV} \\ t_{1}=8.89 \mbox{ ms} & -\mbox{ assigned to } 2^{62} \mbox{Mt} \\ t_{3}=0.967 \mbox{ s} & -\mbox{ assigned to } 2^{64} \mbox{Bh} \\ 3\ MeV; \ tof=47.0 \mbox{ ns; } E(EVR)=31.1 \mbox{ MeV} \\ t_{4}=5.11 \mbox{ ms} & -\mbox{ assigned to } 2^{272} \mbox{Rg} \\ 1\ MeV; \ t_{2}=51.1 \mbox{ ms} & -\mbox{ assigned to } 2^{272} \mbox{Rg} \\ 1\ MeV; \ t_{3}=10.967 \mbox{ s} & -\mbox{ assigned to } 2^{272} \mbox{Rg} \\ 1\ MeV; \ t_{4}=5.11 \mbox{ ms} & -\mbox{ assigned to } 2^{272} \mbox{Rg} \\ 1\ MeV \mbox{ t} = 5.11 \mbox{ ms} & -\mbox{ assigned to } 2^{272} \mbox{Rg} \\ 1\ MeV \mbox{ t} = 5.11 \mbox{ ms} & -\mbox{ assigned t} \mbox{ ms} 2^{72} \mbox{Rg} \\ 1\ MeV \mbox{ t} = 5.11 \mbox{ ms} & -\mbox{ assigned t} \mbox{ ms} 2^{72} \mbox{Rg} \\ 1\ MeV \mbox{ t} = 5.11 \mbox{ ms} & -\mbox{ assigned t} \mbox{ ms} 2^{72} \mbox{Rg} \\ 1\ MeV \mbox{ t} = 5.11 \mbox{ ms} & -\mbox{ assigned t} \mbox{ ms} 2^{72} \mbox{Rg} \\ 1\ MeV \mbox{ t} = 5.11 \mbox{ ms} & -\mbox{ ms} \mbox{ ms} \mbox{Rg} \mbox{MeV} \mbox{ t} = 5.11 \mbox{ ms} \\ 1\ MeV \mbox{ t} = 5.11 \mbox{ ms} & -\mbox{ ms} \mbox{Rg} \mbox{ ms} \mbox{Rg} \$
Event Event	$\begin{split} & E_{\alpha2} = 10 \ .78 \ \text{MeV} \\ & E_{\alpha3} = \ 9 \ .58 \ \text{MeV} \\ & E_{\alpha4} = \ 8 \ .81 \ \text{MeV} \\ & F_{\alpha4} = \ 8 \ .81 \ \text{MeV} \\ & F_{\alpha4} = \ 8 \ .81 \ \text{MeV} \\ & F_{\alpha4} = \ 10 \ .58 \ \text{MeV} \\ & E_{\alpha2} = 10 \ .35 \ \text{MeV} \\ & E_{\alpha2} = 10 \ .35 \ \text{MeV} \\ & E_{\alpha3} = \ 9 \ .31 \ \text{MeV} \\ & E_{\alpha4} = \ 9 \ .01 \ \text{MeV} \\ & E_{\alpha4} = \ 9 \ .01 \ \text{MeV} \\ & E_{\alpha5} = \ 8 \ .50 \ \text{MeV} \\ & E_{\alpha5} = \ 8 \ .50 \ \text{MeV} \\ & E_{\alpha5} = \ 8 \ .50 \ \text{MeV} \\ & E_{\alpha2} = \ 2 \ .76 \ \text{MeV} \\ & E_{\alpha2} = \ 2 \ .76 \ \text{MeV} \ (esc\ E_{SF} = 208 \ \text{MeV} \\ & 9: \ Apr. \ 16, \ 2003; \ E = 323 \\ & E_{\alpha1} = 11 \ .06 \ \text{MeV} \\ & E_{\alpha1} = 11 \ .06 \ \text{MeV} \end{split}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Event Event	$\begin{split} & E_{\alpha2} = 10 \ .78 \ \ {\rm MeV} \\ & E_{\alpha3} = \ 9 \ .58 \ \ {\rm MeV} \\ & E_{\alpha4} = \ 8 \ .81 \ \ {\rm MeV} \\ & E_{\alpha4} = \ 8 \ .81 \ \ {\rm MeV} \\ & F_{\alpha4} = \ 8 \ .81 \ \ {\rm MeV} \\ & F_{\alpha4} = \ 8 \ .81 \ \ {\rm MeV} \\ & E_{\alpha2} = 10 \ .35 \ \ {\rm MeV} \\ & E_{\alpha2} = 10 \ .35 \ \ {\rm MeV} \\ & E_{\alpha3} = \ 9 \ .31 \ \ {\rm MeV} \\ & E_{\alpha4} = \ 9 \ .01 \ \ {\rm MeV} \\ & E_{\alpha4} = \ 9 \ .01 \ \ {\rm MeV} \\ & E_{\alpha5} = \ 8 \ .50 \ \ {\rm MeV} \\ & E_{\alpha5} = \ 8 \ .50 \ \ {\rm MeV} \\ & E_{\alpha2} = \ 2 \ .76 \ \ {\rm MeV} \\ & E_{\alpha2} = \ 2 \ .76 \ \ {\rm MeV} \ \ (esc\ E_{\rm SF} = 208 \ \ {\rm MeV} \\ & 9 \ .40cm, 10, 2003; \ E = 326 \\ & E_{\alpha1} = 11 \ .06 \ \ {\rm MeV} \\ & 9 \ .40cm, 10, 2003; \ E = 326 \\ & E_{\alpha1} = 11 \ .06 \ \ {\rm MeV} \\ & E_{\alpha2} = 10 \ .43 \ \ {\rm MeV} \\ & F_{\alpha2} = 10 \ .43 \ \ {\rm MeV} \end{split}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Event Event	$\begin{split} & E_{\alpha2} = 10 \ .78 \ \mathrm{MeV} \\ & E_{\alpha3} = \ 9 \ .58 \ \mathrm{MeV} \\ & E_{\alpha3} = \ 9 \ .58 \ \mathrm{MeV} \\ & E_{\alpha4} = \ 8 \ .81 \ \mathrm{MeV} \\ & 7: \ \mathrm{Apr}. \ 15, \ 2003; \ E = 323 \\ & E_{\alpha1} = 10 \ .58 \ \mathrm{MeV} \\ & E_{\alpha2} = 10 \ .58 \ \mathrm{MeV} \\ & E_{\alpha3} = \ 9 \ .31 \ \mathrm{MeV} \\ & E_{\alpha3} = \ 9 \ .31 \ \mathrm{MeV} \\ & E_{\alpha4} = \ 9 \ .01 \ \mathrm{MeV} \\ & E_{\alpha4} = \ 9 \ .01 \ \mathrm{MeV} \\ & E_{\alpha5} = \ 8 \ .50 \ \mathrm{MeV} \\ & 8: \ \mathrm{Apr}. \ 15, \ 2003; \ E = 323 \\ & E_{\alpha1} = 10 \ .96 \ \mathrm{MeV} \\ & E_{\alpha2} = 2 \ .76 \ \mathrm{MeV} \ (\ e \ s \ c \\ & E_{SF} = 208 \ \mathrm{MeV} \\ & 9: \ \mathrm{Apr}. \ 16, \ 2003; \ E = 323 \\ & E_{\alpha1} = 11 \ .06 \ \mathrm{MeV} \\ & E_{\alpha2} = 10 \ .43 \ \mathrm{MeV} \\ & E_{\alpha3} = \ 9 \ .50 \ \mathrm{MeV} \end{split}$	$ t_{2} = 44.0 \text{ ms} - \text{assigned to} \frac{2^{68}\text{Mt}}{2^{68}\text{Mt}} \\ t_{3} = 0.442 \text{ s} - \text{assigned to} \frac{2^{64}\text{Bh}}{2^{64}\text{Bh}} \\ t_{4} = 48.5 \text{ s} - \text{assigned to} \frac{2^{64}\text{Bh}}{2^{60}\text{Db}} \\ 3 \text{ MeV; tof=} 47.5 \text{ ns; } E(\text{EVR}) = 32.7 \text{ MeV} \\ t_{1} = 1.17 \text{ ms} - \text{assigned to} \frac{2^{72}\text{Rg}}{2^{238.3} \text{ ms}} \\ t_{3} = 3.6 \text{ ms} - \text{assigned to} \frac{2^{62}\text{Mt}}{2^{60}\text{Db}} \\ t_{3} = 4.87 \text{ s} - \text{assigned to} \frac{2^{66}\text{Bh}}{2^{60}\text{Db}} \\ t_{5} = 45.8 \text{ s} - \text{assigned to} \frac{2^{60}\text{CD}}{2^{56}\text{Lr}} \\ 3 \text{ MeV; tof=} 46.0 \text{ ns; } E(\text{EVR}) = 31.1 \text{ MeV} \\ t_{1} = 8.89 \text{ ms} - \text{assigned to} \frac{2^{72}\text{Rg}}{2^{62}\text{Mt}} \\ t_{3} = 0.967 \text{ s} - \text{assigned to} \frac{2^{62}\text{Mt}}{2^{64}\text{Bh}} \\ 3 \text{ MeV; tof=} 47.0 \text{ ns; } E(\text{EVR}) = 31.1 \text{ MeV} \\ t_{1} = 5.11 \text{ ms} - \text{assigned to} \frac{2^{72}\text{Rg}}{2^{62}\text{B}} \\ t_{3} = 1.34 \text{ s} - \text{assigned to} \frac{2^{68}\text{Mt}}{2^{64}\text{Bh}} \\ t_{3} = 1.34 \text{ s} - \text{assigned to} \frac{2^{68}\text{Mt}}{2^{64}\text{Bh}} \\ t_{3} = 1.34 \text{ s} - \text{assigned to} \frac{2^{62}\text{Rg}}{2^{64}\text{Bh}} \\ t_{3} = 2.69 \text{ s} - \text{assigned to} \frac{2^{62}\text{Rg}}{2^{64}\text{Bh}} \\ t_{3} = 1.34 \text{ s} - \text{assigned to} \frac{2^{64}\text{Bh}}{2^{64}\text{Bh}} \\ t_{3} = 1.34 \text{ s} - \text{assigned to} \frac{2^{64}\text{Bh}}{2^{64}\text{Bh}} \\ t_{3} = 3.69 \text{ s} - \text{assigned to} \frac{2^{64}\text{Bh}}{2^{64}\text{Bh}} \\ t_{3} = 1.34 \text{ s} - \text{assigned to} \frac{2^{64}\text{Bh}}{2^{64}\text{Bh}} \\ t_{3} = 1.34 \text{ s} - \text{assigned to} \frac{2^{64}\text{Bh}}{2^{64}\text{Bh}} \\ t_{3} = 1.34 \text{ s} - \text{assigned to} \frac{2^{64}\text{Bh}}{2^{64}\text{Bh}} \\ t_{3} = 2^{64}\text{Bh} \\ t_{3} = 2^{64}$
Event Event	$\begin{split} & E_{\alpha2} = 10 \ .78 \ \mathrm{MeV} \\ & E_{\alpha3} = \ 9 \ .58 \ \mathrm{MeV} \\ & E_{\alpha4} = \ 8 \ .81 \ \mathrm{MeV} \\ & E_{\alpha4} = \ 8 \ .81 \ \mathrm{MeV} \\ & F_{\alpha4} = \ 8 \ .81 \ \mathrm{MeV} \\ & E_{\alpha4} = \ 10 \ .58 \ \mathrm{MeV} \\ & E_{\alpha3} = \ 9 \ .31 \ \mathrm{MeV} \\ & E_{\alpha3} = \ 9 \ .31 \ \mathrm{MeV} \\ & E_{\alpha4} = \ 9 \ .01 \ \mathrm{MeV} \\ & E_{\alpha5} = \ 8 \ .50 \ \mathrm{MeV} \\ & E_{\alpha5} = \ 8 \ .50 \ \mathrm{MeV} \\ & E_{\alpha5} = \ 8 \ .50 \ \mathrm{MeV} \\ & E_{\alpha5} = \ 2 \ .76 \ \mathrm{MeV} \ (esc) \\ & E_{SF} = 208 \ \mathrm{MeV} \\ & 9 \ .91 \ .16 \ .2003; \ E = 323 \\ & E_{\alpha1} = 11 \ .06 \ \mathrm{MeV} \\ & E_{\alpha2} = 10 \ .43 \ \mathrm{MeV} \\ & E_{\alpha3} = \ 9 \ .50 \ \mathrm{MeV} \\ & E_{\alpha4} = \ 9 \ .10 \ \mathrm{MeV} \\ & E_{\alpha4} = \ 9 \ .10 \ \mathrm{MeV} \end{split}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Continued on next page

Adopted Levels (continued)

Event	10: Apr. 30, 2003; E=320	0 MeV; tof=47.5 r	ns; E(EVR)=31.0 M	MeV.
	$E_{\alpha 1} = 10.21 \text{ MeV}$	t ₁ =1.00 ms	- assigned to	272 Rg
	$E_{\alpha 2} = 10.03 \text{ MeV}$	$t_{2} = 8.81 \text{ ms}$	- assigned to	$2^{68}Mt$
	$E_{SE} = 206 \text{ MeV}$	t ₃ =4.93 s	- assigned to	²⁶⁴ Bh
Event	11: May 6, 2003; E=320	MeV; tof=47.8 ns	; E(EVR)=32.2 M	eV
	$E_{\alpha 1} = 10.85 \text{ MeV}$	$t_1 = 0.773 \text{ ms}$	- assigned to	272 Rg
	$E_{\alpha 2} = 10.34 \text{ MeV}$	$t_2 = 32.4 \text{ ms}$	- assigned to	^{268}Mt
	$E_{\alpha,3} = 8.87 \text{ MeV}$	t ₃ =1.91 s	- assigned to	o ²⁶⁴ Bh
	$E_{\alpha 4} = 8.50 \text{ MeV}$	$t_4 = 21.0$ s	- assigned to	o ²⁶⁰ Db
Event	12: May 8, 2003; E=320	MeV; tof=47.0 ns	; E(EVR)=32.4 M	eV
	$E_{\alpha 1} = 11.00 \text{ MeV}$	$t_1 = 6.92 \text{ ms}$	- assigned to	272 Rg
	$E_{\alpha 2} = 10.58 \text{ MeV}$	$t_2 = 35.5 \text{ ms}$	- assigned to	^{268}Mt
	$E_{\alpha,3} = 9.34 \text{ MeV}$	$t_3 = 1.00 \text{ s}$	- assigned to	o ²⁶⁴ Bh
	$E_{\alpha 4} = 9.14 \text{ MeV}$	t ₄ =1.14 s	- assigned to	o ²⁶⁰ Db
	$E_{\alpha,5} = 8.47 \text{ MeV}$	t ₅ =38.6 s	- assigned to	^{256}Lr
Event	13: May 8, 2003; E=323	MeV; tof=44.8 ns	; E(EVR)=28.9 M	eV
	$E_{\alpha 1} = 11.01 \text{ MeV}$	$t_1 = 6.84 \text{ ms}$	- assigned to	272 Rg
	$E_{\alpha 2} = 9.40 \text{ MeV}$	$t_2 = 37.2$ ms	- assigned to	^{268}Mt
	$E_{\alpha 3} = 9.56 \text{ MeV}$	$t_3 = 1.23$ s	- assigned to	o ²⁶⁴ Bh
	$E_{\alpha 4} = 8.29 \text{ MeV}$	$t_4 = 0.334$ s	- assigned to	o ²⁶⁰ Db
Event	14: May 12, 2003; E=323	3 MeV; tof=47.8 n	ns; E(EVR)=33.0 M	/leV
	$E_{\alpha 1} = 11.08 \text{ MeV}$	$t_1 = 4.46 ms$	- assigned to	272 Rg
	$E_{\alpha 2} = 10.28 \text{ MeV}$	t ₂ =3.35 ms	- assigned to	o ²⁶⁸ Mt
	$E_{\alpha 3} = 9.63 \text{ MeV}$	t ₃ =0.81 s	- assigned to	o ²⁶⁴ Bh
	$E_{\alpha 4} = 9.13 \text{ MeV}$	$t_4 = 2.42$ s	- assigned to	o ²⁶⁰ Db
	$E_{\alpha 5} = 8.63 \text{ MeV}$	$t_5 = 6.85$ s	- assigned to	0 ²⁵⁶ Lr
Projec	tile energies in parenthe	ses are uncertain	due to target de	terioration.

Theory: see Nuclear Science References.

Assignment: ²⁰⁹Bi(⁶⁴Ni,n) E=318 and 230 MeV (1995Ho04), 320 MeV (2002Ho11), and 320, 323, and 326 MeV (2004Mo26). ²⁰⁸Pb(⁶⁵Cu,n) E=321 MeV (2004Fo08). IUPAC/IUPAP JWP assessment (2003Ka71): priority of discovery of Z=111 by 1995Ho04 is now confirmed owing to additional convincing observations reported in 2002Ho11. The work of 2004Fo08 and 2004Mo26 provide further support to ²⁷²Rg through its decay to the previously unknown daughters ²⁶⁸Mt and ²⁶⁴Bh to the known nuclides ²⁶⁰Db and ²⁶⁸Lr (evaluators).

²⁷²Rg Levels

E(level)	T _{1/2}	Comments	
x	3.8 ms +14-8	$ \begin{split} &J\pi: \ \Omega(p)=9/2-; \ \Omega(n)=3/2+ \ from \ 1997Mo25 \ (theory). \\ &T_{1/2}: \ from \ average \ t_1=5.5 \ ms \ (14 \ events. 1 \ \sigma. \ 2004Mo26). \ Others: \ 1.6 \ ms \ +11-5 \ from \ average \ t_1=2.3 \ ms \ (5 \ events. 1 \ \sigma. \ 2002Ho11); \ 3.0 \ ms \ +9-6 \ from \ average \ t_1=4.3 \ ms \ (21 \ events. 1 \ \sigma. \ Evaluators). \\ &T_{1/2}(\text{calc.})=0.20 \ ms \ from \ Viola-Seaborg \ systematics \ for \ Q(\alpha)=11.15 \ MeV. \\ &An \ assignment \ to \ s.s. \ is \ possible; \ however, \ being \ an \ odd-odd \ nucleus \ long-lived \ isomeric \ states \ are \ likely \ as \ may \ be seen \ from \ the \ variation \ in \ half-lives \ from \ the \ data. \ Redundancy \ in \ \alpha \ energies \ has \ been \ achieved \ in \ the \ case \ of \ 5 \ events \ (chains \ 2, \ 9, \ and \ 12-14). \ The \ average \ value \ for \ these \ events \ was \ E\alpha=11045 \ keV \ 35 \ in \ agreement \ with \ the \ average \ from \ 2002Ho11 \ for \ two \ redundant \ events \ of \ 11027 \ keV \ 20. \\ &\%\alpha=100. \\ &\%\alpha: \ 21 \ \alpha$ -decay \ events \ observed \ in \ four \ experiments; \ no \ SF \ decay \ reported. \\ &\beta_2(theory): \ 0.221 \ from \ 1995Mo29; \ 0.227 \ from \ 2003Mu15; \ 0.240 \ from \ 2005GaZX. \end{split}	
		 T_{1/2}(calc.)=0.20 ms from Viola-Seaborg systematics for Q(α)=11.15 MeV. An assignment to g.s. is possible; however, being an odd-odd nucleus long-lived isomeric states are likely as may be seen from the variation in half-lives from the data. Redundancy in α energies has been achieved in the case of 5 events (chains 2, 9, and 12-14). The average value for these events was Eα=11045 keV 35 in agreement with the average from 2002Holl for two redundant events of 11027 keV 20. %α=100. %α: 21 α-decay events observed in four experiments; no SF decay reported. β₂(theory): 0.221 from 1995Mo29; 0.227 from 2003Mu15; 0.240 from 2005GaZX. 	

Adopted Levels: Not Observed

 $Q(\beta^{-})=-2730 SY; S(n)=5340 SY; S(p)=3610 SY; Q(\alpha)=9900 SY 2003Au03.$

 $Q(\beta^{-})\text{:}$ estimated uncertainty=970 keV.

 $S(n) {:}\ estimated \ uncertainty {=}\ 1010 \ keV.$

S(p): estimated uncertainty=1030 keV.

 $Q(\alpha)$: estimated uncertainty=500 keV.

The data of 1999Ni03 cited by 2000Fi12 have been retracted (2002Ni10) and have not been confirmed in a repeated experiment at LBNL (2003Gr26). Also, 2001MoZU and 2000HoZZ found no evidence for ²⁹³118 in ²⁰⁸Pb(⁸⁶Kr,n) reaction at 457.6 MeV (2001MoZU) and at 453.9 and 456.7 MeV (2000HoZZ). The statistical analysis of 2000Sc26 also indicate that the data of 1999Ni03 do not originate from radioactive decays with an error probability of less than 5%. 2003Au02 suggest $J\pi=3/2+$ based on systematics.

Adopted Levels

 $Q(\beta^{-})=-4490; S(n)=5700 SY; S(p)=2520 SY; Q(\alpha)=11370 50 2003Au03.$ $Q(\beta^{-})$: estimated uncertainty=620 keV. S(n): estimated uncertainty=660 keV. S(p): estimated uncertainty=500 keV. Q(a): from Ea=11.20 MeV 2 (2002Holl) assuming g.s. to g.s. transition. 1996Ho13: daughter of ²⁷⁷112 produced by ²⁰⁸Pb(⁷⁰Zn,n), E=343.8 MeV (E*=10.1 MeV; σ=1.0 pb +18-4) at GSI/SHIP. Two α -decay chains observed; first event (dated 1st feb 1996) retracted by 2002Ho11; σ revised to 0.4 pb +9-3. See 277112 Adopted Levels for details. 1996La12: 273 Ds produced by 244 Pu(34 S,5n) E=190 MeV at Dubna using DGFRS in collaboration with LLNL. 15 candidate α chains of the ²⁷³Ds type were observed. Final candidate a chains reported were: Chain 1: Energy of evaporation residual=6.39 MeV (FWHM of α 's 140 keV) E(α1)=11.35 MeV 6 t₁=394 μs - ²⁷³Ds candidate - ²⁶⁹Hs not detected - ²⁶⁵Sg candidate $E(\alpha 3) = 8.63 \text{ MeV} 6 t_3 = 158 \text{ s}$ $E(\alpha 4) = 8.22 \text{ MeV} 6 t_4 = 384 \text{ s}$ - ²⁶¹Rf candidate Chain 2: Energy of evaporation residual=3.81 MeV (FWHM of α's 120 keV) $E(\alpha 1) = 11.72 \text{ MeV} 6 \text{ t}_1 = 13.2 \text{ ms} - {}^{273}\text{Ds} \text{ candidate}$ - ²⁶⁹Hs not detected - ²⁶⁵Sg candidate $E(\alpha 3) = 8.86 \text{ MeV} 6 t_{2} = 43 \text{ s}$ Chain 3: Energy of evaporation residual=5.65 MeV $E(\alpha 1) = 10.57 \text{ MeV} 6 \text{ t}_1 = 94.4 \text{ ms} - {}^{273}\text{Ds} \text{ candidate}$ - ²⁶⁹Hs not detected $E(\alpha 3) = 8.71 \text{ MeV} 6 t_3 = 31 \text{ s}$ - ²⁶⁵Sg candidate Chain 4: Energy of evaporation residual=4.78 MeV - Unidentified $E(\alpha) = 10.72 \text{ MeV} 6 \text{ t} = 125 \mu \text{s}$ $E(\alpha) = 6.72 \text{ MeV} 6 \text{ t} = 532 \text{ s}$ - Unidentified $E(\alpha) = 8.27 \text{ MeV} 6 t = 442 \mu s$ - Unidentified Chain 5: Energy of evaporation residual=3.72 MeV Ε(α1)=10.85 MeV 6 t₁=1.3 ms - ²⁷³Ds candidate - ²⁶⁹Hs candidate $E(\alpha 2) = 9.81 \text{ MeV} 6 t_2 = 1.7 \text{ s}$ $E(\alpha 3) = 8.51 \text{ MeV } 6 \text{ t}_3 = 73 \text{ s}$ - ²⁶⁵Sg candidate - ²⁶¹Rf candidate $E(\alpha 4) = 8.20 \text{ MeV } 6 \text{ t}_4 = 117 \text{ s}$ - ²⁵⁷No candidate $\mathbf{E}\left(\,\alpha\,5\,\right)=~8\,.\,2\,9~\mathrm{MeV}~6~\mathrm{t}_{5}\!=\!1\,4\,6~\mathrm{s}$ Chain 1 best fit the expected implantation pattern in the position-sensitive detector array and was assigned to

²⁷³Ds by 1996La12 based on various considerations (see paper for details). A conservative estimate of the expected number of random four-fold correlations with similar properties is 0.006; this very small but non-zero value allows for possibility that the observed event sequence is of random origin.

Chain 2 also displayed the ²⁷³Ds implantation/decay pattern but had several problems associated with it. 1998Ho13: from $Q(\alpha)$ systematics and comparison to theoretical binding calculations, 1998Ho13 conclude that ²⁷⁷112 of chain 2 (1996Ho13) was produced in the deformed ground state and populates the deformed ground state of the daughter. See ²⁷⁷112 Adopted Levels for details.

IUPAC/IUPAP 2001 JWP findings: 1996La12 included for illustrative purposes. See ²⁷⁷112 Adopted Levels for conclusions regarding 1996Ho13.

2002Holl: daughter of 277 112. The experiment of 1996Hol3 was redone at GSI/SHIP. The 208 Pb(70 Zn,n) reaction was again used at projectile energies of 346.1 MeV (E*=12.0 MeV; σ =0.5 pb +11-4; 1 event) and 343.8 MeV (E*=10.1 MeV; σ <2.6 pb; 0 events). One EVR- α 1- α 2- α 3- α 4-SF event observed. Retracted first observed by 1996Hol3. See 277 112 Adopted Levels for details.

IUPAC/IUPAP 2003 JWP (2003Ka71): although the referenced chain's (1996La12) ²⁷³112 α energy agrees with that seen by 2002Ho11, the two α 's have delay times at sharp variance with the literature values for ²⁶⁵Sg and ²⁶¹Rf. See also ²⁷⁷112 Adopted Levels for conclusions for Z=112.

2004MoZU: daughter of $^{277}112$. Confirmatory experiments performed by the Japanese group at RIKEN with $^{208}Pb(^{70}Zn,^{1}n)$, E=345.9 MeV (σ =0.44 pb +59-29). Two EVR- α 1- α 2- α 3- α 4-SF events observed. Confirmed results of 2002Ho11. See $^{277}112$ Adopted Levels for details.

Other: 2000OgZS.

Theory: see Nuclear Science References.

Assignment: daughter of ²⁷⁷112 produced by ²⁰⁸Pb(⁷⁰Zn,n) E=343.8 MeV (1996Ho13), 346.1 MeV (2002Ho11), 345.9 MeV (2004MoZU). The ²⁷⁷112 decay chain seems to be well established through ²⁶⁵Sg; see ²⁷⁷112 Adopted Levels for details. In the ²⁷³Ds decay chain reported by 1996La12, the ²⁶⁹Hs daughter was not observed and the lifetimes of ²⁶⁵Sg and ²⁶¹Rf seem unusually long.

Adopted Levels (continued)

$^{273}\mathrm{Ds}$ Levels

2000Fi12 adopted a 0.18-ms state as the possible g.s. of ^{273}Ds and an $\approx 120-ms$ state based on the α chains reported by 1996Ho13. 2003Au02 adopted a 0.32 ms 28 g.s. (J\pi=13/2- from syst) a possible 198 keV 20 isomeric state $(T_{1/2}=120$ ms. $J\pi=3/2+$ from syst), and a possible state at 290 keV 40 based on 2000Fi12. However, the first of the two chains reported by 1996Ho13 was subsequently retracted by 2002Ho11.

$Cross \ Reference \ (XREF) \ Flags$

A $^{277}112\ \alpha$ Decay

E(level)	XREF	T _{1/2}	Comments
0.0	A	0.17 ms +17-6	1998Ho13 conclude that the ²⁷⁷ 112 parent was produced in the deformed ground state and populates the deformed ground state of the daughter. $J\pi$: 2003Au02 suggest 13/2- based on systematics. $T_{1/2}$: from τ =0.245 ms (arithmetic mean of 0.110 ms (1996Ho13), 0.310 ms (2002Ho11), and 0.52 ms and 0.040 ms (2004MoZU)); uncertainty estimated by the evaluators. $T_{1/2}(calc)=31.4 \ \mu s$ from Viola-Seaborg systematics for $Q(\alpha)=11.370$ MeV. Other: τ =0.394 ms (1996La12). % α =100. % α : from 5/5 events. β_2 (theory): 0.222 from 1995Mo29; 0.221 from 2003Mu15; 0.227 from 2005GaZX.
283? 58	Α		

²⁷⁷112 α Decay 1996Ho13,2002Ho11,2004MoZU

Parent ²⁷⁷112: E=0; J\pi=?; T_{1/2}=0.69 ms +69-24; Q(g.s.)=11594 55; $\%\alpha$ decay≈100. ²⁷⁷112: 1998Ho13 conclude that the ²⁷⁷112 parent was produced in the deformed ²⁷³Ds: ground state and populates the deformed ground state of the daughter.

²⁷⁷112 -J: 2003Au02 suggest 3/2+ based on systematics.

See ²⁷⁷112 Adopted Levels for details.

²⁷³Ds Levels

E(level)	T _{1/2}	Comments
0.0	0.17 ms +15	-6 1998Ho13 conclude that the 277 112 parent was produced in the deformed ground state and populates the deformed ground state of the daughter.
		$T_{1/2}$: from the adopted levels.
283? 58		E(level): from $\Delta E(\alpha)$.
		α radiations
Eα [†]	E(level)	Comments
11164§ 22	283?	$E\alpha :$ weighted av (ext) of 11.17 MeV 2 (2002Ho11) and 11.09 MeV 7 (2004MoZU).
11427 54	0.0	Eα: weighted av (ext) of 11454 keV 20 (1996Ho16) and 11.32 MeV 4 (2004MoZU).

[†] From the energy difference of 284 keV 28 between the data of 1996Ho13 and 2002Ho11 and a similar difference between the two $transitions \ reported \ by \ 2004 MoZU, \ the \ evaluators \ suggest \ that \ two \ transitions \ have \ been \ observed.$

§ Existence of this branch is questionable.

S(n)=6180 SY; S(p)=910 SY; Q(α)=11320 70 2003Au03,2004Mo42. S(n): estimated uncertainty=860 keV. S(p): estimated uncertainty=630 keV. Q(α): from Eα=11.15 MeV 7 (2004Mo42). Other: 11.6 MeV 3 (2003Au03. Syst.). 2004Mo42: cold fusion experiment done at RIKEN in collaboration with Chinese scientists in 2003/2004. Reaction: ²⁰⁹Bi(⁷⁰Zn,n) at a beam energy of 352.6 MeV provided by RILAC corresponding to an energy at target center of 349 MeV. The absolute accuracy of the beam energy was ±0.6 MeV. The production cross-section was 55 fb +150-45. See $^{278}113$ Adopted Levels for experimental details. Event #1: Energy of the evaporation residue=36.75 MeV assigned to ²⁷⁸113 $E_{\alpha 1} = 11.68 \text{ MeV} 4$ t₁=344 μs E_{α2}=11.15 MeV 7 $t_2 = 9.26$ ms assigned to ²⁷⁴Rg $E_{\alpha 3} = 10.03 \text{ MeV} 7$ $t_3 = 7.16$ ms assigned to ²⁷⁰Mt _ $t_4 = 2.47 s$ $E_{\alpha 4} = 9.08 \text{ MeV} 4$ assigned to ²⁶⁶Bh assigned to ²⁶²Db E(SF) = 204.1 MeVt(SF)=40.9 s -Other: see 1998Ho13, 1999GrZM, and 1999HoZV for experiments producing Z=113. Theory: see Nuclear Science References. Assignments: the assignments are the most probable ones for the reaction. Also, the identification of the parent as 278 113, α -decay daughter 274 Rg, and grand-daughter 270 Mt, are all rendered plausible following a consistent comparison of the 4th and 5th events with known descendents. The observation of each isotope in the sequence should be considered as tentative and pending confirmation. ²⁷⁴Rg Levels Cross Reference (XREF) Flags A ²⁷⁸113 α Decay: Tentative E(level)XREF Comments x ? Α J π : $\Omega(p)=3/2-$; $\Omega(n)=13/2-$ from 1997Mo25 (theory). $T_{1/2}=6.4 \text{ ms} + 307-29.$ $T_{1/2}$: from $\Delta t=9.26$ ms; uncertainty estimated by the evaluators. $T_{1/2}(calc)=79$ µs from Viola-Seaborg systematics for $Q(\alpha){=}11.315~MeV.$ $\%\alpha \approx 100$. $\%\alpha$: assumed from 1/1 event. β_{2} (theory): 0.222 from 1995Mo29; 0.226 from 2003Mu15; 0.222 from 2005GaZX. ²⁷⁸113 α Decay: Tentative 2004Mo42 Parent ²⁷⁸113: E=x; Jπ=?; T_{1/2}=0.2 ms +12-2; Q(g.s.)=11850 40; %α decay≈100. $^{278}113 - T_{1/2}$: 0.24 ms +114-11 (2004Mo42). $^{278}113 - Q(\alpha)$: from 2004Mo42. See ²⁷⁸113 Adopted Levels for details. ²⁷⁴Rg Levels E(level)Comments T_{1/2}=6.4 ms +307-29. x? E(level), T1/2: from the Adopted Levels. α radiations Eα E(level) Comments 11680 \$ 40 Eα: from 2004Mo42. x? [‡] Existence of this branch is questionable.

 $^{275}_{108}\mathrm{Hs}_{167}$ -1

 $Q(\beta^{-}) = -3290 \ SY; \ S(n) = 5540 \ SY; \ S(p) = 4020 \ SY; \ Q(\alpha) = 9440 \ 70 \ 2003 Au 03, 2004 Og 12.$

 $Q(\beta^-) \text{: estimated uncertainty=740 keV.}$

S(n): estimated uncertainty=960 keV.

S(p): estimated uncertainty=1060 keV.

 $Q(\alpha): \mbox{ from } E\alpha \mbox{=} 9.30 \mbox{ MeV } 7$ (2004Og12). Other: 9.2 MeV 3 (2003Au03. Syst.).

2004Og12,2004OgZZ: as α decay product of ²⁸⁷114 (15 events) and ²⁸³112 (7 events). See for ²⁸⁷114 and ²⁸³112 Adopted Levels for details. ²⁸⁷114 was synthesized using ²⁴²Pu+⁴⁸Ca at beam energies of 235, 238 and 244 MeV with 5 measurements made at each energy. ²⁸³112 was observed using ²³⁸U+⁴⁸Ca at 230 and 234 MeV. One special case attributed to ²⁸⁷114 in the ²⁴²Pu reaction at a beam energy of 244 MeV, lasting for 6.5 min, of the type EVR- α 1- α 2- α 3- α 4-SF warrants mention. Generally, α decay is blocked below ²⁷⁹Ds which fissions rather than α decays (% α =10). The evaluators suggest that this longer chain which terminates with ²⁷¹Sg may, if confirmed, be one incidence of this 10% branch. The α energy for ²⁷⁹Ds from this event is 9.7 MeV 6 with a lifetime of 0.2831 s. Another exception to the fissioning of ²⁷⁹Ds appears in the case of a similar EVR- α 1- α 2- α 3- α 4-SF event originating from ²⁸³112 in the ²³⁸U reaction at 234 MeV. Here, the sequence ends with the fission of ²⁶⁷Rf. The α energy for ²⁷⁹Ds from this event is 9.8 MeV 3 with a lifetime of 0.2775 s. Although both exceptions require further investigation, their radioactive properties agree well with each other and the evaluators suggest that if confirmed, they could represent the 10% α decay branch for ²⁷⁹Ds.

2005Gr19, 2002Lo15: no EVR- α - α correlations with $\Delta t(EVR-\alpha)<20$ s or $\Delta t(\alpha-\alpha)<20$ s were observed in any of the ⁴⁸Ca + ²³⁸U irradiations. See ²⁸³112 Adopted Levels for details.

Theory: see Nuclear Science References.

Assignment: the assignments for Z=112, Z=114 (and Z=116) and their daughters are based on measured excitation functions and in some cases consistency of observed properties produced by cross-bombardments. In particular, the decay properties of ²⁸³112 are consistent through the various measurements using the DGFRS, independent of whether they were observed as primary nuclei or as α decay daughters of parents one (Z=114) or two (Z=116) 'levels' up. In the case of ²⁸⁷114, the second α in the decay chain has an energy of 9.54 MeV 6 which agrees well with the four measured α 's (2004Og07, 2004Og12) in 11 out of 14 cases. The other three α energies are 8.94, 9.36 and 9.32 MeV which the experimenters suggest may be indicative of transitions to different excited states in the daughter nucleus ²⁷⁹Ds. These two papers are identical in most respects. 2004OgZZ report more statistics in a few cases. Note that 2005Gr19 did not observe any SF decays or EVR- α - α correlations in any ⁴⁸Ca + ²³⁸U irradiations.

²⁷⁵Hs Levels

Cross Reference (XREF) Flags

A $^{279}\mathrm{Ds}$ α Decay: Tentative

E(level)	XREF	T_1/2	Comments
x ?	Α	0.15 s +27-6	 Jπ: Ω(n)=3/2+ from 1997Mo25 (theory). T_{1/2}: from 2 half-lives/2 α events (2004Og12). T_{1/2}(calc)=0.81 s from Viola-Seaborg systematics for Q(α)=9.44 MeV. %α=100. %α: assumed from 2/2 events. β₂(theory): 0.183 from 1995Mo29; 0.211 from 2003Mu26; 0.195 from 2005GaZX.
Pare	nt ²⁷⁹ Ds:	E=x; Jπ=?; T _{1/2} =0.1	279Ds α Decay: Tentative 2004Og12 8 s +5-3; Q(g.s.)=9840 60; %α decay≈10.0.
Pare 279n	nt ²⁷⁹ Ds:	$E=x; J\pi=?; T_{1/2}=0.1$	8 s +5-3; Q(g.s.)=9840 60; % α decay≈10.0.

²⁷⁹Ds-T_{1/2}: from 2004Og12.
 ²⁷⁹Ds-Q(α): from 2004Og12.

²⁷⁵Hs Levels

E(level)

x?

 $\frac{T_{1/2}}{0.15 \text{ s } +27-6}$

Comments

. . .

²⁷⁹Ds a Decay: Tentative 2004Og12 (continued)

 α radiations

Eα E(level)

Comments

9700[‡] 60 x? Εα: from 2004Og12.

 \ddagger Existence of this branch is questionable.

 $Q(\beta^{-}) = -3290 \ SY; \ S(n) = 7000 \ SY; \ S(p) = 2150 \ SY; \ Q(\alpha) = 10480 \ 90 \ 2003 Au 03, 2004 Og 03.$

 $Q(\beta^-) \text{: estimated uncertainty=740 keV.}$

S(n): estimated uncertainty=810 keV.

S(p): estimated uncertainty=880 keV.

 $Q(\alpha): \mbox{ from } E\alpha \mbox{=} 10.33 \mbox{ MeV } 9$ (2004Og03). Other: 10.12 MeV 20 (2003Au03. Syst).

2003OgZY, 2004Og03: identification of new nuclides: ²⁸⁷115, ²⁸⁸113, ²⁷⁹Rg, ²⁷⁵Mt and ²⁶⁷Db. Reaction: ²⁴³Am(⁴⁸Ca,4n) E=253 MeV corresponding to an excitation energy of 42.4 to 46.5 MeV at the target center. ²⁸⁷115 was formed at a cross-section of 0.9 pb +32-8. The target was 99% enriched ²⁴³Am. Experiments were done at the U400 cyclotron with the DGFRS at FLNR, JINR in collaboration with LLNL, USA. The evaporation residues recoiling from the target were separated by DGFRS in flight from the ⁴⁸Ca beam ions, scattered particles and transfer-reaction products.

Detection system: multiwire proportional counter for tof measurement; semi-conductor focal-plane detector array with 12 vertical position- sensitive strips, which measured the decay of the implanted recoils. This detection system surrounded by eight side detectors with no position sensitivity. The α spectrum was measured in the range 9.6 to 11.0 MeV. Resolution: FWHM=60-100 keV for α particles absorbed in the focal-plane detector. 140-200 keV for α 's escaping the focal-plane detector and registered by the side detectors.

Results: one decay chain with four consecutive α decays detected in a time interval of 0.5 s (in the beam-off mode) terminated by an SF event with a release of kinetic energy of 206 MeV. This event was assigned to ²⁴³Am(⁴⁸Ca,4n) channel with the production of the parent nuclide ²⁸⁷115. The fourth event in the sequence was ²⁷⁵Mt whose properties appear below.

Energy of the evaporation residue=12.2 MeV

 $E_{\alpha} = 10330$ keV t = 14 ms - assigned to ^{275}Mt

Theory: 1997Mo25, 2003Mu15, 2003Ge09, 2004Ba86, 2004GuZW and Nuclear Science References.

Assignment: the identification of Z=115 and 113 and all associated nuclides in the chain should be treated as tentative until confirmed by independent experiments.

$^{275}\mathrm{Mt}$ Levels

Cross Reference (XREF) Flags

A 279 Rg α Decay: Tentative

Comments

XREF

A

E(level)

x ?

 $\begin{array}{l} J\pi: \ \Omega(p) = 11/2 + \ from \ 1997 Mo25 \ (theory). \\ T_{1/2} = 9.7 \ ms \ +460 - 44 \ (2004 Og 03). \\ T_{1/2}: \ T_{1/2} (calc) = 2.3 \ ms \ from \ Viola - Seaborg \ systematics \ for \ Q(\alpha) = 10.48 \ MeV. \\ \%\alpha = 100. \\ \%\alpha: \ assumed \ from \ one \ event. \\ \beta_2(theory): \ 0.212 \ from \ 1995 Mo29; \ 0.215 \ from \ 2003 Mu26; \ 0.202 \ from \ 2005 GaZX. \end{array}$

²⁷⁹Rg α Decay: Tentative 2003OgZY,2004Og03

Parent $^{279}\text{Rg: E=x; } J\pi=?; \ T_{1/2}=0.17 \text{ s} +81-8; \ Q(g.s.)=10520 \ 160; \ \%\alpha \ decay=100. \\ ^{279}\text{Rg}-T_{1/2}: \ from \ 2004Og03. \\ ^{279}\text{Rg}-Q(\alpha): \ from \ 2004Og03. \\ \text{See } \ ^{279}\text{Rg} \ Adopted \ Levels \ for \ details. }$

²⁷⁵Mt Levels

E(level)		Comments
x ?	$T_{1/2}=9.7 \text{ ms}$ E(level), $T_{1/2}$:	+460-44. from the Adopted Levels.
		α radiations
Εα	E(level)	Comments
10370 160	x?	Eq: from 2004Og03.

309

 $Q(\beta^{-})=-1750 \ SY; \ S(n)=5730 \ SY; \ S(p)=2440 \ SY; \ Q(\alpha)=9850 \ 60 \ 2003 Au 03, 2004 Og 03.$

 $Q(\beta^{-})\text{: estimated uncertainty=910 keV.}$

S(n): estimated uncertainty=900 keV.

S(p): estimated uncertainty=990 keV.

 $Q(\alpha): \mbox{ from } E\alpha \mbox{=} 9.71 \mbox{ MeV } 6 \mbox{ (2004Og03). Other: } 9.8 \mbox{ MeV } 3 \mbox{ (2003Au03. Syst.).}$

2003OgZY and 2004Og03: identification of new nuclides: ²⁸⁸115, ²⁸⁴113, ²⁸⁰Rg, ²⁷⁶Mt, ²⁷²Bh, and ²⁶⁸Db. ²⁷⁶Mt observed as great-granddaughter of 288115.

Reaction: ²⁴³Am(⁴⁸Ca,3n) E(lab)=248 MeV corresponding to an excitation energy of 38.0 to 42.5 MeV at the target center. Experiments performed by the Dubna-LLNL collaboration. Z=115 was formed at a cross-section of 2.7 pb +48-16.

Experiments were done at the U400 cyclotron with the Dubna gas-filled recoil seperator (DGFRS) at FLNR-JINR in collaboration with LLNL, USA. The EVR's recoiling from the target were separated by DGFRS in flight from the ²⁴³Am+⁴⁸Ca beam ions, scattered particles, and transfer-reaction products with a transmission efficiency of 35% for Z=115 nuclei.

Detection system: multiwire proportional counter for tof measurement; semi-conductor focal-plane detector array with 12 vertical position-sensitive strips, which measured the decay of the implanted recoils. This detection system surrounded by eight side detectors with no position sensitivity. The α spectrum was measured in the range 9.6 to 11.0 MeV. The resolution of the detector system was FWHM=60-100 keV for α particles absorbed in the focal-plane detector; 140-200 keV for α 's escaping the focal-plane detector and registered by the side detectors.

Three similar decay chains with five consecutive α decays were detected in a time interval of 20 s (in the beam-off mode following the first recoil expected to belong to Z=115) terminated by an SF event with a release of total kinetic energy of \approx 220 MeV. These events were assigned to the (48 Ca,3n) channel with the production of the parent nuclide 288 115; the fourth event in the chain was assigned to 276 Mt. Properties of 276 Mt from the three chains are listed below by event.

Event #1: Energy of the evaporation residue=10.4 MeV

 ${
m E}_{lpha}$ = 9650 keV t = 1.055 s – assigned to $^{276}{
m Mt}$

- Event #2: Energy of the evaporation residue=11.0 MeV E_{α} =9800 keV t=0.249 s - assigned to ²⁷⁶Mt
- Event #3: Energy of the evaporation residue=9.1 MeV

E_α=9740 keV t=1.834 s – assigned to ²⁷⁶Mt

Theory: 1997Mo25, 2003Mu15, 2003Ge09, 2004Ba86, 2004GuZW and Nuclear Science References.

Assignment: descendent of ²⁸⁸115 produced by ²⁴³Am(⁴⁸Ca,3n) E=248 MeV (2003OgZY,2004Og03) and E=243 MeV, chem (2004DmZZ). The evaluators suggest that 2004DmZZ offers independent support to the synthesis of ²⁸⁸115 (2004Og03) having precisely determined the atomic number for Z=105 by isolation of Group V elements. The properties are in agreement with ²⁶⁸Db measured in the three chains seen earlier by 2004Og03, thereby providing evidence in favor of the synthesis of ²⁸⁸115 and daughters. However, since the identification relies on the measurement of SF fragments, the possibility that the observed nucleus is actually ²⁶⁸Rf following (undetected) ε from the parent ²⁶⁸Db, cannot be excluded.

²⁷⁶Mt Levels

Cross Reference (XREF) Flags

A ²⁸⁰Rg α Decay: Tentative

E(level)	XREF	T _{1/2}	Comments
x ?	Α	0.72 s +87-25	$\begin{array}{l} J\pi;\; \Omega(p){=}11/2{+};\; \Omega(n){=}5/2{+} \;\; from\;\; 1997Mo25\;\; (theory).\\ T_{1/2};\; T_{1/2}(calc){=}0.11\;\; s\;\; from\;\; Viola-Seaborg\;\; systematics\;\; for\;\; Q(\alpha){=}9.85\;\; MeV.\\ \%\alpha{=}100.\\ \%\alpha:\; assumed\;\; from\;\; three\;\; events.\\ \beta_2(theory):\; 0.202\;\; from\;\; 1995Mo29;\;\; 0.211\;\; from\;\; 2003Mu26;\; 0.193\;\; from\;\; 2005GaZX. \end{array}$

²⁸⁰Rg a Decay: Tentative 2004Og03

Parent $^{280}\text{Rg: E=x; }J\pi=?; \ T_{1/2}=3.6 \ s \ +43-13; \ Q(g.s.)=9870 \ 60; \ \%\alpha \ decay\approx100. \ ^{280}\text{Rg}-T_{1/2}; \ from \ 2004\text{Og}03. \ ^{280}\text{Rg}-Q(\alpha): \ from \ 2004\text{Og}03.$

See $^{280}\mathrm{Rg}$ Adopted Levels for details.

²⁸⁰Rg α Decay: Tentative 2004Og03 (continued)

²⁷⁶Mt Levels

E(level)	T_1/2	Comments
x	0.72 s +87-2	E E(level), $T_{1/2}$: from the Adopted Levels.
		α radiations
Εα	E(level)	Comments
9750 60	x E	Ca: from 2004Og03.

Adopted Levels: Not Observed

- $Q(\beta^-) = -2400 \ SY; \ S(n) = 5620 \ SY; \ Q(\alpha) = 8400 \ SY \ 2003 Au03.$
- $Q(\beta^{-})\text{: estimated uncertainty=1140 keV.}$
- $S(n) {:}\ estimated \ uncertainty=1100 \ keV.$
- $Q(\alpha) \text{: estimated uncertainty=300 keV.}$
- 2000Fi12 tentatively adopted the Dubna data for ²⁸⁹114 produced by ²⁴⁴Pu(⁴⁸Ca,3n) as reported by 1999GhZZ (see
- 1999Og10, 2000Og07, and 2001Og11). The one chain of α events culminating in the SF decay of ²⁷⁷Hs was reassigned to ²⁹⁰114 by 2004Og10. Subsequent decay chains assigned to ²⁸⁹114 terminated with the SF decay of ²⁸¹Ds.
- 2004Mo15: the evaluators believe that this report summarized data for two 289 114 chains prior to reassignment. Thus, the two events attributed to 277 Hs terminating the sequence have also been reassigned.
- 2003Au02 suggest $J\pi{=}3/2{+}$ based on systematics.

Adopted Levels: Not Observed

 $Q(\beta^{-})=-3610 SY; S(n)=12910 SY; S(p)=5550 SY; Q(\alpha)=10300 SY 2003Au03.$

 $Q(\beta^{-})\text{:}$ estimated uncertainty=1150 keV.

 $S(n) {:}\ estimated \ uncertainty=1070 \ keV.$

S(p): estimated uncertainty=1200 keV.

 $Q(\alpha)$: estimated uncertainty=500 keV.

The data of 1999Ni03 cited by 2000Fi12 have been retracted (2002Ni10) and have not been confirmed in a repeated experiment at LBNL (2003Gr26). Also, 2001MoZU and 2000HoZZ found no evidence for $^{293}118$ in $^{208}Pb(^{86}Kr,n)$ reaction at 457.6 MeV (2001MoZU) and at 453.9 and 456.7 MeV (2000HoZZ). The statistical analysis of 2000Sc26 also indicate that the data of 1999Ni03 do not originate from radioactive decays with an error probability of less than 5%. 2003Au02 suggest $J\pi$ =11/2+ based on systematics.

Adopted Levels

 $S(p)=2210 SY; Q(\alpha)=11594 55 2003Au03.$

S(p): estimated uncertainty=640 keV.

- $Q(\alpha)$: from E α =11427 keV 54 (weighted av (ext) of 11454 keV 20 (1996Ho16) and 11.32 MeV 4 (2004MoZU)) assuming transition is g.s. to g.s. Other: 11620 keV 30 (2003Au03) assuming 11454 keV 20 (1996Ho13) transition is g.s. to g.s.
- 1996Ho13: GSI/SHIP cold fusion experiment in collaboration with scientists from Russia, Slovakia and Finland. $^{208}Pb(^{70}Zn,n)$ at 4.91 MeV/nucleon. The beam energy chosen was 343.8 MeV corresponding to an excitation energy $E^{*}=10.1$ MeV. Total of 3.4×10^{18} projectile particles. $^{70}Zn^{(10+)}$ charge state delivered on a target 99% enriched. The measured cross-section for 1*n* channel was 1.0 pb +18-4. Observed position and time correlated chains of α particle events. Determined α energies and time intervals between successive particles. Assigned to decay of $^{277}112$ by consistency of lower chain member energies and lifetimes with known Rf and Sg data. The experiments were carried out from January 26, 1996 to February 18, 1996. Event 1 was observed on February 1st with: E1=11649 keV 20, $t_1=400$ µs. Event 2, characterized by E2=11454 keV 20, $t_2=280$ µs was observed on February 9th.

Average half-life quoted: $T_{1/2}=240 \ \mu s + 430-90$.

First α -decay chain (1-Feb-1996) stands retracted (2002Holl). Event #2: 9-Feb-1996 (Energy of the evaporation residue=32.0)

#2: 9-Feb-1996 (Energy	of the evapor	ation residue=32.	J Mev)
$E_{\alpha 1} = 11454 \text{ keV } 20$	$t_1 = 280 \ \mu s$	- assigned to	277112
E _{α2} =11083 keV 20	$t_2 = 110 \ \mu s$	- assigned to	273 Ds
$E_{\alpha 3} = 9230 \text{ keV } 20$	t ₃ =19.7 s	- assigned to) ²⁶⁹ Hs
$E_{\alpha 4} = 4600 \text{ keV} (esc)$	$t_4 = 7.4$ s	- assigned to	^{265}Sg
$E_{\alpha 5} = 8520 \text{ keV} 20$	$t_5 = 4.7$ s	- assigned to) ²⁶¹ Rf
$E_{\alpha 6} = 8340 \text{ keV } 20$	$t_6 = 15.0$ s	- assigned to) ²⁵⁷ No
No spontaneous fission ev	vents observed	in 1996Ho13.	

1998Ho13: the calculated lifetime of 67 μ s for $\Delta l=0$ compares well with $^{273}112$ 110 μ s (1996Ho13) indicating that the transition is unhindered and connects analagous states of the parent and daughter nuclei. The trend of Q(α) shows that the smooth dependence as a function of neutron number is broken for chain 2 (1996Ho13) when N=162 is crossed. Similar irregularities of the Q(α) systematics is observed near closed shells. From comparisons to theoretical binding energy calculations (1995Mo29, 1995Sm05), the observed properties of chain 2 (1996Ho13) are in good agreement with the calculated binding energies of the ground state. Therefore, 1998Ho13 conclude that $^{277}112$ of chain 2 (1996Ho13) was produced in the deformed ground state and populates the deformed ground state of the daughter.

IUPAC/IUPAP 2001 JWP findings (2001Ka70) were that there was insufficient internal redundancy to warrant conviction especially with regard to known daughters.

2002Ho11: the experiment of 1996Ho13 was redone at GSI/SHIP from May 3-29, 2000. The 208 Pb(70 Zn,n) reaction was again used at projectile energies of 346.1 MeV (E*=12.0 MeV; σ =0.5 pb +11-4; 1 event) and 343.8 MeV (E*=10.1 MeV; σ <2.6 pb; 0 events). E*=12.0 MeV was expected to be the maximum cross-section. The total beam dose was 3.5×10^{18} ions. One new α decay chain was measured on may 5th, 2000 at a deduced cross-section of 0.5 pb +11-4. This new chain ends at 261 Rf by a previously unknown SF branch. No new decay sequence was observed when the experiment was repeated at the lower energy of 343.8 MeV as employed in the 1996Ho13. A reanalysis of raw data from the first experiment revealed inconsistencies between the binary files stored and the event-by-event text files, on the basis of which preliminary assignments were made in the case of the first decay chain (February 1, 1996). The chain was found to be spurious and was retracted. A revised mean value for the cross-section of the data point at E*=10.1 MeV is 0.4 pb +9-3. The third chain (current work) is in agreement with data from the second chain of 1996Ho13 (February 9, 1996):

Event # 3: 5-May-2000 (Energy of the evaporation residue=24.1 MeV)

$E_{\alpha 1} = 11170$	keV	20	$t_1 = 1406 \ \mu s$	-	assigned	t o	277112
$E_{\alpha 2} = 11200$	keV	20	$t_2 = 310 \ \mu s$	-	assigned	t o	$^{273}{ m Ds}$
$E_{\alpha 3} = 9180$	keV	20	$t_3 = 22.0$ s	-	assigned	t o	$^{269}\mathrm{Hs}$
$E_{\alpha 4} = 200$	keV	(e s c)	t ₄ =18.8 s	-	assigned	t o	$^{265}{ m S}{ m g}$
$E_{SF} = 153 M$	Ie V		t (SF) = 14.5	s –	assigned	t o	$^{261}{ m R}{ m f}$

2002Ho11 state that unambiguous assignments are possible for the nucleus ²⁷⁷112 and its daughter ²⁷³Ds based on verification of the properties of ²⁶⁹Hs, ²⁶⁵Sg, ²⁶¹Rf, ²⁵⁷No and ²⁵³Fm from other independent experiments including chemical investigations (references in this paper), which have played a crucial role in determining the most probable identity of each of the nuclides in the series.

IUPAC/IUPAP 2003 JWP (2003Ka71) note that neither of the two chains are completely characterized on their own merit. Supportive, independent results on intermediates are not convincing.

2004MoZU: confirmatory experiments performed by the Japanese group at RIKEN using the reaction 208 Pb(70 Zn,n). The beam provided by RILAC had an energy of 349.5 MeV 6 corresponding to 345.9 MeV at target center. Typical beam intensity on target was $1.7 \times 10^{12}/s$ with a total beam dose of 4.4×10^{18} ions. 16 targets were mounted on a wheel 30 cm in diameter rotating at 2000 rpm. The reaction products were separated by He-filled GARIS and guided into a detector module. Assuming an 80% transmission efficiency for GARIS, the production cross-section was deduced to be 0.44 pb +59-29. Two events were observed of the type EVR- $\alpha 1-\alpha 2-\alpha 3-\alpha 4-SF$:

Adopted Levels (continued)

Event #1:	Energ	gy of	the	evapo	rati	ion	residue=3	4.2	5 MeV
$E_{\alpha 1} = 1$	1090	keV 7	0 t	$1 = 1 \cdot 10$	\mathbf{ms}	-	assigned	t o	$^{277}112$
$E_{\alpha 2} = 1$	1140	keV 4	0 t,	$_2 = 0.52$	\mathbf{ms}	-	assigned	t o	$^{273}{ m Ds}$
$E_{\alpha,3} =$	9170	keV 4	0 t;	$_3 = 14.2$	s	-	assigned	t o	$^{269}\mathrm{Hs}$
$E_{\alpha,4} =$	8710	keV 4	0 t	$_{4}^{2} = 23.0$	s	-	assigned	t o	$^{265}{ m Sg}$
E _{SF} =	197.	3 MeV	t ((SF) = 2	. 97	s –	assigned	t o	$^{261}{ m R}{ m f}$
Event #2:	Energ	gy of	the	e v a p o	rati	ion	r e s i d u e = 3	5.1	5 MeV
$E_{\alpha 1} = 1$	1320	keV 4	0 t	1=1.22	\mathbf{ms}	-	assigned	t o	$^{277}112$
$E_{\alpha 2} = 1$	1150	keV 7	0 t	$_2 = 0.04$	\mathbf{ms}	-	assigned	t o	$^{273}{ m Ds}$
$E_{\alpha 3} =$	9250	keV 7	0 t	$_3 = 0.27$	s	-	assigned	t o	$^{269}\mathrm{Hs}$
$E_{\alpha 4} =$	8700	keV 7	0 t	$_4 = 79.9$	s	-	assigned	t o	$^{265}{ m Sg}$
E _{SF} =	156.	3 MeV	t ((SF) = 8	. 30	s –	assigned	t o	$^{261}{ m R}{ m f}$

The highest probability for randomness was calculated to be 3×10^{-4} in the case of ^{265}Sg in the second decay chain. Other: 2004Og12 and 2004OgZZ obtain an upper limit of 0.6 pb for $^{233}U(^{48}Ca,2-4n)^{277-279}$ 112 at E_{lab} =240 MeV. Theory: see Nuclear Science References.

Assignment: ²⁰⁸Pb(⁷⁰Zn,n) E=343.8 MeV (1996Ho13), 346.1 MeV (2002Ho11), 345.9 MeV (2004MoZU). The decay properties of the one chain reported by 1996Ho13, one chain reported by 2002Ho11, and the two chains reported 2004MoZU are consistent and are also in agreement with the properties of the three ²⁶⁹Hs chains reported by 2003Tu05 (²⁴⁸Cm(²⁶Mg,5n) E=143.7-146.8 MeV; chem). Decay properties of these seven chains also appear consistent with literature data for ²⁶⁵Sg but not for ²⁶¹Rf. Comparing their data, that of 1996Ho13, and preliminary results from 2003Tu05 to the available literature data, 2002Ho11 conclude that two states exist in ²⁶¹Rf with T_{1/2}'s of 78 s +11-6 and 4.2 s +34-13. The first state decays by a 8.28-MeV α and the second, by 8.52-MeV α emission and spontaneous fission (=40%). Based on a private communication from A.H. Wapstra, 2002Ho11 suggest that the 8.52-MeV α fits better the systematics of ground-state α energies and, therefore, tentatively assign the 4.2-s state as the ground state and the 78-s state could be a higher spin isomer since these are preferentially produced in heavy-ion fusion reactions. The data of 2004MoZU tend to support these conclusions although the estimate of the fission branching ratio may increase. In the ²⁷³Ds chain reported by 1996La12 (²⁴⁴Pu(³⁴S,5n) E=190 MeV), ²⁶⁹Hs was not observed and the lifetimes of ²⁶⁵Sg and ²⁶¹Rf seem unusually long. While there may still be problems with ²⁶¹Rf, the ²⁷⁷112 decay chain seems to be well established through ²⁶⁵Sg.

²⁷⁷112 Levels

E(level)	T _{1/2}	Comments
0.0	0.69 ms +69-24	1998Ho13 conclude 277 112 was produced in the deformed ground state and populates the deformed ground state of the daughter.
		Jπ: 2003Au02 suggest 3/2+ based on systematics.
		$T_{1/2}$: from τ =1.00 ms (arithmetic mean of 0.28 ms (1996Ho13), 1.406 ms (2002Ho11), and 1.10 ms and
		1.22 ms (2004MoZU)); uncertainty estimated by the evaluators. $T_{1/2}$ (calc)=34 μs from
		Viola-Seaborg systematics for $Q(\alpha)=11.594$ MeV.

%a≈100.

%a: from 4/4 events. Predicted β (1997Mo25) and SF (1995Ho27,1997Sm03) half-lives much longer than those predicted and observed for α emission.

 $\beta_{9}(\text{theory})$: 0.202 from 1995Mo29; 0.208 from 2003Mu15; 0.199 from 2005GaZX.

Adopted Levels: Not Observed

See ²⁸⁹114 Adopted Levels for details of the experiments.

2004Og10: the reinterpretation of one long lived decay chain first observed in 1999Og10 at Dubna, and tentatively assigned to the decay of $^{289}114$, is now proposed as possibly originating from the CN $^{290}114$ via the 2n channel. The subsequent α -decays would then be: $^{286}112 \rightarrow ^{282}D_S \rightarrow ^{278}H_S$ (SF). The cross-section for this event was =0.2 picobarn in the reaction $^{244}Pu+^{48}Ca$ at 236 MeV ($E^{*}=35$ MeV). This event was not observed in later experiments done at energies of $E^{*}=41-53$ MeV (2000Og05,2000Og07). The α particle energy of the first decay is =0.1 MeV less than that attributed to $^{289}114$ from later work. An alternative interpretation based on calculations (1999Cw01) is that this chain may belong to a rare decay branch of $^{289}114$ starting from an excited state and going to low lying levels in the daughter governed by the appropriate selection rules. 3 minute α -SF event observed in 1999Og07 at $E^{*}=32.6$ MeV for $^{290}114$ and assigned to $^{287}114$ not seen by 2004Og10.

Assignment: IUPAP/IUPAC JWP assessment (2003Ka71): discovery of Z=114 was not yet warranted due to unsecured connections to known descendents and the absence of further elemental signatures such as x-rays. The evaluators believe that there is too little data to support the assignment of this decay chain to either ²⁹⁰114 or ²⁸⁹114 and, therefore, ²⁹⁰114, ²⁸⁶112, ²⁸²Ds and ²⁷⁸Hs remain unobserved. See the General Comments for more details. Theory: see Nuclear Science References.

 $Q(\alpha)=11850 \ 40 \ 2004 Mo42.$

 $Q(\alpha)$: from E α =11.68 MeV 4.

- 1998Ho13: excitation functions for the production of odd-elements were undertaken. Cross sections measured at GSI/SHIP using ²⁰⁹Bi targets. Results favored ⁷⁰Zn for the production of Z=113. Extensive systematics indicated a cross section limit of between 1 and 0.3 pb for ²⁷⁸113 with the reaction ²⁰⁹Bi(⁷⁰Zn,n) and between 1 and 0.1 pb for ²⁸³114 with ²⁰⁸Pb(⁷⁶Ge,n).
- 1999GrZM, 1999HoZV: experiments optimized to observe Z=113 at a cross section window of 0.3 to 1.0 pb in the reaction ²⁰⁹Bi(⁷⁰Zn,n). Production runs were carried out in April/may 1998 over two periods with total beam doses of 4.5×10¹⁸ (25 days) and 3.0×10¹⁸ (21 days) of the ⁷⁰Zn projectile. Two beam energies were used: 4.97 AMeV and 5.0 AMeV resulting in CN excitation energies of 9.85 and 11.57 MeV, respectively. Cross section limits obtained were 0.9 and 1.4 pb for the two energies at the 68% confidence level. The quoted weighted average excitation energy was 10.54 AMeV for an effective cross- section of 0.6 pb (arrived at by combining the two measured cross-sections). No events were observed in either run.
- 2004Mo42: cold fusion experiment done at RIKEN in collaboration with Chinese scientists in 2003/2004. Reaction: ²⁰⁹Bi(⁷⁰Zn,n) at a beam energy of 352.6 MeV provided by RILAC corresponding to an energy at target center of 349 MeV. The absolute accuracy of the beam energy was ± 0.6 MeV. The production cross-section was 55 fb +150-45. Sixteen targets were mounted on a rotating wheel (2000 rpm) with a diameter of 30 cm. Products following the reaction were separated in-flight by GARIS (2004Mo40) filled with He gas, and guided into a focal plane detector consisting of a timing module with microchannel plates (MCP) and a SSD (Si semiconductor detector) box which included one detector with 16 position sensitive strips (PSD). EVR's were implanted in the PSD after they pass through the timing counters. A total of 1.7×10^{19} ions impinged on the target; transmission efficiency of GARIS was 0.8 (2004Mo26). The excitation energy of the ²⁷⁹113 CN was calculated to be 14.1 MeV 20. A single EVR- $\alpha 1-\alpha 2-\alpha 3-\alpha 4-SF$ sequence was observed on 23 July 2004:

Event #1: Energy of the evaporation residue=36.75 MeV

$E_{\alpha 1} = 11.68$	MeV 4	$t_1 = 344 \ \mu s$	-	assigned	t o	278113
$E_{\alpha 2} = 11.15$	MeV 7	t ₂ =9.26 ms	-	assigned	t o	$^{274}\mathrm{Rg}$
$E_{\alpha 3} = 10.03$	MeV 7	t ₃ =7.16 ms	-	assigned	t o	$^{270}{ m Mt}$
$E_{\alpha 4} = 9.08$	MeV 4	$t_4 = 2.47 s$	-	assigned	t o	^{266}Bh
E(SF) = 204	.1 MeV	t(SF) = 40.9	s –	assigned	t o	$^{262}\mathrm{Db}$
aaa Nualaan	Colonaa Da	6				

Theory: see Nuclear Science References.

Assignments: the assignments are the *most probable* ones for the reaction. Also, the identification of the parent as $^{278}113$, α -decay daughter 274 Rg, and grand-daughter 270 Mt, are all rendered plausible following a consistent comparison of the 4th and 5th events with known descendents. The observation of each isotope in the sequence should be considered as tentative and pending confirmation.

²⁷⁸113 Levels

E(level)

x ?

Comments

J π : $\Omega(p)=3/2-$; $\Omega(n)=3/2+$ from 1997Mo25 (theory).

T_{1/2}=0.24 ms +114-11.

 $T_{1/2}^{1/2}$: from Δt =344 µs; uncertainty estimated by the evaluators. $T_{1/2}(calc)$ =16.9 µs from Viola-Seaborg systematics for $Q(\alpha)$ =11.85 MeV.

%a≈100.

 $\%\alpha:$ assumed from 1/1 event.

 $\beta_2(theory);$ 0.184 from 1995Mo29; 0.196 from 2005GaZX.

 $Q(\beta^{-})=-3360; \ S(n)=5840 \ SY; \ S(p)=3520 \ SY; \ Q(\alpha)=9840 \ 60 \ 2003 Au 03, 2004 Og 12.$

 $Q(\beta^{-}) \text{: estimated uncertainty=1000 keV.}$

S(n): estimated uncertainty=1010 keV.

S(p): estimated uncertainty=1120 keV.

 $Q(\alpha): \mbox{ from E}\alpha = 9.70 \mbox{ MeV } 6 \mbox{ (2004Og12)}. \mbox{ Other: } 9.60 \mbox{ MeV } 20 \mbox{ (2003Au03. Syst.)}.$

2004Og07 (see also 2004Og05): terminates $ER-\alpha 1-\alpha 2-\alpha 3-SF$ sequence from ²⁹¹116 (2 events) and $EVR-\alpha 1-\alpha 2-SF$ chain from ²⁸⁷114 (1 event). See ²⁸⁷114 and ²⁹¹116 Adopted Levels for details of experimental set-up. Experiments were done at Dubna in collaboration with LLNL. The current and all subsequent investigations were carried out using the DGFRS. The synthesis of ²⁸⁷114 was done using a ²⁴⁴Pu target at a ⁴⁸Ca beam energy of 257 MeV in the 5n evaporation channel. In the case of ²⁹¹116 (1n), a ²⁴⁵Cm target was used and bombarded with ⁴⁸Ca ions at an energy of 243 MeV. In all cases ²⁷⁹Ds fissions spontaneously and its attributes were as follows: E(tot)=206 MeV [176+30 MeV, focal plane and side detector], t(SF)=0.319 s as observed at the end of the single

287114 chain; E(tot)=205 MeV [188+17 MeV, focal plane and side detector], t(SF)=0.687 s (event 1) and E(tot)=177 MeV [one

detector only] t(SF)=0.256 s (event 2) ending the ²⁹¹116 sequence.

The combined $T_{1/2}(SF)$ from all 3 events was reported as 0.29 s +35-10.

2004Og12,2004OgZZ: as α decay product of ²⁸⁷114 (15 events) and ²⁸³112 (7 events). See for ²⁸⁷114 and ²⁸³112 Adopted Levels for details. ²⁸⁷114 was synthesized using ²⁴²Pu+⁴⁸Ca at beam energies of 235, 238 and 244 MeV with 5 measurements made at each energy. ²⁸³112 was observed using ²³⁸U+⁴⁸Ca at 230 and 234 MeV. One special case attributed to ²⁸⁷114 in the ²⁴²Pu reaction at a beam energy of 244 MeV, lasting for 6.5 min, of the type EVR- α 1- α 2- α 3- α 4-SF warrants mention. Generally, α decay is blocked below ²⁷⁹Ds which fissions rather than α decays (% α =10). The evaluators suggest that this longer chain which terminates with ²⁷¹Sg may, if confirmed, be one incidence of this 10% branch. The α energy for ²⁷⁹Ds from this event is 9.7 MeV 6 with a lifetime of 0.2831 s. Another exception to the fissioning of ²⁷⁹DS appears in the case of a similar EVR- α 1- α 2- α 3- α 4-SF event originating from ²⁸³112 in the ²³⁸U reaction at 234 MeV. Here, the sequence ends with the fission of ²⁶⁷Rf. The α energy for ²⁷⁹Ds from this event is 9.8 MeV 3 with a lifetime of 0.2775 s. Although both exceptions require further investigation, their radioactive properties agree well with each other and the evaluators suggest that if confirmed, they could represent the 10% α decay branch for ²⁷⁹Ds.

- ²⁸³112 was created in the complete fusion reaction ²³⁸U(⁴⁸Ca,4n) at Dubna using the DGFRS. A total of 8 decay sequences were observed assigned to Z=112: seven EVR- α -SF events spanning about 0.5-6 s observed at E(beam)=230-234 MeV assigned to ²⁸³112 and a shorter EVR-SF sequence with T_{1/2}(SF)<1 ms observed at an energy of 240 MeV assigned to ²⁸²112. The mean α energy was 9.54 MeV in agreement with 2004Og07. No events that could be assigned to Z=112 were found in the reaction ²³³U+⁴⁸Ca at 240 MeV despite an accumulated beam dose of 8×10⁸ ions. See 2004Og12 and 2004OgZZ for a detailed discussion.
- The evaluators note that the radioactive properties for the current nucleus as shown in this work, 2004Og12 and 2004Og07 all using the DGFRS, are in agreement with each other whereas they differ considerably from results obtained in experiments using the VASSILISSA separator. Further investigations may be warranted to resolve the existing ambiguities in the data.

2005Gr19, 2002Lo15: no EVR- $\alpha-\alpha$ correlations with $\Delta t(EVR-\alpha)<20$ s or $\Delta t(\alpha-\alpha)<20$ s were observed in any of the ${}^{48}Ca + {}^{238}U$ irradiations. See ${}^{283}112$ Adopted Levels for details.

Theory: see Nuclear Science References.

Assignment: the assignments for Z=112, Z=114 (and Z=116) and their daughters from recent experiments using DGFRS are based on measured excitation functions and in some cases consistency of observed properties produced by cross-bombardments. In particular, the decay properties of ²⁸³112 are consistent through the various measurements using the DGFRS, independently of whether they were observed as primary nuclei or as α decay daughters of parents one (Z=114) or two (Z=116) 'levels' up. In the case of ²⁸⁷114, the second α in the decay chain has an energy of 9.54 MeV 6 which agrees well with the four measured α 's (2004Og07, 2004Og12) in 11 out of 14 cases. The other three α energies are 8.94, 9.36 and 9.32 MeV which the experimenters suggest may be indicative of transitions to different excited states in the daughter nucleus ²⁷⁹Ds. Note that 2005Gr19 did not observe any SF decays or EVR- α - α correlations in any ⁴⁸Ca + ²³⁸U irradiations.

²⁷⁹Ds Levels

Cross Reference (XREF) Flags

A $^{283}112~\alpha$ Decay: Tentative

E(level)	XREF	T _{1/2}	Comments
x ?	A	0.18 s +5-3	 Jπ: Ω(n)=15/2- from 1997Mo25 (theory). T_{1/2}: for 21 half-lives/2 α particle energies from 2004Og12. T_{1/2}(calc)=0.25 s from Viola-Seaborg systematics for Q(α)=9.84 MeV. %α=10; %SF=90. %α,%SF: from 2004Og12. 6. (theory): 0.127 from 1995Mo29: 0.197 from 2003Mu15: 0.177 from 2005GaZX
x+2.7×10 ³ ? 10	А		τ <u>Σ</u>
$x+3.1 \times 10^3?9$	А		

Continued on next page

Adopted Levels: Tentative (continued)

 279 Ds Levels (continued)

E(level) XREF

 $x + 6 . 9 \times 10^{3}$? 9 A

²⁸³112 α Decay: Tentative 2004Og12

Parent ²⁸³112: E=x; Jπ=?; $T_{1/2}$ =4.0 s +13-7; Q(g.s.)=9760 60; %α decay≥99.0. ²⁸³112 - $T_{1/2}$: from 2004Og12. ²⁸³112 -Q(α): from 2004Og12. See ²⁸³112 Adopted Levels for details.

²⁷⁹Ds Levels

E(level)	T	Comments
X	0.18 s +5-3	$E(level), T_{1/2}$: from the Adopted Levels.
$x+2.7 \times 10^{3}?$ 10 $x+3.1 \times 10^{3}?$ 9		
$x+6.9 \times 10^{\circ}?'9$	Ea (evaluators)	

 α radiations

Εα	E(level)	Iα‡
8940 ^{†§} 70	$x + 6 . 9 \times 10$	t
9320 [†] § 60	x+3.1×10	†
9360†§ <i>80</i>	$x+2$. $7\!\times\!10$	Ť
9540 60	x	

[†] 2004Og12 note that the energies of these three α 's differ enough from the average E α that they are outside the experimental uncertainties in measuring α -energies with the focal-plane detector and, therefore, correspond to transitions to various excited states in ²⁷⁹Ds. The estimated probability of such transitions is about 20%.

 \div For α intensity per 100 decays, multiply by $\ge 0.99.$

§ Existence of this branch is questionable.

 $Q(\beta^{-}) = -3800 \ SY; \ S(n) = 7270 \ SY; \ S(p) = 1700 \ SY; \ Q(\alpha) = 10520 \ 160 \ 2003 Au 03, 2004 Og 03.$

 $Q(\beta^-)\text{: estimated uncertainty}{=}830\,$ keV.

S(n): estimated uncertainty=920 keV.

 $S(p) {:}\ estimated\ uncertainty=950\ keV.$

 $Q(\alpha): \mbox{ from E}\alpha \mbox{=} 10.37 \mbox{ MeV } 16 \mbox{ (2004Og03)}. \mbox{ Other: 10.45 MeV } 85 \mbox{ (2003Au03. Syst.)}.$

2003OgZY, 2004Og03: identification of new nuclides: ²⁸⁷115, ²⁸⁸113, ²⁷⁹Rg, ²⁷⁵Mt and ²⁶⁷Db. Reaction: ²⁴³Am(⁴⁸Ca,4n) E=253 MeV corresponding to an excitation energy of 42.4 to 46.5 MeV at the target center. ²⁸⁷115 was formed at a cross-section of 0.9 pb +32-8. The target was 99% enriched ²⁴³Am. Experiments were done at the U400 cyclotron with the DGFRS at FLNR-JINR in collaboration with LLNL, USA. The evaporation residues recoiling from the target were separated by DGFRS in flight from the ⁴⁸Ca beam ions, scattered particles and transfer-reaction products.

Detection system: multiwire proportional counter for tof measurement; semi-conductor focal-plane detector array with 12 vertical position- sensitive strips, which measured the decay of the implanted recoils. This detection system surrounded by eight side detectors with no position sensitivity. The α spectrum was measured in the range 9.6 to 11.0 MeV. Resolution: FWHM=60-100 keV for α particles absorbed in the focal-plane detector. 140-200 keV for α 's escaping the focal-plane detector and registered by the side detectors.

Results: one decay chain with four consecutive α decays detected in a time interval of 0.5 s (in the beam-off mode) terminated by an SF event with a release of kinetic energy of 206 MeV. This event was assigned to ²⁴³Am(⁴⁸Ca,4n) channel with the production of the parent nuclide ²⁸⁷115. The third event in the sequence was ²⁷⁹Rg, with the properties listed below.

Energy of the evaporation residue=12.2 MeV

 $E_{\alpha} = 10370$ keV t = 170 ms - assigned to 279 Rg

Theory: 1997Mo25, 2003Mu15, 2003Ge09, 2004Ba86, 2004GuZW and Nuclear Science References.

Assignment: the identification of Z=115 and 113 and all associated nuclides in the chain should be treated as tentative until confirmed by independent experiments.

²⁷⁹Rg Levels

Cross Reference (XREF) Flags

A $^{283}113\ \alpha$ Decay: Tentative

E(level)	XREF	T _{1/2}	Comments
x ?	A	0.17 s +81-8	Jπ: Ω(p)=9/2- from 1997Mo25 (theory). T _{1/2} : from 2004Og03. T _{1/2} (calc)=7.2 ms from Viola-Seaborg systematics for Q(α)=10.52. %α=100.
			$\%\alpha;$ assumed from one event. $\beta_2(theory);$ 0.164 from 1995Mo29; 0.202 from 2003Mu15; 0.184 from 2005GaZX.

²⁸³113 α Decay: Tentative 2004Og03

Parent ²⁸³113: E=x; Jπ=?; $T_{1/2}$ =0.10 s +49-5; Q(g.s.)=10260 90; %α decay≈100. ²⁸³113 - $T_{1/2}$: 100 ms +490-45 from 2004Og03. ²⁸³113 -Q(α): from 2004Og03. See 288313 Adopted Levels for details.

²⁷⁹Rg Levels

E(level)	T _{1/2}

x? 0.17 s +81-8

α radiations

Eα E(level)

10120 90 x?

Adopted Levels: Not Observed

 $Q(\beta^{-})=-4360 SY; S(n)=7200 SY; S(p)=3930 SY; Q(\alpha)=9300 SY 2003Au03.$

 $Q(\beta^{-}), s(n)$ estimated uncertainty=1130 keV.

 $S(p) {:}\ estimated\ uncertainty=1110\ keV.$

 $Q(\alpha) {:}\ estimated \ uncertainty=200 \ keV.$

2000Og05, 2001Og01: in α -decay chain of ²⁸⁸114, at Dubna with ²⁴⁴Pu+⁴⁸Ca via the 4n evaporation channel with a cross-section of ≈ 1 picobarn. See ²⁸⁸114 Adopted Levels for details. Two identical genetically correlated event sequences were recorded of the type EVR- $\alpha 1-\alpha 2$ -SF; the two SF events were determined to be from ²⁸⁰Ds with total energies of 221 (156+65) and 213 (171+42) MeV. The probability of randomness for the sequence was estimated to be 5×10^{-13} .

Theory: see also Nuclear Structure References.

Assignment: reassigned by 2004Og07.

2003Au02 adopted $\rm T_{1/2}=11~s~6$ (from t=6.93 s, 14.3 s, and 7.4 s) and %SF=100 based on 2001Og01.

 $Q(\beta^{-}) = -2390 SY; S(n) = 6200 SY; S(p) = 2060 SY; Q(\alpha) = 9870 60 2003 Au 03, 2004 Og 03.$

 $Q(\beta^{-})\text{:}$ estimated uncertainty=980 keV.

S(n): estimated uncertainty=1000 keV.

S(p): estimated uncertainty=1050 keV.

 $Q(\alpha)$: from E α =9.75 MeV 6 (2004Og03). Other: 9.98 MeV 30 (2003Au03):

2003OgZY and 2004Og03: identification of new nuclides: ²⁸⁸115, ²⁸⁴113, ²⁸⁰Rg, ²⁷⁶Mt, ²⁷²Bh, and ²⁶⁸Db. ²⁸⁰Rg observed as grand-daughter of ²⁸⁸115.

Reaction: ²⁴³Am⁽⁴⁸Ca,3n) E(lab)=248 MeV corresponding to an excitation energy of 38.0 to 42.5 MeV at the target center. Experiments performed by the Dubna-LLNL collaboration. Z=115 was formed at a cross-section of 2.7 pb +48-16.

Three similar decay chains with five consecutive α decays were detected in a time interval of 20 s (in the beam-off mode following the first recoil expected to belong to Z=115) terminated by an SF event with a release of total kinetic energy of \approx 220 MeV. These events were assigned to the (⁴⁸Ca,3n) channel with the production of the parent nuclide ²⁸⁸115; the third event in the chain was assigned to ²⁸⁰Rg. Properties of ²⁸⁰Rg from the three chains are listed below by event.

Event #1: Energy of the evaporation residue=10.4 MeV

 $E_{\alpha} = 9720$ keV t = 3.146 s - assigned to 280 Rg

Event #2: Energy of the evaporation residue=11.0 MeV

 $E_{\alpha} = 9760 \text{ keV}$ t = 10.599 s - assigned to ²⁸⁰Rg

Event #3: Energy of the evaporation residue=9.1 MeV

 $E_{\alpha} = 9760 \text{ keV}$ t=1.793 s - assigned to 280 Rg

Theory: 1997Mo25, 2003Mu15, 2003Ge09, 2004Ba86, 2004GuZW and Nuclear Science References.

Assignment: granddaughter of ²⁸⁸115 produced by ²⁴³Am(⁴⁸Ca,3n) E=248 MeV (2003OgZY,2004OgO3) and E=243 MeV, chem (2004DmZZ). The evaluators suggest that 2004DmZZ offers independent support to the synthesis of ²⁸⁸115 (2004OgO3) having precisely determined the atomic number for Z=105 by isolation of Group V elements. The properties are in agreement with ²⁶⁸Db measured in the three chains seen earlier by 2004OgO3, thereby providing evidence in favor of the synthesis of ²⁸⁸115 and daughters. However, since the identification relies on the measurement of SF fragments, the possibility that the observed nucleus is actually ²⁶⁸Rf following (undetected) ε from the parent ²⁶⁸Db, cannot be excluded.

²⁸⁰Rg Levels

Cross Reference (XREF) Flags

A $^{284}113~\alpha$ Decay: Tentative

E(level)	XREF	T_1/2	Comments
x ?	A	3.6 s +43-13	$\begin{array}{l} J\pi;\; \Omega(p) = 13/2+;\; \Omega(n) = 15/2-\; from\; 1997Mo25\; (theory).\\ T_{1/2};\; from\; 2004Og03.\; T_{1/2}(calc) = 0.42\; s\; from\; Viola-Seaborg\; systematics\; for\; Q(\alpha) = 9.87\; MeV.\\ \%\alpha = 100.\\ \%\alpha:\; from\; three\; events.\\ \beta_2(theory):\; 0.117\; from\; 1995Mo29;\; 0.200\; from\; 2003Mu15;\; 0.179\; from\; 2005GaZX. \end{array}$
			²⁸⁴ 113 α Decay: Tentative 2004Og03
Pare: ²⁸⁴ 11 ²⁸⁴ 11 See ²	nt ${}^{284}113$: .3 $-T_{1/2}$: f .3 $-Q(\alpha)$: ${}^{284}113$ Ad	: E=x; $J\pi$ =?; $T_{1/2}$ =0.4 from 2004Og03. from 2004Og03. opted Levels for det	i8 s +58-17; Q(g.s.)=10150 60; %α decay≈100. ails.
E(level)	T	1/2	Comments
x ?	3.6 s	+43-13 E(level), $T_{1/2}$: from the Adopted Levels.
			α radiations
Εα	E(le	vel)	Comments
10000‡ 60 ‡ Existen	x? ce of this	Eα: from 2	2004Og03.
$^{281}_{110} \mathrm{Ds}_{171} - 1$

 $Q(\beta^-)=-3080 \ SY; \ S(n)=5960 \ SY; \ Q(\alpha) \leq 9050 \ \ 2003 Au 03, 2004 Og 12.$

 $Q(\beta^{-})\text{:}$ estimated uncertainty=1180 keV.

- S(n): estimated uncertainty=1120 keV.
- $Q(\alpha)$: estimated by 2004Og12. Other: $Q(\alpha) \le 9.00$ MeV from 2004OgZZ; 2003Au03 adopted 8.96 MeV 5 based on the data of 1999Og10.
- 2000Fi12 cite 1999GhZZ. The evaluators believe that the data in this private communication corresponds to that published in 1999Og10.
- 1999Og10: in Dubna, using the U400 cyclotron and the DGFRS. This nucleus produced after two α -decays originating from parent ²⁸⁹114 observed in a single event via the 3n channel in the reaction ²⁴⁴Pu+⁴⁸Ca with a cross-section=1 picobarn. The assignments are tentative as this particular decay sequence has not been reproduced in subsequent experiments to date. The event is characterized by an α emitted with E1=9.71 MeV, and a long lifetime of t1=30.4 s attributed to the ²⁸⁹114 parent. The granddaughter, ²⁸¹Ds has the properties: E3=8.83 MeV; t3=1.6 min. The evaluators note that this is the only observation of α -decay from this isotope of Ds, which is otherwise expected to fission. 1999Og10 suggest that the entire chain, if verified, represents a rare (isomeric) α -decay mode of ²⁸⁹114, possibly also of ²⁸¹Ds. The decay sequence and all constituent assignments are considered tentative by the evaluators.
- 2000Og05: experiments done at Dubna with 244 Pu+ 48 Ca at 236 MeV with improved sensitivity of >2 orders of magnitude over previous attempts, for picobarn cross-sections expected in the production of Z=114. The U400 cyclotron was used with DGFRS (2000OgZR, 1993LaZS). Observed two identical three-member decay sequences at a 48 Ca beam energy of 237.6 and 237.0 MeV at target-center corresponding to excitation energies of 33.6-39.7 MeV and 33.2-39.1 MeV of the 292 114 CN respectively. Parent initially assigned to 288 114 *via* the 4*n* channel, and reassigned to 289 114 in 2004Og07. 281 Ds terminates the α 1- α 2-SF chain with an average E(tot)=217 MeV for the fission fragments: E1(SF-tot)=221 MeV with t(SF)=14.26 s and E2(SF-tot)=213 MeV with t(SF)=7.44 s respectively. See also 2000Og07 for more details of this experiment.
- 2004Og07: Z=116 parent nuclei produced in the reaction 248 Cm+ 48 Ca and reported via 2001Og01, 2001Og06 and discussed in 2002Og09 are reassigned to 293 116 in the 3n channel. The SF events terminating the α -decay chain correspond to 281 Ds. Also observed here were three α -decay sequences originating from 289 114 produced in the reaction 244 Pu+ 48 Ca: two events at E=243 MeV and one event at E=250 MeV. 281 Ds terminates the EVR- α 1- α 2-SF chain with an average energy of 158 MeV. (see 289 114 adopted levels for details).
- 2004Og12: as α -decay grand-daughter of ²⁸⁹114. Three α -decay sequences in the reaction ²⁴⁴Pu(⁴⁸Ca,3n) were attributed to the nucleus ²⁸⁹114; two events were recorded at a beam energy of 243 MeV (second assignment tentative) and one at 250 MeV (not conclusive). In all cases ²⁸¹Ds terminated the EVR- α 1-SF sequence. (see ²⁸⁵112 and ²⁸⁹114 Adopted Levels for details). Experimenters quote T_{1/2}(SF)=9.6 s +50-25 for a total of 8 events.
- 2004OgZZ: report two EVR- $\alpha 1-\alpha 2-\alpha 3-SF$ chains spanning about 10 to 80 s produced in the reaction ²⁴⁸Cm+⁴⁸Ca at E=247 MeV. The experimenters note that these chains are similar to those observed at a lower energy in 2001Og01, 2001Og06, and also discussed in 2002Og09. In both cases the parent was ²⁹³116 and the ²⁸¹Ds terminated the sequence with SF. (see also ²⁹³116 Adopted Levels for details). A total of 10 α decay events were considered in the estimation of the half-life of 11.1 s +5.0-2.7, revised over the value quoted in 2004Og12. Experimenters estimate Q(α) \leq 9.05 MeV for the unobserved α -decay branch. 2004Og12 and 2004OgZZ are identical in most respects. 2004OgZZ report more statistics in some cases.
- Other: 1999Og07, 2000Og07, 2004Og10.

Theory: see Nuclear Science References.

Assignment: granddaughter of ²⁸⁹114 produced by ²⁴⁴Pu(⁴⁸Ca,3n) E=236 MeV (1999Og10)?, E=237, 238 MeV (2000Og05). Great-granddaughter of ²⁹³116 ²⁴⁸Cm(⁴⁸Ca,3n) E=240 MeV (2001Og01,2001Og06). The evaluators consider the assignments of ²⁹³116 and ²⁸⁹114 as tentative; see respective Adopted Levels for details.

²⁸¹Ds Levels

Cross Reference (XREF) Flags

A $^{285}112~\alpha$ Decay: Tentative

E(level)	XREF	T _{1/2}	Comments			
x ?	A	9.6 s +50-25	Jπ: 3/2+ from 1997Mo25 (theory). T _{1/2} : from 8 SF events (2004Og12). Other: 11.1 s +5.0-2.7 for 10 events from 2004OgZZ. %SF=100 (2004Og12). β ₂ (theory): 0.108 from 1995Mo29; 0.137 from 2003Mu15; 0.159 from 2005GaZX.			

		²⁸⁵ 112 α D	ecay: Tentative	2004Og12
Pares ²⁸⁵ 11 ²⁸⁵ 11 See ²	at ²⁸⁵ 112: E=x; $J\pi=2$ 2 $-T_{1/2}$: from 2004C 2 $-Q(\alpha)$: from 2004C ²⁸⁵ 112 Adopted Leve	?; $T_{1/2}=34 \text{ s} +17-9$; $Q(g.s.)=9290$ Og12. Og12.	<i>60</i> ; %α decay≈100.	
			²⁸¹ Ds Levels	_
E(level)	T_1/2			Comments
x ?	9.6 s +50-25	$E(\mbox{level}), T_{1/2}\mbox{:}$ from the Adopte	d Levels.	
			α radiations	-
Εα	E(level)		С	omments
9160 ‡ 60	x? Ea	a: from 2004Og12.		
‡ Existen	ce of this branch is	questionable.		

- $S(n)=5980 SY; S(p)=2810 SY; Q(\alpha)=10280 SY 2003Au03.$
- S(n): estimated uncertainty=1180 keV. S(p): estimated uncertainty=1230 keV.
- $Q(\alpha) {:}\ estimated \ uncertainty=200 \ keV.$
- The data of 1999Ni03 cited by 2000Fi12 have been retracted (2002Ni10) and have not been confirmed in a repeated experiment at LBNL (2003Gr26). Also, 2001MoZU and 2000HoZZ found no evidence for ²⁹³118 in ²⁰⁸Pb(⁸⁶Kr,n) reaction at 457.6 MeV (2001MoZU) and at 453.9 and 456.7 MeV (2000HoZZ). The statistical analysis of 2000Sc26 also indicate that the data of 1999 Ni03 do not originate from radioactive decays with an error probability of less than 5%.
- 2003Au02 suggest 3/2+ based on systematics.

See ²⁸⁹114 Adopted Levels for details of the experiments.

2004Og10: the reinterpretation of one long lived decay chain first reported in 1999Og10 at Dubna, and tentatively suggested as a *candidate* for the decay of ²⁸⁹114, has since been proposed as possibly originating from the CN ²⁹⁰114 *via* the 2*n* channel. The subsequent α -decays would then be: ²⁸⁶112 \rightarrow ²⁸²Ds \rightarrow ²⁷⁸Hs (SF). The cross-section for this event was =0.2 picobarn in the reaction ²⁴⁴Pu+⁴⁸Ca at 236 MeV (E*=35 MeV). This event was not observed in later experiments done at energies of E*=41-53 MeV (20000g05,20000g07). The α particle energy of the first decay is =0.1 MeV less than that attributed to ²⁸⁹114 from later work. An alternative interpretation based on calculations (1999Cw01) is that this chain may belong to a rare decay branch of ²⁸⁹114 starting from an excited state and going to low lying levels in the daughter governed by the appropriate selection rules. 3 minute α -SF event observed in 1999Og07 at E*=32.6 MeV for ²⁹⁰114 and assigned to ²⁸⁷114 not seen by 2004Og10.

Assignment: IUPAP/IUPAC JWP Assessment (2003Ka71): discovery of Z=114 was not yet warranted due to unsecured connections to known descendents and the absence of further elemental signatures such as x-rays. The evaluators believe that there is too little data to support the assignment of this decay chain to either ²⁹⁰114 or ²⁸⁹114 and, therefore, ²⁹⁰114, ²⁸⁶112, ²⁸²Ds and ²⁷⁸Hs remain unobserved. See the General Comments for more details. Theory: see Nuclear Science References.

- $S(n)=7630 SY; S(p)=3200 SY; Q(\alpha) \le 10820 2003Au03,2004Og12.$
- S(n): estimated uncertainty=1210 keV.
- S(p): estimated uncertainty=1170 keV.

 $Q(\alpha)$: estimated by 2004Og12 for α decay (not observed). Other: 9.96 MeV 20 (2003Au03. Syst.).

2004Og07 (see also 2004Og05): as granddaughter of 290116 from one event recorded from the single α -decay of 286114. See Adopted Levels for $^{286}114$ and $^{290}116$ for details of experimental set-up. The α -decay of $^{286}114$ or $^{281}112$ was

not observed in the 294118 chain (2002OgZX, 2003OgZZ, 2004Og12, and also 2004OgZZ). This may be due to the fact

- that $^{286}114$ decays by both SF and α emission with $\%\alpha{\approx}40$ (2004Og12, 2004OgZZ).
- 2004Og12,2004OgZZ: By the complete fusion reaction 238 U(⁴⁸Ca,4n). A total of 8 decay sequences were observed assigned to Z=112: 7 EVR- α -SF events spanning about 0.5-6 s observed at E(beam)=230-234 MeV assigned to ²⁸³112 and 1 shorter EVR-SF sequence with $T_{1/2}(SF)$ <1 ms observed at an energy of 240 MeV assigned to ²⁸²112. Maximum cross-section value in the 4n channel for this nucleus is 0.6 pb +16-5 at E*=39.8 MeV (2004OgZZ).

No events that could be assigned to Z=112 were found in the reaction ²³³U+48Ca at 240 MeV despite an accumulated beam dose of 8×10⁸ ions. See 2004Og12 and 2004OgZZ for a detailed discussion. ²⁸²112 was also produced as the α -decay daughter of ²⁸⁶114 produced in the reaction ²⁴²Pu(⁴⁸Ca,4n) (see ²⁸⁶114 adopted levels for for details). Of the 9 events measured (7 at 244 MeV, 2 at 250 MeV) the α decay branch was in evidence in 4 of these events leading to $^{282}112$ which fissioned in all 4 cases thus terminating the sequences.

The excitation functions and decay properties of the shorter chain members decaying by $EVR-\alpha-SF$ in the $^{242}Pu+^{48}Ca$ reaction when compared against EVR-SF correlations in the ²³⁸U+48Ca reaction show that they may originate from the even-even parents $^{286}114$ (with $^{282}112$ as the $\alpha-decay$ daughter) and $^{282}112$ respectively.

6 new events in total attributed to 282 112 with the following half-life for SF decay: T_{1/2}=0.50 ms +33-14. Estimated $Q(\alpha) \le 10.82$ for α -decay branch, not observed. The two papers are identical in most respects. 2004OgZZ report more statistics in some cases.

Other: 20040g10.

Theory: see Nuclear Science References.

Assignment: granddaughter of ²⁹⁰116 produced by ²⁴⁵Cm(⁴⁸Ca,3n) E=243 MeV (2004Og07). Daughter from α-decay branch of ²⁹⁴118 produced by ²⁴⁹Cf(⁴⁸Ca,3n) E=265 MeV (2002OgZX,2003OgZZ). The evaluators consider all the assignments for this nucleus tentative.

²⁸²112 Levels

Cross Reference (XREF) Flags

A $^{286}114~\alpha$ Decay: Tentative

E(level)XREF $T_{1/2}$ Comments 0.50 ms + 33 - 14x? A $J\pi$: 0+ if g.s. T_{1/2}: from 2004Og12. %SF≈100 (2004Og12). %SF: from 6 events. β_2 (theory): 0.089 from 1995Mo29; 0.145 from 2003Mu15; 0.169 from 2005GaZX.

²⁸⁶114 α Decay: Tentative 2004Og12

Parent ²⁸⁶114: E=x; $J\pi$ =?; $T_{1/2}$ =0.16 s +7-3; Q(g.s.)=10345 60; % α decay≈40.0. See ²⁸⁶114 Adopted Levels for details.

 $^{282}112$ Levels

E(level)

 $T_{1/2}$

Comments

x?

0.50 ms +33-14

 $E(level), T_{1/2}$: from the Adopted Levels.

 α radiations

 $\mathrm{E}\alpha$ E(level)

10200 \$ 60 x ?

[‡] Existence of this branch is questionable.

 $\frac{282}{112}12_{170}$

 $^{283}_{112}12_{171}-1$

- $Q(\beta^{-})=-4340; S(n)=6180 SY; S(p)=3280 SY; Q(\alpha)=9670 60 2003Au03,2004Og12.$
- $Q(\beta^{-})\text{:}$ estimated uncertainty=1060 keV.
- S(n): estimated uncertainty=1040 keV. S(p): estimated uncertainty=1170 keV.
- Q(α): from Eα=9.54 MeV 60 (2004Og12). Other: 9260 keV 200 (2003Au03. Syst.).
- 1999Og05: using the reaction ²³⁸U(⁴⁸Ca,xn) attempts to synthesize new isotopes of Z=112 were made at DUBNA/JINR in collaboration with GSI and RIKEN. An upgraded and improved set-up was necessary for the preparation of the ⁴⁸Ca beam extracted from the U400 cyclotron used with the detection system with the VASSILISSA separator. The key to synthesis of Z=112 was the production of an intense 48 Ca ion beam in this hot fusion reaction. The U400 cyclotron was modified for an axial injection of the beam from the ECR-4M ion source which lead to an increase in intensity of a factor of 2-3 over the previous pulsed mode; the intensity at target thus being 2.2×10^{12} per sec. Two beam energies were used, 255 MeV 3 and 262 MeV 3, post extraction from the cyclotron. The 0.3 mg/cm² ²³⁸U target was enriched to 99.999%. The EVR's were separated in-flight from other reaction products by the electrostatic recoil separator VASSILISSA (1997Ye07). tof detectors were used to register EVR's and a position sensitive strip detector was installed in the focal plane of the separator. The energy resolution for α particles with energies of 6 to 9 MeV, was 20 keV. An accuracy of 1 microsec was achieved for recording time signals from events. The estimated detection efficiency of ≈25% was enhanced by surrounding the strip detector by 4 Si detectors. The array had an efficiency of 85% of 4π . The high tof efficiency allowed for the observation of clean spectra. The calculated beam energies at the target center were 231 and 238 MeV corresponding to excitation energies of 33 and 39 MeV respectively. The irradiation started March 1998 and proceeded for 25 days at the lower energy with a total beam dose of 3.5e18 projectiles, and for a further 15 days at the higher energy with a beam dose of 2.2×10^{18} ions. Only two SF events were detected at the lower energy (231 MeV) not accompanied by a tof signal but the high energy indicative of an implanted recoil. The TKE values for the two events are 190 and 212 MeV. Time reversed reconstruction of events revealed the possibility of an $\alpha-SF$ type occurance at a measured cross-section of 5.0 pb +63-32. The mean half-life of the events was 81 s +147-32. The EVR's being far from the region of known isotopes, could not be identified more conclusively and the possibility that the parent may be ²⁸³112 in the absence of any decay chains having been observed, is based on a variety of arguments including a comparison with expected theoretical cross-sections. The experimenters have observed that $T_{1/2}(SF)$ of the new nuclide is =1.5 min based on these two events, 3×10^5 times longer than $T_{1/2}(\alpha)$ of the lighter nucleus ²⁷⁷112 synthesized by the GSI group and reported in 1996Ho13 and 1999Og07.
- 19990g07: as daughter of 287 114 in experiments done at Dubna, with five participating countries, from March 3 to April 5, 1999 using the reaction 48 Ca+ 242 Pu via the 3n channel with a cross-section of 2.5 pb +33-16. The 48 Ca beam was injected into the U400 cyclotron at Dubna using six rotating targets of 242 Pu enriched to 97%. EVR's were separated by VASSILISSA (1994Ye08) in a set-up similar to the one used in 19990g05. The beam energy at the center of the target was 235 MeV 2, over a period of 32 days. A total of 7.5e18 ions passed through the target. 4 events were recorded with E(SF)>100 MeV in the front detector: two were attributed to SF-isomers of 242 mfPu. In the other events, SF was observed in two coincident signals with E(tot)=195 MeV for the first event and E(tot)=165 MeV in the other. Tentative assignment CN 290 114 post the evaporation of 3 neutrons to 287 114 with E α =10.44 MeV 2 to 283 112 with T $_{1/2}$ (SF)=180 s +170-60 based on 4 events. No α decays observed.
- 2000Ar03 discount all data from 1999Og05 and 1999Og07 (including decay chain for ²⁸⁹114 from 1999Og10), classifying the evidence as being "very weak", with no convincing supporting arguments for the possible production of SHE. 5 decay events described as being uncorrelated (see the General Comments for this evaluation).
- 2001Ya19: the first attempt to chemically study Z=112 which is expected to exhibit higher 'volatility' than Hg in gas chromatographic experiments with Au surfaces (2004Pe06). The investigations were prompted by the observation of the single 3 min, SF decay event observed in 1999Og05. The reaction used was ${}^{48}Ca+{}^{nat}U_{3}O_8$ containing 100 µg of ${}^{nat}Nd$ to enable the simultaneous production of short-lived Hg nuclides, expected to be the lighter homologue of Z=112. Started in January 2000, a 10 day irradiation with ${}^{48}Ca$ ions at a beam energy of 262 MeV (corresponding to a center-of-target energy of 234 MeV) with a beam current of 0.2-0.4 µA resulted in a total beam dose of 6.85×10^{17} ions. Following the bombardments, both Hg and Z=112 could be isolated and transported from the target, through gaseous He to a PIPS (passivated ion-implanted planar silicon) detector system which could detect both SF and α 's. To ensure high efficiency adsorption on the PIPS surfaces, they were coated with Au (or Pd). Both the 3nand $4n \Delta E$ -excitation channels were observed. Recoils were thermalized in pure He at atmospheric pressure and transported through a 25 min long polytetraflourethylene (PTFE) capillary to the detectors. Details of tests with carrier-free Hg nuclides also described. The adsorption of Hg atoms in ${}^{48}Ca(Nd,xn)$ reactions was measured by recording the known $E\alpha$ =5.65 MeV (49 s) from ${}^{185}Hg$. If indeed Z=112 behaved like Hg, 3.4 + 43-22 SF events could have been observed. No SF events were recorded although the attempt showed that chemical identification of SF nuclei produced with pb cross-sections is possible.
- 2002Lo15: experiment repeated with the $^{238}U(^{48}Ca,3n)$ reaction at Berkeley using the 88 inch cyclotron and the BGS (1998NiZR). The experimental apparatus was improved over 1998NiZR to include better detectors, data acquisition system etc. The $^{48}Ca^{10+}$ beam was provided at an energy of 243.5 MeV over a 5.5 day run. The EVR's with an expected magnetic rigidity of =39 MeV were separated by the BGS with a parallel plate avalanche detector (PPAC) at the focal plane. A thorough search of the data resulting from a beam dose of 1.1×10^{18} ions did not reveal any events of interest. No data was recorded at the "one-event" upper limit cross-section of 1.6 pb for EVR-SF events or at the corresponding cross section of 1.8 pb for EVR- α events. 2002Lo15 conclude that the cross-section for the production of this nucleus must be better determined since the small value or a possible weaker α -decay channel will contribute to the difficulty in measurement.

Continued on next page

Adopted Levels: Tentative (continued)

- 2003Ya22: the second experiment was an improved version of 2001Ya19. The set up extended to investigate the adsorption behavior of Z=112 in comparison with both Hg and Rn. Spanning November-December 2001 at FLNR/JINR using the U400 cyclotron for the same reaction but a much stronger flux of incident ⁴⁸Ca ions (0.6 μ A). The earlier arrangement was extended to include a 25 min long capillary tube connected to a detector array with 8 pairs of Au coated PIPS detectors to detect Hg-like Z=112. Following this was a 5000 cm**3 ionization chamber to observe the gaseous Rn-like behavior of Z=112. At the end of the experiment 8 SF events were detected in the ionization chamber with none in the PIPS detectors indicating that a metal-metal bond with Au was not formed. With an expected background of about 1 event, and with good arguments to rule out other SF sources, the SF events were attributed to ²⁸³112 (2004Ya09,2005ScZZ). It was concluded that Z=112 behaves more like a noble gas similar to Rn. Based on the absence of any metal-like event, an upper limit for the adsorption enthalpy was deduced to be $-AH_{a,d}(112) \leq 60$ kJ/mol. Results are indicative but not conclusive.
- 2004Gal8 reports results from experiments carried out at GSI in 2003. Done by a large international collaboration consisting of 5 countries, 10 institutes. The reaction $^{238}U(^{48}Ca,3n)$ was studied with a 1.2 pµA beam supplied by UNILAC. The beam energy was 239 MeV and a total flux of 2.8×10^{18} ions. Employing the IVO (in-situ volatilization and on-line detection) (2002Du22) technique with COLD (cryo on-line detector) successfully used in Hs experiments, seven ≥40 MeV SF events were seen which could be $^{283}112$ (assuming $T_{1/2}$ =3.0 min) at a cross-section of a few pb. These were observed in the same detectors that registered isotopes of Rn. Results are indicative but not conclusive. Imperfections in the experiment have been noticed and further experiments are planned.
- 2004Q02: further investigations for ²⁸³112 undertaken at Dubna given that $T_{1/2}(SF)=3$ min with the cross-section of =5 pb is quite large. Since the unambiguous identification of SF nuclei is difficult, VASSILISSA was upgraded for better mass resolution by incorporating a new dipole magnet with higher bending power (see description and references cited) resulting in a total geometric efficiency of 70% of 4π with an additional suppression of unwanted reaction products by a factor of =100. The ⁴⁸Ca beam impinged on the ²³⁸U target with an incident energy of 242 MeV corresponding to an excitation energy, E*=33 MeV at the target center. During a period 29 days and a beam dose of 5.9×10^{18} ions no SF events were detected. During the analysis of data, lifetimes in the interval 5 µs to 1000 s and energies in the interval 8 MeV to 13 MeV were scanned. The upper limit of the cross-section was deduced to be 2.2 pb. A second run lasting 15 days was carried out at the higher beam energy of 245 MeV (E*=35.5 MeV) with a total beam dose of 4.7×10^{18} projectiles. Two SF signals were detected with lifetimes of 3.0 and 24.3 min respectively with no α decay events observed. Mean value $T_{1/2}$ for a total of six decays including two as daughters of ²⁸⁷114 (1999Og07) is 5.1 min +35-15. The cross-section measured was 3.0 pb +40-20.
- 2004Og07 (see also 2004Og05): as granddaughter of ²⁹¹116 from one event recorded from the single α -decay of ²⁸⁷114. See Adopted Levels for ²⁸⁷114 and ²⁹¹116 for details of experimental set-up. Experiments were done at Dubna in collaboration with LLNL. The current and all subsequent investigations were carried out using the DGFRS. α energies attributed to the decay of ²⁸³112 were as follows: $\Xi\alpha$ =9.54 MeV 7 as α decay daughter of ²⁸⁷114; $\Xi\alpha$ =9.55 MeV 7 (event 1) and $\Xi\alpha$ =9.52 MeV 7 (event 2) as α decay grand-daughters of ²⁹¹116. The mean α energy (3 events) was 9.54 MeV and the estimated half-life was given as 6.1 s +72-22.
- 2004Og12,2004OgZZ: by the complete fusion reaction $^{238}U(^{48}Ca,3n)$ at Dubna using the DGFRS. A total of 8 decay sequences were observed and assigned to Z=112: 7 EVR- α -SF events spanning about 0.5-6 s observed at E(beam)=230-234 MeV assigned to $^{283}112$ and 1 shorter EVR-SF sequence with $T_{1/2}(SF)<1$ ms observed at an energy of 240 MeV assigned to $^{282}112$. The mean α energy was 9.54 MeV in agreement with 2004Og07. A special case at a beam energy of 234 MeV was recorded of the type EVR- $\alpha 1-\alpha 2-\alpha 3-\alpha 4-SF$ ending with 267 Rf. α decay is blocked below 279 Ds which fissions rather than α decays (10%). The evaluators suggest that this longer chain which terminates with 267 Rf, if confirmed, may be one incidence of this 10% branch. The event requires further investigation. No events that could be assigned to Z=112 were found in the reaction $^{233}U+^{48}$ Ca at 240 MeV despite an accumulated beam dose of 8×10⁸ ions. See 2004OgI2 and 2004OgZZ for a detailed discussion. These papers are identical in many respects. 2004OgIZ report more statistics some cases.
- In the case of ²⁸⁷114, the second α in the decay chain has an energy of 9.54 MeV 6 which agrees well with the 4 measured α 's (2004Og07) in 11 out of 14 cases. The other 3 α energies are 8.94, 9.36 and 9.32 MeV which 2004Og12 suggest may be indicative of transitions to different excited states in the daughter nucleus ²⁷⁹Ds.
- 2004OgZZ note that the maximum cross-section for the ${}^{48}Ca+{}^{238}U$ reaction in the 3n channel is 2.5 pb +18-11 at E*=35 MeV corresponding to a beam energy of 231 MeV. They suggest that the non-observation of any events attributable to Z=112 by 2002Lo15 may be due to insufficient experimental sensitivity. The one-event upper cross-section limit set therein of 1.6 pb corresponds to a statistical upper limit of 2.9 pb with 84% confidence, assuming all parameters are chosen optimally.
- 2005Gr19 (includes results of 2002Lo15): attempt at independent confirmation of the production of $^{283}112$ using the reaction $^{238}U(^{48}Ca,3n)$ at LBNL using the BGS. $^{48}Ca^{10+}$ accelerated by the LBNL 88-inch cyclotron to E=243.5 and 248.3 MeV (230.3 and 235.6 MeV center of target energies, respectively). Targets consisted of 0.58 mg/cm² Al foils with $^{238}UF_4$ evaporated on the downstream side. Nine targets on arc-shaped frames were arranged on the periphery of a 35-cm diameter wheel which rotated at =500 RPM. Beam intensities = $^{3\times10^{12}}$ ions/s. BGS filled with He gas at 66 Pa (93 Pa for the 230.3-MeV irradiation). Efficiency for collecting $^{283}112$ EVR estimated to be 49% at 230.3 MeV and 59% at 235.6 MeV. 10 cm×10 cm PPAC with 12 cm×6 cm Si strip array for 230.3-MeV irradiation; 16 cm×8 cm multiwire proportional counter(MWPC) with 18 cm×6 cm Si strip array for 235.6-MeV irradiation. ΔE_{α} (FWHM)=50 keV in the focal plane detector and =100 keV in upstream strips. α -particle detection efficiency =73-75%.

Adopted Levels: Tentative (continued)

From theory (1995Sm05) and previous work, production of SHE in the region of ²⁸³112 should result in SF decay of either the produced isotope or one of the daughter isotopes. The experiment of 2005Gr19 was sensitive to SF decays with lifetimes from 11 μ s (15 μ s at 230.3 MeV) to \approx 1.0×10⁶ s. No SF events were observed in any of the ⁴⁸Ca + ²³⁸U irradiations (\leq 1.6 pb and \leq 2.0 pb at 230.3 MeV and 235.6 MeV, respectively; 84% c.i.). Searches for possible Z=112 decay chains which are not terminated by SF decay (or where the SF lifetime is longer than the duration of the experiment) were also performed. No EVR- α - α correlations with Δ t(EVR- α)<20 s or Δ t(α - α)<20 s were observed in any of the ⁴⁸Ca + ²³⁸U irradiations (limits=1.19 larger than for SF decay). See 2005Gr19 for additional details. Others: 2004Ma01, 2004Og06, 2004Og10, and 2002Og07. See also the General Comments section of this evaluation.

Theory: see Nuclear Science References.

Assignment: ²³⁸U(⁴⁸Ca,3n) E=255, 262 MeV (1999Og05), E=245 MeV (2004Og02), and E=230-234 MeV (2004Og12,2004Og2Z). Daughter of ²⁸⁷114 produced by ²⁴²Pu(⁴⁸Ca,3n) E=235 MeV (1999Og07). Granddaughter of ²⁹¹116 produced by ²⁴⁵Cm(⁴⁸Ca,2n) E=243 MeV (2004Og07). The evaluators note that the radioactive properties for the current nucleus as reported by 2004OgZZ, 2004Og12, and 2004Og07, all using the DGFRS, are in agreement with each other whereas they differ considerably from results obtained in experiments using the VASSILISSA separator. Further investigations may be warranted to resolve the existing ambiguities in the data. It cannot be ruled out that 283 112 may exhibit both SF and lpha decay modes although the probability of this appears to be small. However, if the data from both sets of experiments are taken together and analyzed, given a total of 17 a-decay events (2004Og07, 2004OgZZ) from the DGFRS data (no SF event) and a total of six SF events (1999Og05, 1999Og07, 2004Og02) from VASSILISSA (no α -decay event), the SF branch constitutes $\approx 35\%$. This ratio is clearly not observed in either data set, both being mutually exclusive to each other (*i.e.*, all SF or all α -decay). Since, however, in experiments using DGFRS, the assignments for Z=112, Z=114, and Z=116 are based on measured excitation functions and, in some cases, consistency of observed properties of decay daughters produced by cross-bombardments, greater internal consistency exists. In particular, the decay properties of ²⁸³112 are consistent through the various measurements $(following\ reassignments\ as\ suggested\ first\ in\ 2004Og07),\ independently\ of\ whether\ they\ were\ observed\ as\ primary$ nuclei or as α decay daughters of parents one (Z=114) or two (Z=116) 'levels' up. The evaluators have, therefore, tentatively adopted these radioactive properties here. Note that 2005Gr19 did not observe any SF decays or EVR- α - α correlations in any ⁴⁸Ca + ²³⁸U irradiations.

IUPAC/IUPAP JWP assessment (2003Ka71): with respect to the Dubna experiments (1999Og05,1999Og07), although they have performed high quality studies, an acknowledgement of discovery of Z=112 is not warranted due to unsecured connections to descendents and unobserved elemental signatures; see also 2001Ka70.

²⁸³112 Levels

E(level)	T _{1/2}	Comments				
x?	 4.0 s +13-7 Jπ: Ω(n)=7/2- from 1997Mo25 (theory). T_{1/2}: from 18/18 events half-lives/α particle energies (2004Og12). T_{1/2}(calc)=3.3 s from Viola-Seaborg systematics for Q(α)=9.67 MeV. %α≥99; %SF≤1. %α,%SF: from 2004Og12. Other %SF<4 (evaluators). β₂(theory): 0.089 from 1995Mo29; 0.135 from 2003Mu15; 0.165 from 2005GaZX. 					
		²⁸⁷ 114 α Decay: Tentative 2004Og12				
Parer ²⁸⁷ 11 ²⁸⁷ 11 See ²	th $^{287}114$: E=x; Ja 4 $-T_{1/2}$: from 200 4 $-Q(\alpha)$: from 200 $^{287}114$ Adopted Le	τ=?; T _{1/2} =0.51 s +18-10; Q(g.s.)=10160 60; %α decay≈100. 4Og12. 94Og12. evels for details.				
		²⁸³ 112 Levels				
E(level)	T	Comments				
x ?	4.0 s +13-7	E(level), $T_{1/2}$: from the Adopted Levels. α radiations				
Εα	E(level)	Comments				
10020 [‡] 60 [‡] Existent	x? ce of this branch	Eα: from 2004Og12. is questionable.				

 $\frac{283}{113}13_{170}$

Adopted Levels: Tentative

 $S(p)=1060 SY; Q(\alpha)=10260 90 2003Au03,2004Og03.$

S(p): estimated uncertainty=1020 keV.

 $Q(\alpha): \mbox{ from } E\alpha \mbox{=} 10.12 \ \mbox{MeV} \ \mbox{9} \ (2004 \mbox{Og} 03). \ \mbox{Other:} \ 10.60 \ \mbox{MeV} \ \mbox{30} \ \mbox{(2003Au} 03. \ \mbox{Syst.)}.$

2003OgZY and 2004Og03: identification of new nuclides: 287 115, 283 113, 279 Rg, 275 Mt and 267 Db. 283 113 observed as α -decay daughter of parent 287 115; see 287 115 Adopted Levels for experimental details.

Reaction: ${}^{243}Am({}^{48}Ca,4n)$ E=253 MeV corresponding to an excitation energy of 42.4 to 46.5 MeV at the target center. ${}^{287}115$ was formed at a cross-section of 0.9 pb +32-8.

One decay chain with four consecutive α decays was detected terminated by a fission event. The beam was switched off after the detection of an EVR signal followed by an α signal after 46.6 ms with E=10.59 MeV in the same strip attributed to ²⁸⁷115. While in the beam-off mode 3 other α decays were recorded in within a time interval of about 0.4 s followed by an SF event after about 106 min with a sum energy of 206 MeV, all in the same position in the same strip detector. Three other SF events were also measured with fragment energies of 168 MeV, 154 MeV, and 151 MeV. The second event in the chain was assigned to the nucleus ²⁸³113:

Energy of the evaporation residue=12.2 MeV

 $E_{\alpha} = 10120 \text{ keV}$ t=100 MS - assigned to ²⁸³113

Theory: 1997Mo25, 2003Mu15, 2003Ge09, 2004Ba86, 2004GuZW and Nuclear Science References.

The evaluators note that the identification of Z=115 and all associated nuclides in the chain should be treated as tentative until confirmed in independent experiments.

²⁸³113 Levels

Cross Reference (XREF) Flags

A $^{287}115~\alpha$ Decay: Tentative

E(level) XREF Comments x ? $J\pi$: $\Omega(p)=7/2-$ from 1997Mo25 (theory). Α ${\rm T_{1/2}{=}100\ ms\ +}490{-}45\ (2004{\rm Og}03).$ $T_{1/2}$: $T_{1/2}$ (calc)=140 ms from Viola-Seaborg systematics for Q(α)=10.26 MeV. %α≈100. $\%\alpha$: from one event. B₀(theory): 0.072 from 1995Mo29: 0.149 from 2003Mu15: 0.169 from 2005GaZX. ²⁸⁷115 α Decay: Tentative 2004Og03 Parent ²⁸⁷115: E=x; J\pi=?; T_{1/2}=0.03 s +16-2; Q(g.s.)=10740 90; % α decay=100.03 s +16-2; Q(g.s.)=10740 90; % \alpha $^{287}115$ $-T_{1/2}:$ 32 ms $+155{-14}$ (2004Og03). $^{287}115 - Q(\alpha)$: from 2004Og03. See ²⁸⁷115 Adopted Levels for details. ²⁸³113 Levels E(level) Comments T_{1/2}=100 ms +490-45. x ? $E(level), T_{1/2} : from the Adopted Levels.$ α radiations $E\alpha$ E(level)Comments 10590 \$ 90 x ? Eα: from 2004Og03 [‡] Existence of this branch is questionable.

 $Q(\beta^{-})=-5310 \ SY; \ S(n)=7520 \ SY; \ S(p)=3590 \ SY; \ Q(\alpha) \leq 9850 \ 2003 Au 03, 2004 Og 12.$

- $Q(\beta^{-}) \text{: estimated uncertainty=1170 keV.}$
- $S(n) {:}\ estimated\ uncertainty=1150\ keV.$
- S(p): estimated uncertainty=1150 keV.
- $Q(\alpha)$: from 2004Og12. Other: \leq 9.80 MeV for 17 SF events from 2004OgZZ; 2003Au03 adopted 9.30 MeV 5 based on the data of 2001Og01 which was reassigned by 2004Og07.
- Also as α decay daughter of ²⁸⁸114.

2000Og05,2000Og07: at Dubna with ²⁴⁴Pu+⁴⁸Ca. See ²⁸⁸114 Adopted Levels for experimental details. These assignments for this nucleus (and parent) stand revised in 2004Og07.

- 2004Og07: see ²⁸⁸114 Adopted Levels for details. Experiments done at Dubna with ²⁴⁴Pu+⁴⁸Ca aimed at gaining improved sensitivity of >2 orders of magnitude over previous attempts, for picobarn cross-sections expected in the production of Z=114. At beam energies of 243 MeV (E*=41 MeV at target center, 7 events), 250 MeV (E*=47 MeV, 4 events) and 257 MeV (E*=53 MeV, 1 event) a total of 12 EVR- α -SF sequences were observed, occurring within a period of 1 second. The maximum yield for ²⁸⁸114 corresponds to E*=43 MeV with an expected cross-section of 5.3 pb +36-21 in the 4n channel. t(SF)=0.1 s was recorded for all 12 events though one α -decay chain had a missing α . Data from 11 events: E α =9.95 MeV 8, T_{1/2}(α)=0.63 s +27-14 to ²⁸⁴112 daughter (T_{1/2}(SF)=98 ms +41-23).
- 2004Og12,2004OgZZ: see ²⁸⁸114 Adopted Levels for details. A series of experiments using more stringent methods (1992Ba77,2004Og05) were carried out since all these chains passed through and ended in hitherto unknown regions. Using the ²⁴²Pu+⁴⁸Ca reaction at E(lab)=235 MeV a single EVR- α -SF chain was recorded. This event corresponded to the 2*n* evaporation channel with a cross-section of about 0.5 picobarn. The radioactive properties agreed well with the 12 chains measured in 2004Og07 using a ²⁴⁴Pu target. The SF event corresponds to ²⁸⁴112 in all cases with high probability. The evaluators note that these two papers are identical in most respects. 2004OgZZ report more statistics in some cases.
- 2004OgZZ: see ²⁹²116 adopted levels for details. As α decay grand-daughter of ²⁹²116 produced by ²⁴⁸Cm(⁴⁸Ca,⁴n) at E=247 MeV. These 6 Er- α 1- α 2-SF events spanning 0.5-2.0 s were not observed in earlier experiments or described in 2004Og12. The results are consistent with previous measurements. The combined half life estimated from 17 events was revised to 97 ms +31-19. Estimated Q(α)<9.80 MeV for α -decay branch, not observed.
- Theory: 1997Sm03, 1997Mo25, 2004GaZU. See also Nuclear Science References.

Assignment: daughter of ²⁸⁸114 produced by ²⁴⁴Pu(⁴⁸Ca,4n) E=243, 250, 257 MeV (2004Og07) and ²⁴²Pu(⁴⁸Ca,2n) E=235 MeV (2004Og12). IUPAP/IUPAC JWP assessment (2003Ka71): discovery of Z=114 was not yet warranted due to unsecured connections to known descendents and the absence of further elemental signatures such as x-rays. These observations may still hold good even as the more recent cross bombardment and excitation function studies for ²⁸⁸114 provide additional strong evidence for the assignment. Furthermore, due to the difficulties inherent to hot/warm fusion experiments, additional confirmation would be beneficial (see the General Comments section for details).

²⁸⁴112 Levels

Cross Reference (XREF) Flags

A $^{288}114 \alpha$ Decay: Tentative

E(level)	XREF	T _{1/2}	Comments
x ?	A	101 ms +41-22	Jπ: 0+ if g.s. T _{1/2} : T _{1/2} (SF)=101 ms +41-22 from 12 SF events observed (2004Og12). Other: 97 ms +31-19 for 17 events from 2004OgZZ.
			%SF≈100.
			%SF: 100% observed; estimated 100% α -decay from 2003Au03 (syst.).

β₀(theory): 0.089 from 1995Mo29; 0.129 from 2003Mu15; 0.000 from 2005GaZX.

Comments

²⁸⁸114 α Decay: Tentative 2004Og12

Parent ²⁸⁸114: E=0; J\pi=?; $T_{1/2}$ =0.80 s +32-18; Q(g.s.)=10090 70; %a decay=100. ²⁸⁸114 - $T_{1/2}$: from 2004Og12. ²⁸⁸114 -Q(a): from 2004Og12. See ²⁸⁸114 Adopted Levels for details.

²⁸⁴112 Levels

E(level)

x?

T_{1/2}

101 ms +41-22

 $E(level), T_{1/2}$: from the Adopted Levels.

²⁸⁸114 α Decay: Tentative 2004Og12 (continued)

 α radiations

Eα E(level)

 $10080 \ddagger 60 x?$

 \ddagger Existence of this branch is questionable.

 $S(n)=6550 SY; S(p)=1430 SY; Q(\alpha)=10150 60 2003Au03,2004Og03.$

S(n): estimated uncertainty=1080 keV.

S(n): estimated uncertainty=1110 keV.

Q(α): from Eα=10.00 MeV 6 (2004Og03). Other: 10.25 MeV 30 (2003Au03. Syst.).

2003OgZY and 2004Og03: identification of new nuclides: ²⁸⁸115, ²⁸⁴113, ²⁸⁰Rg, ²⁷⁶Mt, ²⁷²Bh, and ²⁶⁸Db. ²⁸⁴113

observed as α -decay daughter of parent ²⁸⁸115; see ²⁸⁸115 Adopted Levels for experimental details.

Reaction: ²⁴³Am(⁴⁸Ca,3n) E(lab)=248 MeV corresponding to an excitation energy of 38.0 to 42.5 MeV at the target center. ²⁸⁸115 was formed with a cross-section of 2.7 pb +48-16.

Three similar decay chains with five consecutive α decays were detected in a time interval of 20 s (in the beam-off mode following the first recoil expected to belong to Z=115) terminated by an SF event with a release of total kinetic energy of ≈ 220 MeV. These events were assigned to the $({}^{48}Ca, 3n)$ channel with the production of the parent nuclide ²⁸⁸115; the second event in the chain was assigned to ²⁸⁴113. Properties of ²⁸⁴113 from the three chains are listed below by event:

Event #1: Energy of the evaporation residue=10.4 $\,{\rm MeV}$

 $E_{\alpha} = 10040 \text{ keV}$ t = 0.376 s - assigned to ²⁸⁴113

Event #2: Energy of the evaporation residue=11.0 MeV

E_α=9480 keV 610 t=1.196 s - assigned to ²⁸⁴113

Event #3: Energy of the evaporation residue=9.1 MeV

t=0.517 s - assigned to $^{284}113$ $E_{\alpha} = 10000 \text{ keV}$

Theory: 1997Mo25, 2003Mu15, 2003Ge09, 2004Ba86, 2004GuZW and Nuclear Science References.

Assignment: daughter of ²⁸⁸115 produced by ²⁴³Am(⁴⁸Ca,3n) E=248 MeV (2003OgZY,2004Og03) and E=243 MeV, chem (2004DmZZ). The evaluators suggest that 2004DmZZ offers independent support to the synthesis of ²⁸⁸115 (2004Og03) having precisely determined the atomic number for Z=105 by isolation of Group V elements. The properties are in agreement with ²⁶⁸Db measured in the three chains seen earlier by 2004Og03, thereby providing evidence in favor of the synthesis of ²⁸⁸115 and daughters. However, since the identification relies on the measurement of SF fragments, the possibility that the observed nucleus is actually 268 Rf following (undetected) ϵ from the parent ²⁶⁸Db, cannot be excluded.

²⁸⁴113 Levels

Cross Reference (XREF) Flags

A ²⁸⁸115 α Decay: Tentative

E(level)	XREF	T _{1/2}	Comments
?	A	0.48 s +58-17	Jπ: Ω(p)=7/2-; Ω(n)=3/2+ from 1997Mo25 (theory). T _{1/2} : from 20040g03. T _{1/2} (calc)=0.28 s from Viola-Seaborg systematics for Q(α)=10.15 MeV. %α=100. %α: from three events.

β₂(theory): 0.080 from 1995Mo29; 0.138 from 2003Mu15; 0.166 from 2005GaZX.

Comments

²⁸⁸115 α Decay: Tentative 2004Og03

Parent ²⁸⁸115: E=x; Jπ=?; T_{1/2}=0.09 s +11-3; Q(g.s.)=10610 60; %α decay≈100. $^{288}115 - T_{1/2}$: 87 ms +105-30 (2004Og03). $^{288}115 - Q(\alpha)$: from 2004Og03. See ²⁸⁸115 Adopted Levels for details.

 $T_{1/2}$

²⁸⁴113 Levels

E(level)

x?

х

0.48 s +58-17 $E(level), T_{1/2}$: from the Adopted Levels.

 α radiations

Eα	E(level)	Comments

10460 ± 60 x ? Eα: from 2004Og03.

 \ddagger Existence of this branch is questionable.

 $Q(\beta^{-})=-4310 SY; S(n)=6470 SY; Q(\alpha)=9290 60 2003Au03,2004Og12.$

- $Q(\beta^{-}) {:}\ estimated\ uncertainty=1220\ keV.$
- S(n): estimated uncertainty=1120 keV.

 $Q(\alpha): \mbox{ from } E\alpha = 9.16 \ \mbox{MeV } 6 \ (2004 \mbox{Og12}). \ \mbox{Other: } 8.79 \ \mbox{MeV } 5 \ (2003 \mbox{Au03}. \ \mbox{Syst.}); \ \mbox{E}\alpha = 9.15 \ \mbox{MeV } 5, \ \mbox{Q}(\alpha) = 9.28 \ \mbox{MeV } 5 \ (2004 \mbox{Og2Z}). \ \mbox{As daughter nucleus of } ^{289}114: \ \mbox{see } ^{289}114 \ \mbox{Adopted Levels}.$

All assignments for this nucleus as the α -decay daughter of Z=114 stand revised in 2004Og07. The evaluators present results prior to 2004Og07 with the original nomenclature.

- 1999Og10: Z=114 produced by the Dubna group in the 3n evaporation channel using $^{244}Pu+^{48}Ca$ at 236 MeV provided by the U400 cyclotron in November-December 1998. EVR's were separated by the DGFRS (1993LaZS). 40% of the recoiling Z=114 nuclei expected to be implanted in the focal plane detector. Three SF events seen: one event assigned to 0.9 ms $^{244mf}Am$, the product of transfer reactions. Second event: information was lost. Third SF event was resolved into a position-correlated decay chain with E1=9.71 MeV, t1=30.4 s; $^{285}112$: E2=8.67 MeV, t2=15.4 min; ^{281}Ds : E3=8.83 MeV, t3=1.6 min followed by the two SF fragments with E(tot)=172 MeV from ^{277}Hs . Hindrance factors of 1-10 were assumed for α -decays of odd-n nuclei. Tentative assignment of parent $^{289}114$ made in agreement with calculations by Smolanczuk (1997Sm03) and corresponding to a cross-section of 1 pb. This decay sequence and all constituent assignments are considered tentative by the evaluators.
- 2000Og05: experiments continued at Dubna with 244 Pu+ 48 Ca at 236 MeV as before but improved sensitivity of >2 orders of magnitude over previous attempts, for picobarn cross-sections expected in the production of Z=114. These experiments were done from June to October 1999 incorporating an upgraded data acquisition system which allowed for a correlation between the target sector giving rise to a specific recoil and the excitation energy at target center for the same event. The U400 cyclotron was used with DGFRS (2000OgZR, 1993LaZS). Observed two identical three-member decay sequences corresponding to two SF events at a ⁴⁸Ca beam energy of 237.6 and 237.0 MeV at target-center corresponding to excitation energies of 33.6-39.7 MeV and 33.2-39.1 MeV of the 292114 CN, respectively. Two SF events were recorded as coincident signals with energies E1(tot)=221 MeV and E2(tot)=213 MeV. Upon the time-reversed reconstruction of all data, two α decay chains, consistent with each other were reported and thought to originate from ²⁸⁸114 via the 4n channel. These were reassigned to ²⁸⁹114 in 2004Og07 and 2004Og12. The decays proceed as follows: $E1(\alpha)=9.87$ MeV, t1=0.77 s; $E2(\alpha)=9.21$ MeV, t2=10.34 s; E3(SF-tot)=221 MeV, t3=10.34 s; E3(SF-tot)=221 MeV, t3=10.34 s; E3(SF-tot)=221 MeV, t3=10.34 s; E3(SF-tot)=221 MeV, t3=10.34 s; t(SF)=14.26 s for the first chain and $E1(\alpha)=9.80$ MeV, t1=4.58 s; $E2(\alpha)=9.13$ MeV, t2=18.01 s; E3(SF-tot)=213 MeV, t2=18.01 s; E3(SF-tot)=213 MeV, t=18.01 s; t=18.01t(SF)=7.44 s for the second chain respectively. The second event in each chain is 285112. It was observed that $life-times \ of \ nuclei \ Z{\geq}Ds \ were \ considerably \ increased \ over \ predictions \ with \ increasing \ neutron \ number. \ The$ experiments were collectively offered as proof of enhanced stability in the region around Z=114 and N=184, where shell closure has been theorized to exist.
- 2001Og01, 2001Og06: report α decay chains initially assigned to the even-even nucleus ²⁹²116 and daughters from the ²⁴⁸Cm+⁴⁸Ca reaction thought to be *via* the 4*n* evaporation channel. These were subsequently reassigned to ²⁹³116 hence α -decay grand-daughter is ²⁸⁵112. See ²⁹³116 Adopted Levels for details.

IUPAP/IUPAC JWP assessment (2003Ka71): discovery of Z=112 was not yet warranted due to unsecured connections to known descendents and the absence of further elemental signatures such as x-rays.

2004Og07, 2004Og12: see ²⁸⁹114 Adopted Levels for details. A series of experiments using more stringent methods (1992Ba77,2004Og05) were carried out since all these chains passed through and ended in hitherto unknown regions. Bombarding energies of ⁴⁸Ca on ²⁴⁴Pu were higher than those used earlier. At 243 MeV two decay chains were observed of the type α - α -SF. A tentative (due to the high randomness probability of about 40%) assignment of ²⁸⁹114 was made; tentative α -decay daughter ²⁸⁵112 (beam off condition) with E α =9.16 MeV 6. Three other similar events with a smaller probability of randomness of 18%, 2% and 6% were detected at this energy. Two such identical decay chains had previously been seen in 2000Og05 and 2000Og07 at the lower energy of 236 MeV (see the ²⁹³116 Adopted Levels) with the reaction ²⁴⁸Cm+⁴⁸Ca. At an energy of 250 MeV, one more such event was observed; none at 257 MeV.

Assignments: shorter α -SF chain to ²⁸⁸114 via the 4n channel; two different α - α -SF chains to the E-O isotopes ²⁸⁹114 and ²⁸⁷114 via the 3n and 5n channels respectively. In the longer chains α - α -SF (8 events) all ²⁸⁵112 daughter nuclei α decay with T_{1/2}(α)=34 s +17-9.

2004OgZZ report two EVR- $\alpha 1-\alpha 2-\alpha 3$ -SF chains spanning about 10 to 80 s produced in the reaction 248 Cm+ 48 Ca at E=247 MeV. The experimenters note that these chains are similar to those observed at a lower energy in 2001Og01, 2001Og06, and also discussed in 2002Og09. In both cases the parent was 293 116 and $\alpha 3$ was attributed to 285 112. A total of 10 (α) decay events were considered in the estimation of the half-life of T_{1/2}=29 s +13-7. 2004Og12 and 2004OgZZ are identical in most respects. 2004OgZZ report more statistics in some some cases.

Other: 1999Og07, 2000Og07, 2004Og10.

Theory: 1995SmZY, 1997Sm03, 1997Mo25, 1996My01, 1999Cw01, 2000Be04, and 2004Ro03. See also Nuclear Science References.

Revised assignments: previously observed α decay daughters from 2000Og05, also mentioned in 2000Og07, as seen in the reaction 244 Pu+ 48 Ca are believed to be 285 112.

Assignment: daughter of ²⁸⁹114 produced by ²⁴⁴Pu(⁴⁸Ca,3n) E=236 MeV (1999Og10, 2000Og05) and E=243 and 250 MeV (2004Og07, 2004Og12). Granddaughter of ²⁹³116 produced by ²⁴⁸Cm(⁴⁸Ca,3n) E=240 MeV (2001Og01, 2001Og06). The evaluators consider the assignments of ²⁹³116 and ²⁸⁹114 and daughters as tentative. See respective Adopted Levels for details.

			Adopted Levels: Tentative (continued)
			²⁸⁵ 112 Levels
			Cross Reference (XREF) Flags
			A $^{289}114 \alpha$ Decay: Tentative
E(level)	XREF	T_1/2	Comments
x ? Pare ²⁸⁹ 11	A nt ²⁸⁹ 114: 14 -T _{1/2} : f	34 s +17-9 E=x; Jπ=?; T ₁ / rom 2004Og12.	 Jπ: 5/2+ from 1997Mo25 (theory) and 2003Au02 (systematics). T_{1/2}: from 8/8 events (2004Og12). Other: 29 s +13-7 per 10/10 events (half-lives/α energies) from 2004OgZZ. T_{1/2}(calc)=48 s from Viola-Seaborg systematics for Q(α)=9.28 MeV. %α=100. %α: from 8/8 events. β₂(theory): 0.089 from 1995Mo29; 0.122 from 2003Mu15; 0.143 from 2005GaZX. 289114 α Decay: Tentative 2004Og12 ₂=2.7 s +14-7; Q(g.s.)=9960 60; %α decay=100.
See	²⁸⁹ 114 ado	pted levels for	details.
			285112 Levels
E(level)	T_1/2	2	Comments
x ?	34 s +	17-9 E(lev	el), $T_{1/2}$: from the Adopted Levels.
			α radiations
Εα	E(leve	el)	

9820[‡]60 x?

 ‡ Existence of this branch is questionable.

 $S(p)=2060 SY; Q(\alpha)=11000 SY 2003Au03.$

S(p): estimated uncertainty=1300 keV.

 $Q(\alpha) {:}\ estimated \ uncertainty=200 \ keV.$

The data of 1999Ni03 cited by 2000Fi12 have been retracted (2002Ni10) and have not been confirmed in a repeated

experiment at LBNL (2003Gr26). Also, 2001MoZU and 2000HoZZ found no evidence for $^{293}118$ in $^{208}Pb(86Kr,n)$ reaction at 457.6 MeV (2001MoZU) and at 453.9 and 456.7 MeV (2000HoZZ). The statistical analysis of 2000Sc26 also indicate that the data of 1999Ni03 do not originate from radioactive decays with an error probability of less than 5%.

2003 Au02 suggest 3/2+ based on systematics.

See ²⁸⁹114 Adopted Levels for details of the experiments.

2004Og10: the reinterpretation of one long lived decay chain first observed in 1999Og10 at Dubna, and tentatively assigned to the decay of $^{289}114$, is now proposed as possibly originating from the CN $^{290}114$ via the 2n channel. The subsequent α -decays would then be: $^{286}112 \rightarrow ^{282}D_S \rightarrow ^{278}H_S$ (SF). The cross-section for this event was =0.2 picobarn in the reaction $^{244}Pu+^{48}Ca$ at 236 MeV ($E^{*}=35$ MeV). This event was not observed in later experiments done at energies of $E^{*}=41-53$ MeV (2000Og05,2000Og07). The α particle energy of the first decay is =0.1 MeV less than that attributed to $^{289}114$ from later work. An alternative interpretation based on calculations (1999Cw01) is that this chain may belong to a rare decay branch of $^{289}114$ starting from an excited state and going to low lying levels in the daughter governed by the appropriate selection rules. 3 minute α -SF event observed in 1999Og07 at $E^{*}=32.6$ MeV for $^{290}114$ and assigned to $^{287}114$ not seen by 2004Og10.

Assignment: IUPAP/IUPAC JWP assessment (2003Ka71): discovery of Z=114 was not yet warranted due to unsecured connections to known descendents and the absence of further elemental signatures such as x-rays. The evaluators believe that there is too little data to support the assignment of this decay chain to either ²⁹⁰114 or ²⁸⁹114 and, therefore, ²⁹⁰114, ²⁸⁶112, ²⁸²Ds and ²⁷⁸Hs remain unobserved. See the General Comments for more details. Theory: see Nuclear Science References.

 $^{286}_{^{1}14}14_{172}\text{--}1$

 $S(n)=7930 SY; S(p)=2520 SY; Q(\alpha)=10345 60 2003Au03,2004Og12.$

- S(n): estimated uncertainty=1290 keV.
- $S(p)\colon$ estimated uncertainty=1250 keV.
- 2002OgZX, 2003OgZZ: by complete fusion reaction 249 Cf(48 Ca,3n) at an energy of 265 MeV. 286 114 is the α -decay granddaughter of 294 118 in this reaction which ends the decay chain by SF. See for 294 118 Adopted Levels for other experimental details. The optimal cross-section and the highest yield of EVR's is expected for the above channel by theory (2002Za19,2002Za16,2002Za01) and systematic extrapolations from the radioactive properties of neighbouring even-even nuclei such as 292 116, 288 114, 284 112, and 280 Ds created with 244 Pu and 248 Cm targets. The beam of 48 Ca ions was provided by the JINR U400 cyclotron and EVR's were separated by DGFRS. A fission fragment calibration was performed using SF fragments from 252 No with a known average energy release of about 176 MeV. 18 SF events observed separable into two groups by energy: 16 events with an average total E=158 MeV (125 \le (tot) \le 175 MeV) and two events with E(tot)=207 MeV and 223 MeV. Corresponding lower limit of half-life for the group of 16 events was estimated to be $T_{1/2}$ (SF)>0.5 h ascribed to long lived nuclides in the Cf-Fm region *via* incomplete fusion reactions suppressed by >5 orders of magnitude in DGFRS.
- The other two fission events were preceded by recoil signals ascribed to α decay from a higher A-parent. In particular, the event with E(tot)=207 MeV points to a strong correlation of α decays in an EVR- α 1- α 2-SF sequence with a probability of randomness estimated to be <1.5×10⁻⁶. The instantaneous beam energy was 245.6 MeV corresponding to an excitation energy of 29.8 MeV 20 in the compound system ²⁹⁷118 (see ²⁹⁴118 adopted levels for details). E_{α 1}=11.65 MeV 6, t₁=2.55 ms; E_{α 2}=10.71 MeV 17, t₂=42.1 ms, E_{tot}SF=207 MeV, t(SF)=0.52 s. The sequence ended with the SF of ²⁸⁶114.
- For the second event with E(tot)=223 MeV no α -like signals were detected during the EVR-SF event. Two coincident fragments seen with with energies of 137 MeV (focal plane detector) and 86 MeV (side detector). The instantaneous beam energy was 246.1 MeV corresponding to a compound nucleus excitation energy of 30.2 MeV 23. A comparison of the excitation functions and decay properties of the shorter EVR- α -SF chain members from the ²⁴²Pu reaction with the EVR-SF events in the ²³⁸U reaction suggest that they originate from the neighbouring isotopes ²⁸⁶114 and ²⁸²112, respectively. Of the 13 decays observed in total for ²⁸⁶114, only five α -decays were observed: $b(\alpha)=0.4$. $Q(\alpha)\leq10.4$ MeV and $T_{1/2}\geq100$ ms (95% c.i.) extrapolated values from neighbouring E-E isotopes.
- 2^{286} 114 is also the α decay granddaughter of 2^{94} 118 but with different properties. Assignments for daughters are also tentative and based on the assumption that the parent nucleus is 2^{94} 118 *via* the 3*n* channel from the CN 2^{97} 118. It is estimated that the subsequent α -decays are genetically linked with a probability p>87%. This is supported by the application of the Viola-Seaborg relationship as applied to even-even isotopes to calculate Z for the nuclides that undergo α -decay prior to SF.
- 2004Og07 at Dubna in the reaction ²⁴⁵Cm(⁴⁸Ca,3n) at a beam energy of 243 MeV. This measurement, using the Ca beam initiated a new series of experiments which have resulted in the synthesis of new Z=116 isotopes. This nucleus $(^{286}114$) is also produced as the lpha-decay daughter of $^{290}116$. The ^{48}Ca beam was accelerated by the U400 cyclotron at the FLNR/JINR. The typical beam intensity was 1.2 pµA. The target was enriched to 98.7%. The EVR's recoiling from the target were separated by the DGFRS with a transmission efficiency of 35-40% for Z=114 and 116 nuclei. EVR recoils passed through a tof system and were implanted in a semiconductor array. The position averaged detection efficiency for α -decays of implanted nuclei was 87% of 4 π with an energy resolution of 60-90 keV for α 's absorbed in the focal plane detector. Those that escaped registered a summed signal with a resolution of 140-200 keV in the side detector. All the correlated events observed in these experiments had position deviations corresponding to the given position resolutions: 0.8-1.3 mm for EVR- α signals and 0.5-0.8 mm for EVR-SF signals. Three decay sequences were recorded and attributable to parent 290 116. This nucleus was observed as the α -decay daughter of 290 116. Of the three events 286 114 undergoes SF in two cases and α -decay in one case: Elpha=10.03 MeV (escaped lpha, recorded in side detector only), $T_{1/2}$ =1.448 ms. The α -decay of this isotope was not observed in the decay chain originating from 294 118 (see 2002OgZX,2003OgZZ). The possibility that this nucleus undergoes α -decay along with SF cannot be ruled out as it is seen that $T_{1/2}(\alpha)$ is approximately equal to $T_{1/2}(SF).$ The $\alpha-decay$ properties are considered tentative by the evaluators until better statistics are achieved. The two SF events had a total E(SF)=193 MeV and 176 MeV, where only the first event was recorded in both the focal plane and the side detectors which may account for the difference in energies between the two measurements. (see 2004Og05 for more details and discussion).
- 2004Og12, 2004OgZZ: directly synthesised in the ²⁴²Pu(⁴⁸Ca,4n) reaction at Dubna using DGFRS. A total of 9 EVR-α/SF-SF chains measured: 7 at 244 MeV and 2 at 250 MeV. The second α/SF event was attributed to ²⁸⁶114 which fissioned in 5 of the sequences. 2004Og12, 2004OgZZ discuss all assignments in detail. The two papers are identical in many respects. 2004OgZZ report more statistics in some cases.

Other: see also 2004Og10.

Theory: see Nuclear Science References.

Assignment: daughter of ²⁹⁰116 produced by ²⁴⁵Cm(⁴⁸Ca,3n) E=243 MeV (2004Og07). Granddaughter of ²⁹⁴118 produced by ²⁴⁹Cf(⁴⁸Ca,3n) E=265 MeV (2002OgZX,2003OgZZ). ²⁸⁶114 produced by ²⁴²Pu(⁴⁸Ca,4n) at 244 MeV and 250 MeV (2004Og12,2004OgZZ). In the case of the ²⁹⁴118 and ²⁹⁰116 chains, 2004Mo15 note that their assignment of mass based on the CN excitation energy may be off by single unit. The evaluators consider all the assignments for this nucleus tentative.

			Adopted Levels: Tentative (continued)			
			²⁸⁶ 114 Levels			
			Cross Reference (XREF) Flags			
			A $^{290}116 \alpha$ Decay: Tentative			
E(level)	XREF	T _{1/2}	Comments			
x ?	А	0.16 s +7-3	 Jπ: 0+ if g.s. T_{1/2}: based on 11 events included in half-life computation/5 α-energies respectively from 2004Og12 and 2004OgZZ. T_{1/2}(calc)=0.018 s if Q(α)=10.70 MeV, 0.007 s if Q(α)=10.86 MeV, and 0.16 s if Q(α)=10.345 MeV from Viola-Seaborg systematics. %α=40; %SF=60 (2004Og12,2004OgZZ). β₂(theory): -0.096 from 1995Mo29; 0.086 from 2003Mu15; 0.161 from 2005GaZX. 			
Pare 2801 2801 See	ent ²⁹⁰ 116: 6-T _{1/2} : fr 6-Q(α): fr ²⁹⁰ 116 ado	E=0.0 0; Jπ=+; om 2004Og12. om 2004Og12. opted levels for	290116 α Decay: Tentative 2004Og12 T _{1/2} =15 ms +26-6; Q(g.s.)=11000 80; %α decay≈100. details.			
			²⁸⁶ 114 Levels			
E(level)	T		Comments			
x ?	0.16 s	s +7-3 T _{1/2} :	from the Adopted Levels.			
			α radiations			
Brar	nching: est	timated from two) events.			
Εα	E(level	<u>)</u> Ια [†]				
10850 8	x ?	0.0				

 † For α intensity per 100 decays, multiply by $\approx\!\!1.00.$

- $Q(\beta^{-}) = -5200 \ SY; \ S(n) = 6450 \ SY; \ S(p) = 2520 \ SY; \ Q(\alpha) = 10160 \ 60 \ 2003 Au03, 2004 Og12.$
- $Q(\beta^-) \text{: estimated uncertainty=1100 keV.}$
- S(n): estimated uncertainty=1090 keV. S(p): estimated uncertainty=1210 keV.
- $Q(\alpha)$: from E α =10.020 MeV 6 (2004Og12). Other: 10440 keV 50 (2003Au03. Syst.).
- 1999Og07: the experiment was performed 3 March to 5 April 1999 at JINR/Dubna with the reaction $^{242}Pu+^{48}Ca$. $^{287}114$ expected to be produced via the 3n channel with a cross-section of 2.5 pb +33-16 as against an expected cross-section of ~1 pb for this nucleus in an earlier attempt to synthesize Z=114 (1999Og10. See $^{289}114$ Adopted Levels). The $^{48}Ca^{5+}$ beam was delivered to the U400 cyclotron so that E(lab) at target-center was 235 MeV 2. Six such targets were mounted on a disk rotating at 2500 rpm with a beam chopper that stopped the beam for 0.6 ms. The EVR's were separated in-flight by the VASSILISSA electrostatic recoil separator (1994Ye08). Detection of full-energy α 's was 85% of 4π with a time registration accuracy of ≈1 µs. Two position correlated α -SF sequences for this nucleus were observed following $^{290}114$ CN decay. Deduced decay properties of the parent $^{287}114$: $E\alpha=10.29$ MeV 2 MeV (Q(α)=10.44 MeV 2), $T_{1/2}=5.5 \times +10-2$, from one event only due to second escaped α with partial energy deposited. $T_{1/2}(SF)=180 \times +170-60$ deduced for $^{283}112$ which ended the decay sequence.
- 2004Og07: see ²⁸⁶114 Ådopted Levels for experimental details of set up. ²⁸⁷114 identified at a higher beam energy than before at Dubna with ²⁴⁴Pu+⁴⁸Ca at an energy of 257 MeV corresponding to an E*=40.2 MeV. This nucleus is also created as the α -decay daughter of ²⁹¹116 in the reaction ²⁴⁵Cm+⁴⁸Ca at an energy of 243 MeV. The beam was delivered by the U400 cyclotron at the FLNR. The EVR's were separated by the DGFRS (2000OgZR,2002Su35). The position averaged detection efficiency of α -decays of implanted products was 87% of 4 π . Excitation function measurements were done with higher beam energies than before in similar experiments. At the maximum energy of 257 MeV (E*=53 MeV) a single new α - α -SF decay chain was observed with E(α 1)=10.03 MeV 7 attributed to ²⁸⁷114, E(α 2)=9.54 MeV 7 from ²⁸³112, followed by an SF event with E(tot)=206 MeV from 279Ds, all within a time interval of about 10 s. The production cross-section of ²⁸⁷114 at this energy was 1.1 pb +26-9. Events following the first α -decay were detected with the beam off to reduce the background. The properties compare well with the two chains assigned to ²⁹¹116 (where 28114 is the daughter) from the ²⁴⁵Cm+⁴⁸Ca reaction at 243 MeV.
- 2004Og12,2004OgZZ: experiments done at Dubna with a 242 Pu target during the period Sept-Nov 2003 using the 48 Ca beam from the U400 cyclotron at four bombarding energies: E(beam)=235, 238, 244, and 250 MeV. The EVR's were separated in-flight by DGFRS with the transmission efficiency estimated to be 35-40% for Z=114 and 116 (2000OgZR,2002Su35). The synthesis of Z=114 was achieved in the reaction 242 Pu(48 Ca,xn) $^{290-x}$ 114. The cross-section for 287 114 *via* the 3n channel was 3.6 pb +34-17. The target was 99.98% enriched. The transmission efficiency for Z=112 and 114 was approximately 40%. The beam was switched off after a recoil signal was detected within the implantation energy and tof parameters expected for Z=114, followed by an α -like signal of 9.9 MeV≤Ed≤10.35 MeV in the same strip within a 1.4-1.9 mm wide position window and a time interval of Δt =4 s. For α energies ≥9.3 MeV, only 22 events were detected and 6 were assigned to 287 114. 33 α -decays were seen. The 25 chains detected and assigned to Z=114 may be divided into three groups, of which the ER- α 1- α 2-SF sequences (15 measurements) are attributed to 287 114 in agreement with the observations from 2004Og07 (see also 2004Og05 for more details). The evaluators note that the two papers are identical in many respects. 2004OgZZ report more statistics in a few cases. Theory: see Nuclear Science References.
- Assignment: ²⁴²Pu(⁴⁸Ca,3n) E=235 MeV (1999Og07); ²⁴⁴Pu(⁴⁸Ca,5n) E=243 MeV; ²⁴²Pu(⁴⁸Ca,3n) E=235, 238, 244, 250 MeV
- Assignment: ²⁴²Pu(⁴⁵Ca,3n) E=235 MeV (1999Og07); ²⁴⁴Pu(⁴⁵Ca,5n) E=243 MeV; ²⁴²Pu(⁴⁵Ca,3n) E=235, 238, 244, 250 MeV (2004Og12,2004OgZZ). Daughter of ²⁹¹116 produced by ²⁴⁵Cm(⁴⁸Ca,2n) E=243 MeV (2004Og12).
- IUPAC/IUPAP JWP assessment (2003Ka71): discovery of Z=114 was not yet warranted due to unsecured connections to known descendents and the absence of elemental signatures such as x-rays. Although the excitation function measurements of 2004Og12 (and 2004OgZZ) lend further support to these assignments, they are regarded as tentative by the evaluators.

²⁸⁷114 Levels

Cross Reference (XREF) Flags

A ²⁹¹116 α Decay: Tentative

E(level)	XREF	T _{1/2}	Comments
x ?	A	0.51 s +18-10	 Jπ: 3/2+ from 1997Mo25 (theory). T_{1/2}: based on 15 events included in half-life computation/15 α-energies, respectively, from 2004Og12 (also 2004OgZZ). T_{1/2}(calc)=0.53 s from Viola-Seaborg systematics for Q(α)=10.16 MeV. %α=100 (2004Og12,2004OgZZ). %α: from 15/15 events. β₂(theory): -0.078 from 1995Mo29; 0.088 from 2003Mu15; 0.153 from 2005GaZX.

²⁹¹116 α Decay: Tentative 2004Og12

Parent ²⁹¹116: E=x; J\pi=?; T_{1/2}=6 ms +12-3; Q(g.s.)=10890 70; % α decay \approx 100. ²⁹¹116 -T_{1/2}: 6.3 ms 116-25. ²⁹¹116 -Q(α): from 2004Og12. See ²⁹¹116 Adopted Levels for details.

²⁸⁷114 Levels

E(level)	T _{1/2}	Comments
x ?	0.51 s +18-10	$E(level), T_{1/2}$: from the Adopted Levels.
		α radiations
Εα	E(level)	

10740 70 x?

 $S(p)=460 SY; Q(\alpha)=10740 90 2003Au03,2004Og03.$

S(p): estimated uncertainty=1100 keV.

 $Q(\alpha): \mbox{ from } E\alpha \mbox{=} 10.59 \mbox{ keV } 9$ (2004Og03). Other: 11.3 MeV 3 (2003Au03. Syst.).

2003OgZY and 2004Og03: identification of new nuclides: ²⁸⁷115, ²⁸³113, ²⁷⁹Rg, ²⁷⁵Mt and ²⁶⁷Db.

Reaction: ${}^{243}Am({}^{48}Ca,4n)$ E=253 MeV corresponding to an excitation energy of 42.4 to 46.5 MeV at the target center. ${}^{287}115$ was formed at a cross-section of 0.9 pb +32-8. 2004Og03 have noted that these correspond to the maximum cross-sections measured in 2004Og07 in the ${}^{244}Pu+{}^{48}Ca$ reactions used to synthesise Z=116 and Z=114 where the 4*n* channel had a maximum of 5 pb, 3n=2 pb and 5n=1 pb. The target was 99% enriched ${}^{243}Am$. Experiments were done at the U400 cyclotron with the DGFRS at FLNR-JINR in collaboration with LLNL, USA. The evaporation residues recoiling from the target were separated by DGFRS in flight from the ${}^{48}Ca$ beam ions, scattered particles and transfer-reaction products.

Detection system: multiwire proportional counter for tof measurement; semi-conductor focal-plane detector array with 12 vertical position- sensitive strips, which measured the decay of the implanted recoils. This detection system surrounded by eight side detectors with no position sensitivity. The α spectrum was measured in the range 9.6 to 11.0 MeV.

Resolution: FWHM=60-100 keV for α particles absorbed in the focal-plane detector. 140-200 keV for α 's escaping the focal-plane detector and registered by the side detectors.

Results: one decay chain with four consecutive α decays detected in a time interval of 0.5 s (in the beam-off mode) terminated by an SF event with a release of kinetic energy of 206 MeV. This event was assigned to (⁴⁸Ca,4n) channel with the production of the parent nuclide ²⁸⁷115; the successive nuclides are listed below for event #1. Energy of the evaporation residue=12.2 MeV

$E_{\alpha 1} = 10590$	k e V	$t_1 = 46.6 \text{ ms}$	-	assigned	t o	287115	
$E_{\alpha 2} = 10120$	k e V	$t_2 = 0.147$ s	-	assigned	t o	283113	
$E_{\alpha 3} = 10370$	k e V	t ₃ =0.245 s	-	assigned	t o	279111	
$E_{\alpha 4} = 10330$	k e V	t ₄ =14.0 ms	-	assigned	t o	$^{275}{ m Mt}$	
$E_{\alpha,5} = ?$ ((not observed	1)	-	assigned	t o	^{271}Bh	(?)
	- h		4	267DL		1	CD.

 271 Bh α decay not observed; but it probably decays to 267 Db which decays by SF (total kinetic energy=206 MeV); 105.96 min

Theory: see Nuclear Science References.

Assignment: the evaluators note that the identification of Z=115 and all associated nuclides in the chain should be treated as tentative until confirmed in independent experiments.

²⁸⁷115 Levels

E(level)

Comments

x ?

 $T_{1/2};\,T_{1/2}(calc){=}28$ ms from Viola-Seaborg systematics for $Q(\alpha){=}10.74$ MeV. $\%\alpha{=}100.$ % a: assumed from one event.

 $\beta_2(theory):$ -0.096 from 1995Mo29; 0.066 from 2003Mu15; 0.005 from 2005GaZX.

 $^{288}_{114}14_{174}-1$

 $Q(\beta^{-})=-6340 \ SY; \ S(n)=7990 \ SY; \ S(p)=2960 \ SY; \ Q(\alpha)=10090 \ 70 \ 2003 Au 03, 2004 Og 12.$

 $Q(\beta^{-})\text{: estimated uncertainty=1210 keV.}$

S(n): estimated uncertainty=1150 keV. S(n): estimated uncertainty=1190 keV.

S(p): estimated uncertainty=1190 kev.

 $Q(\alpha): \mbox{ from E}\alpha = 9.95 \mbox{ MeV 7 (2004Og12). Other: 9970 keV 50 (2003Au03. Syst.).}$

All assignments for this nucleus stand revised in 2004Og07. The evaluators present results prior to 2004Og07 with the original nomenclature.

Also produced as α -decay daughter of ²⁹²116. See ²⁹²116 Adopted Levels for ²⁹²116.

- 2000Og05: at Dubna with ${}^{244}Pu+{}^{48}Ca$ in the 4n evaporation channel with a cross-section of =1 picobarn. The experimental set-up is similar to that used in the synthesis of ${}^{289}114$ (2001Og01) with an improved data aquisition system allowing a narrower range of excitation energies to be assigned to each recoil. At a beam energy of =236 MeV the excitation energy of the ${}^{292}114$ CN was estimated to be 31.5-39 MeV. Two identical genetically correlated event sequences were recorded of the type EVR- $\alpha-\alpha$ -SF; the two events from 280 Ds had total energies of 221 and 213 MeV. The probability of randomness for the sequence was estimated to be 5×10^{-13} .
- 2004Og07: see Adopted Levels for ²⁹³116 for experimental set-up. Experiments done at Dubna with ²⁴⁴Pu+⁴⁸Ca aimed at gaining improved sensitivity of >2 orders of magnitude over previous attempts, for picobarn cross-sections expected in the production of Z=114. At a beam energies of 243 MeV (E*=41 MeV at target center, 7 events) 250 MeV (E*=47 MeV, 4 events) and 257 MeV (E*=51 MeV, 1 event) a total of 12 EVR- α -SF events observed in sequence over a period of 1 second. *via* this 4*n* channel, the maximum yield for ²⁸⁸114 corresponds to about 43 MeV with an expected cross-section of 5.3 pb +36-21. t(SF)=0.1 s was recorded for all 12 events though one α -decay chain had a missing α . Data from 11 events: E(α)=9.95 MeV 8, t(α)=0.63 s +27-14 to ²⁸⁴112 daughter: t(SF)=98 ms +41-23.
- 2004Og12,2004OgZZ: a comprehensive study of excitation functions, and cross-bombardments using more stringent methods (1992Ba77,2004Og05) were undertaken at Dubna revisiting the synthesis of Z=112, Z=114, and Z=116 using fusion reactions with a ⁴⁸Ca beam and ^{233,238}U, ²⁴²Pu and ²⁴⁸Cm targets. Previous (re)assignments are confirmed and ²⁹²116 directly measured. The decay properties of four Z=114 (A=286-289) isotopes provide consistent mass identification for heavier Z=116 (A=290,291,293) isotopes synthesized in ^{245,248}Cm reactions and also for the one Z=118 chain. Using the ²⁴²Pu+⁴⁸Ca reaction at E(lab)=235 MeV a single EVR- α -SF chain was recorded. The assignment to ²⁸⁸114 via the 2*n* evaporation channel with a cross-section of about 0.5 picobarn is suggested. The radioactive properties agree well with 11 chains measured earlier in 2004Og07 using a ²⁴⁴Pu target in the reaction ²⁴⁴Pu(⁴⁸Ca,4n). Properties of daughter are in agreement with the earlier observations of ²⁸⁴112. A total of 12 events were taken into account for the the estimation of half-life adopted here (2004Og12). This nucleus was also synthesised as α -decay daughter from parent ²⁹²116 produced in the reaction ²⁴⁸Cm+⁴⁸Ca at E=247 MeV (see table 4, 2004OgZZ). Six new EVR- α -1- α -SF decay were reported by 2004OgZZ spanning about 0.5 to 2 seconds, which were not observed earlier. The evaluators note that these two papers are identical in many respects. 2004OgZZ report more statistics in some cases. See ²⁹²116 Adopted Levels for details.

Others: 2000Og07, 2002Og03, 2002Og09, 2002Og13.

Theory: 1997Sm03, 1997Mo25, 2004GaZU. See also Nuclear Science References.

Assignment: IUPAP/IUPAC JWP assessment (2003Ka71): discovery of Z=114 was not yet warranted due to unsecured connections to known descendents and the absence of further elemental signatures such as x-rays. These observations may still hold good even as the more recent cross bombardment and excitation function studies for ²⁸⁸114 provide additional strong evidence for the assignment. Furthermore, due to the difficulties inherent to hot/warm fusion experiments, additional confirmation would be beneficial (see general comments section for details).

²⁸⁸114 Levels

Cross Reference (XREF) Flags

A $^{292}116 \alpha$ Decay: Tentative

1/2	
x? A $0.80 \text{ s} + 32 - 18$ J π : 0+ if g.s. $T_{1/2}$: per 12/11 events from 2004Og12. Other: 0.80 energies) from 2004OgZZ. $T_{1/2}(\text{calc})=0.90 \text{ s}$ from $\% \alpha \approx 100.$ $\% \alpha$: from 12/11 events. $\beta_2(\text{theory})$: 0.053 from 1995Mo29; 0.086 from 2003M	s +27-16 from 16/16 events (half-lives/α Viola-Seaborg systematics. Mu15; 0.008 from 2005GaZX.

²⁹²116 α Decay: Tentative 2004Og12

Parent ²⁹²116: E=0.0; Jπ=0+; T_{1/2}=18 ms +16-6; Q(g.s.)=10800 70; %α decay≈100. $^{292}116$ -T_{1/2}: from 2004Og12. $^{292}116$ -Q(α): from 2004Og12.

²⁸⁸114 Levels

E(level)	$T_{1/2}$	Comments		
9	0 00	Tr(laws1) m for some date Alle stade all Tarres la		

x? 0.80 s + 32 - 18 E(level), $T_{1/2}$: from the Adopted Levels.

 $S(n)=6850 SY; S(p)=870 SY; Q(\alpha)=10610 60 2003Au03,2004Og03.$

S(n): estimated uncertainty=1160 keV.

S(p): estimated uncertainty=1150 keV.

 $Q(\alpha): \mbox{ from } E\alpha \mbox{=} 10.46 \mbox{ MeV } 6 \mbox{ (2004Og03)}. \mbox{ Other: 11.0 } \mbox{ MeV } 3 \mbox{ (2003Au03. Syst.)}.$

2003OgZY and 2004Og03: identification of new nuclides: ²⁸⁸115, ²⁸⁴113, ²⁸⁰Rg, ²⁷⁶Mt, ²⁷²Bh, and ²⁶⁸Db. Reaction: $^{243}Am(^{48}Ca, 3n)$ E=248 MeV corresponding to an excitation energy of 38.0 to 42.5 MeV at the target center.

Experiments performed by the Dubna-LLNL collaboration. 288115 was formed at a cross-section of 2.7 pb +48-16. Reaction: ²⁴³Am(⁴⁸Ca,3n) E=248 MeV corresponding to an excitation energy of 38.0 to 42.5 MeV at the target center. Experiments performed by the Dubna-LLNL collaboration. 288 115 was formed at a cross-section of 2.7 pb +48-16. 2004Og03 have noted that these correspond to the maximum cross-sections measured in 2004Og07 in the $^{244}Pu+^{48}Ca$

reactions used to synthesise Z=116 and Z=114 where the 4n channel had a maximum of 5 pb, 3n=2 pb and 5n=1 pb. Experiments were done at the U400 cyclotron with the Dubna gas-filled recoil seperator (DGFRS) at FLNR-JINR. The EVR's recoiling from the target were separated by DGFRS in flight from the ⁴⁸Ca beam ions, scattered particles and transfer-reaction products with a transmission efficiency of 35% for 115 nuclei. If confirmed, it is possible that different states in the same nucleus 288 115 have been populated resulting in the differences between Q(α) and T_{1/2} measurements of the three events.

Event #1: Energy of the evaporation residue=10.4 MeV

 $\begin{array}{ccccccc} E_{\alpha\,1}\!=\!10510 \ \text{keV} & t_1\!=\!80.3 \ \text{ms} & - \ \text{assigned} \ \text{to} \ ^{288}115 \\ & ^{272}\text{Bh} \ \alpha \ \text{decay} \ \text{proceeds} \ \text{to} \ ^{268}\text{Db} \ \text{which} \ \text{decays} \ \text{by} \ \text{SF} \ (\text{total kinetic energy=205 MeV}); \ 28.69 \ \text{h} \end{array}$

Event #2: Energy of the evaporation residue=11.0 MeV

Event #3: Energy of the evaporation residue=9.1 MeV

 $E_{\alpha 1} = 10500$ keV

- assigned to ²⁸⁸115 $t_1 = 280 \text{ ms}$

 272 Bh α decay proceeds to 268 Db which decays by SF (total kinetic energy=140 MeV); 16.80 h Theory: 1997Mo25, 2003Mu15, 2003Ge09, 2004Ba86, 2004GuZW and Nuclear Science References.

Assignment: produced by ²⁴³Am(⁴⁸Ca,3n) E=248 MeV (2003OgZY,2004Og03) and E=243 MeV, chem (2004DmZZ). The evaluators suggest that 2004DmZZ offers independent support to the synthesis of 288115 (2004Og03) having precisely determined the atomic number for Z=105 by isolation of Group V elements. The properties are in agreement with ²⁶⁸Db measured in the three chains seen earlier by 2004 Og03, thereby providing evidence in favor of the synthesis of 288 115 and daughters. However, since the identification relies on the measurement of SF fragments, the possibility that the observed nucleus is actually 268 Rf following (undetected) ϵ from the parent 268 Db, cannot be excluded.

²⁸⁸115 Levels

Comments

E(level)

x?

J π : $\Omega(p)=5/2-; \Omega(n)=3/2+$ from 1997Mo25 (theory). $T_{1/2}$ =87 ms +105-30 (2004Og03). $T_{1/2}\text{:}~T_{1/2}\text{(calc)=62}$ ms from Viola-Seaborg systematics for $Q(\alpha)\text{=}10.61$ MeV. %a≈100. %α: from three events. β_2 (theory): -0.087 from 1995Mo29; 0.072 from 2003Mu15; 0.017 from 2005GaZX.

 $^{289}_{^{1}14}14_{^{1}75}\text{--}1$

 $Q(\beta^{-})=-5060 SY; S(n)=6590 SY; Q(\alpha)=9960 60 2003Au03,2004Og12.$

- $Q(\beta^{-}) \text{: estimated uncertainty=1260 keV.}$
- $S(n)\colon$ estimated uncertainty=1120 keV.
- $Q(\alpha)$: from E α =9.82 MeV 6 (2004Og12). Other: 9850 keV 50 (2003Au03. Syst.); E α =9.82 MeV 5, $Q(\alpha)$ =9.96 MeV 5 (2004OgZZ, one more event).

Also observed as a daughter nucleus of ²⁹³116: see ²⁹³116 Adopted Levels.

All earlier assignments for this nucleus stand revised in 2004Og07. The evaluators present results prior to 2004Og07 with the original nomenclature and comments about the reassignments.

- 1999Og10: Z=114 produced by the Dubna group in the 3*n* evaporation channel using ²⁴⁴Pu+⁴⁸Ca at 236 MeV provided by the U400 cyclotron in November-December 1998 over a period of 34 days. The excitation energy at target center expected for the 3*n* channel was about 35 MeV. The EVR's were separated by the DGFRS (1993LaZS). 40% of the recoiling Z=114 nuclei expected to be implanted in the focal plane detector. Three SF events seen: one assigned to 0.9 ms ^{244mf}Am, the product of transfer reactions with information lost for the second event. Third SF event was resolved into a position-correlated decay chain believed to start with ²⁸⁹114: E1=9.71 MeV, t1=30.4 s; ²⁸⁵112: E2=8.67 MeV, t2=15.4 min; ²⁸¹Ds: E3=8.83 MeV, t3=1.6 min followed by the two SF fragments with E(tot)=172 MeV from ²⁷⁷Hs. Hindrance factors of 1-10 were assumed for α -decays of odd-N nuclei. Tentative assignment of parent ²⁸⁹114 made in agreement with calculations by Smolanczuk (1997Sm03), corresponding to a cross-section of 1 pb. The chain starting with the rather long t=30.4 s decay and taking about 34 min in total for all 3 α -decays + SF, was considered a good *candidate* for ²⁸⁹114 *via* the 3*n* evaporation channel. All five signals (EVR- α 1- α 2- α 3-SF) appeared within a position interval of 1.6 mm indicating a correlation between the events. The experimenters suggest that the sequence represents a rare decay mode and thus cannot be ruled out. Since this event has only been observed once, this decay sequence and all constituent assignments are considered tentative by the evaluators.
- 20000g05,20000g07: experiments continued at Dubna with 244 Pu+ 48 Ca at 236 MeV as before but improved sensitivity of >2 orders of magnitude over previous attempts, for picobarn cross-sections expected in the production ofz=114. 20000g05 reports experiments done from June to October 1999 incorporating an upgraded data acquisition system which allowed for a correlation between the target sector giving rise to a specific recoil and the excitation energy at target center for the same event. The U400 cyclotron was used with DGFRS (20000gZR,1993LaZS). Observed two identical three-member decay sequences corresponding to two SF events at a 48 Ca beam energy of 237.6 and 237.0 MeV at target-center corresponding to excitation energies of 33.6-39.7 MeV and 33.2-39.1 MeV of the $^{292}114$ CN, respectively. Two SF events were recorded as coincident signals with energies Z=1(tot)=221 MeV and E2(tot)=213 MeV. Upon the time-reversed reconstruction of all data, two α decay chains, consistent with each other were reported and thought to originate from $^{288}114$ via the 4n channel. These were reassigned to $^{289}114$ by 20040g07 and 20040g12.
- The decays proceed as follows: $E1(\alpha)=9.87$ MeV, t1=0.77 s; $E2(\alpha)=9.21$ MeV, t2=10.34 s; E3(SF-tot)=221 MeV, t(SF)=14.26 s for the first chain and $E1(\alpha)=9.80$ MeV, t1=4.58 s; $E2(\alpha)=9.13$ MeV, t2=18.01 s; E3(SF-tot)=213 MeV, t(SF)=7.44 s for the second chain, respectively.
- It is observed that life-times of nuclei Z≥110 were considerably increased over predictions with increasing neutron number. The experiments were collectively offered as proof of enhanced stability in the region around Z=114 and N=184, where spherical shell closure has been theorized to exist.
- Other data: 2000Og07, in an attempt to double check the EVR- $\alpha 1-\alpha 2-\alpha 3$ -SF event first reported in 1999Og10, performed another experiment in November and December 1999, with the same set-up but with higher excitation energies of 28.5-34.5 MeV for the expected CN ²⁹²114, in an attempt to optimize this parameter over the previous range of 31.5-39 MeV (as in 1999Og10). Over 31 days, no SF event was observed that could be ascribed to the CN ²⁹²116 or its daughters.
- 2001Og01,2001Og06: Z=114 (288 114) as α -decay daughter of Z=116 (292 116). Parent reassigned to 293 116 via the 3n channel by 2004Og07 and 2004Og12; hence daughter is 289 114. See 293 116 Adopted Levels for details (including 2002Og09).
- 2004Og07: a series of experiments using more stringent methods (see 1992Ba77,2004Og05) were carried out since all these chains passed through and ended in hitherto unknown regions. Bombarding energies of 48 Ca on 244 Pu were higher than those used earlier. The ⁴⁸Ca⁵ ions were delivered by the U400 cyclotron at FLNR-JINR operated with the ECR-4M ion source. The EVR's were separated in-flight from the scattered particles and reaction products by the DGFRS (2000OgZR, 2002Su35). The transmission efficiency for Z=114 and Z=116 nuclei was estimated to be 35-40%. The position averaged detection efficiency for the α -decays of implanted nuclei was 87% of 4 π . At 243 MeV two decay chains were observed of the type $\alpha 1-\alpha 2-SF$. A tentative (due to the high randomness probability of about 40%) assignment of 289 114 was made for the event with E α =9.9 MeV 9 and t=6.3 s. Three other similar events with a smaller probability of randomness of 18%, 2% and 6% were detected at this energy. Two such identical decay chains had previously been seen by 2000Og05 and 2000Og07 at the lower energy of 236 MeV then thought to originate from 288 114, and three such decay chains after the lpha-decay of the parent (Z=116) were seen in 20010g01, 20010g06 and 2002Og09 (see the ²⁹³116 Adopted Levels) with the reaction ²⁴⁸Cm+⁴⁸Ca previously ascribed to ²⁹²116. In this work, at an energy of 250 MeV, one more such event was observed for which the assignment to 289114 in not conclusive but cannot be excluded. No events were recorded at 257 MeV. These measurements were made within an energy interval of 235-250 MeV (E*=35-47 MeV) for the ⁴⁸Ca beam. Time intervals between implantation of mother nuclei in detectors and SF events varied from 1.5 to 3 minutes. In addition, at 243 MeV 7 new decay chains were seen not similar to any others seen earlier ($^{288}114$). These were of the type $\alpha-SF,$ detected within one second of the evr implantation. Also, four more such chains at 250 MeV (288114) and one more at 257 MeV (287114). Energy interval for these events: E*=41-53 MeV.

Continued on next page

 $^{289}_{114}14_{175} - 2$

Adopted Levels: Tentative (continued)

2004Og12,2004OgZZ: a comprehensive study of excitation functions, and cross-bombardments undertaken at DUBNA revisiting the synthesis of Z=112, Z=114 and Z=116 using fusion reactions with a 48 Ca beam and 233,238 U, 242 Pu, and 248 Cm targets. Previous (re)assignments are confirmed and 292 116 directly measured. 2004OgZZ is identical to 2004Og12 in most respects but includes more statistics for some of the decay chains. The decay properties of four Z=114 (A=286-289) isotopes provide consistent mass identification for heavier Z=116 (A=290,291,293) isotopes synthesized in 245,248 Cm reactions and also for the one Z=118 chain. Half-life for 8 events described in 2004Og12 was 2.7 s +14-7 with a corresponding Q(α)=9.96 MeV 6. One new measurement of 289 114 as α -decay daughter of 293 116 produced in the 248 Cm(48 Ca,3n) at E=247 MeV was reported in 2004OgZZ. The half-life for a total of 9 events was 2.6 s +1.2-0.7 with Q(α)=9.96 ± 0.05 MeV. Earlier reassignments are confirmed and the single new event was included in the analysis, although it had a lower α -decay energy.

Other: 1999Og07, 2000Og07 and 2004Og10. The evaluators believe that 2004Mo15 summarized data for two 289 114 α -decay chains before reassignment.

Theory: 1995SmZY, 1997Sm03, 1997Mo25, 1996My01, 1999Cw01, 2000Be04, and 2004Ro03. See also Nuclear Structure References.

Assignments: 244 Pu(48 Ca,3n), E=236 MeV (1999Og10,2000Og05,2000Og07) and E=243, 250, 257 MeV (2004Og07); shorter α -SF chain to 288 114 via the 4n channel; two different α 1- α 2-SF chains to the E-O isotopes 289 114 and 287 114 via the 3n and 5n channels, respectively. Excitation functions and cross-bombardment studies with 48 Ca on 233,238 U, 242 Pu, and 248 Cm (2004Og12,2004OgZZ). Daughter of 293 116 via 248 Cm(48 Ca,3n), E=240 MeV (2001Og01), E=247 MeV (2004Og12,2004OgZZ). IUPAP/IUPAC JWP Assessment (2003Ka71): discovery of Z=114 was not yet warranted due to unsecured connections to known descendents and the absence of further elemental signatures such as x-rays. Subsequent work such as reported in 2004Og12 (2004OgZZ) and the larger volume of consistent data following reinterpretations lend support to these assignments. However, the evaluators consider the assignment for this decay chain as tentative.

Revised assignments: previously observed Z=114 isotopes from 2000Og05 and 2000Og07 (²⁴⁴Pu+⁴⁸Ca) are ²⁸⁹114. Previously observed Z=116 isotopes from 2001Og01, 2001Og06 and 2002Og09 are ²⁹³116; their α-decay daughters are ²⁸⁹114. The single event sequence starting with Eα=9.71 MeV, t=30.4 s seen and tentatively ascribed to ²⁸⁹114 in 1999Og10 remains unconfirmed.

²⁸⁹114 Levels

Cross Reference (XREF) Flags

A $^{293}116 \alpha$ Decay: Tentative

E(level)	XREF	T_1/2	Comments
x ?	Α	2.7 s +	 Jπ: 5/2+ from 1997Mo25 (theory) and 2003Au02 (systematics). T_{1/2}: from 8/8 events reported in 2004Og12. Other: 2.6 s +12-7 from 9/9 half lives/α-particle energies reported in 2004OgZZ. T_{1/2}(calc)=2.0 s from Viola-Seaborg systematics for Q(α)=9.96 MeV. Other: 2000Fi12 tentatively adopted 21 s +94-10 from 1999GhZZ (²⁴⁴Pu(⁴⁸Ca,3n)). %α=100. %α: no SF decay reported. β₂(theory): -0.052 from 1995Mo29; 0.088 from 2003Mu15; 0.096 from 2005GaZX.
Paren ²⁹³ 11 ²⁹³ 11 See ²	at 293116 6 $-T_{1/2}$: 1 6 $-Q(\alpha)$: 293116 Ad	: E=0.0; Jπ from 2004O from 2004C opted Leve	293116 α Decay: Tentative 2004Og07,2004Og12 =?; T _{1/2} =53 ms +62-19; Q(g.s.)=10670 60; %α decay≈100. g12. Og12. ls for details.
			289114 Levels
E(level)	T	1/2	Comments
x ?	2.7 s	+14-7	$E(\mbox{level}), T_{1/2};$ from the Adopted Levels.

²⁹³116 α Decay: Tentative 2004Og07,2004Og12 (continued)

 α radiations

Branching: no SF events observed.

Eα E(level)

 $10530 \ddagger 60$ x?

 ‡ Existence of this branch is questionable.

- $\label{eq:Q(\beta^-)=-6100} Q(\beta^-)=-6100 \ SY; \ S(p)=1360 \ SY; \ Q(\alpha)=11300 \ SY \ 2003 Au03.$
- $Q(\beta^{-})\text{:}$ estimated uncertainty=1220 keV.
- S(p): estimated uncertainty=1380 keV.
- $Q(\alpha)$: estimated uncertainty=350 keV.
- The data of 1999Ni03 cited by 2000Fi12 have been retracted (2002Ni10) and have not been confirmed in a repeated experiment at LBNL (2003Gr26). Also, 2001MoZU and 2000HoZZ found no evidence for ²⁹³118 in ²⁰⁸Pb(⁸⁶Kr,n) reaction at 457.6 MeV (2001MoZU) and at 453.9 and 456.7 MeV (2000HoZZ). The statistical analysis of 2000Sc26 also indicate that the data of 1999Ni03 do not originate from radioactive decays with an error probability of less than 5%. 2003Au02 suggest $J\pi$ =5/2+ based on systematics.

See $^{289}114$ Adopted Levels for details of the experiments.

2004Og10: the reinterpretation of one long lived decay chain first observed in 1999Og10 at Dubna, and tentatively assigned to the decay of $^{289}114$, is now proposed as possibly originating from the CN $^{290}114$ via the 2n channel. The subsequent α -decays would then be: $^{286}112 \rightarrow ^{282}D_S \rightarrow ^{278}H_S$ (SF). The cross-section for this event was =0.2 picobarn in the reaction $^{244}Pu+^{48}Ca$ at 236 MeV ($E^{*}=35$ MeV). This event was not observed in later experiments done at energies of $E^{*}=41-53$ MeV (2000Og05,2000Og07). The α particle energy of the first decay is =0.1 MeV less than that attributed to $^{289}114$ from later work. An alternative interpretation based on calculations (1999Cw01) is that this chain may belong to a rare decay branch of $^{289}114$ starting from an excited state and going to low lying levels in the daughter governed by the appropriate selection rules. 3 minute α -SF event observed in 1999Og07 at $E^{*}=32.6$ MeV for $^{290}114$ and assigned to $^{287}114$ not seen by 2004Og10.

Assignment: IUPAP/IUPAC JWP assessment (2003Ka71): discovery of Z=114 was not yet warranted due to unsecured connections to known descendents and the absence of further elemental signatures such as x-rays. The evaluators believe that there is too little data to support the assignment of this decay chain to either ²⁹⁰114 or ²⁸⁹114 and, therefore, ²⁹⁰114, ²⁸⁶112, ²⁸²Ds and ²⁷⁸Hs remain unobserved. See the General Comments for more details. Theory: see Nuclear Science References.

 $^{290}_{^{11}6}16_{174} \text{--} 1$

 $S(n) = 8330 \ SY; \ S(p) = 1820 \ SY; \ Q(\alpha) = 11000 \ 80 \ 2003 Au 03, 2004 Og 12.$

- S(n): estimated uncertainty=1380 keV.
- S(p): estimated uncertainty=1330 keV.

 $Q(\alpha): \ from \ E\alpha = 10.85 \ MeV \ 8 \ (2004Og12, 2004OgZZ). \ Other: \ 11.30 \ MeV \ 35 \ (2003Au03. \ Syst.).$

- 2002OgZX, 2003OgZZ: by the complete fusion reaction $^{249}Cf(^{48}Ca, 3n)$ at an energy of 265 MeV. $^{290}116$ is the expected daughter produced by the α -decay of Z=118 in this reaction. See the $^{294}118$ Adopted Levels for details of experimental apparatus. The optimal cross-section and the highest yield of evr's is expected for the above channel by theory (2002Za19,2002Za16,2002Za01) and systematic extrapolations from the radioactive properties of neighboring even-even nuclei such as $^{292}116$, $^{284}112$ and ^{280}Ds created with ^{244}Pu and ^{248}Cm targets. The beam of ^{48}Ca ions was provided by the JINR U400 cyclotron and EVR's were separated by DGFRS. A fission fragment calibration was performed using SF fragments from ^{252}No with a known average energy release of about 176 MeV.
- 18 SF events observed separable into two groups by energy: 16 events with an average total E=158 MeV $(125 \le E(tot) \le 175 \text{ MeV})$ 1 event with E(tot)=207 MeV and 1 event with E(tot)=223 MeV. Corresponding lower limit of half-life for the group of 16 events was estimated to be $T_{1/2}(SF)>0.5$ h ascribed to long lived nuclides in the Cf-fm region via incomplete fusion reactions suppressed by >5 orders of magnitude in DGFRS.
- The other two fission events were preceded by recoil signals ascribed to α decay from a higher A-parent. In particular, the event with E(tot)=207 MeV points to a strong correlation of α decays in a EVR- α 1- α 2-SF sequence. The probability of randomness for all 4 events in the sequence was calculated as being less than 1.5×10^{-6} . The instantaneous beam energy was 245.6 MeV corresponding to an excitation energy of 29.8 MeV 20 in the compound system ²⁹⁷118.
- E1=11650 keV 60, t1=2.55 ms; E2=10710 keV 170, t2=42.1 ms, $E_{tot}(SF)$ =207 MeV, t(SF)=0.52 s. The second decay was attributed to ²⁹⁰116. Extrapolated value for Q(α) from neighbouring E-E isotopes is 10.86 MeV \pm 0.17 with an estimated $T_{1/2}$ =29 ms +140-33.
- For the second event with E(tot)=223 MeV. No α -like signals were detected during the EVR-SF event. Two coincident fragments seen with with energies of 137 MeV (focal plane detector) and 86 MeV (side detector). The instantaneous beam energy was 246.1 MeV corresponding to a compound nucleus excitation energy of 30.2 MeV 23. 2004Og07: directly synthesised at Dubna in the reaction $^{245}Cm(^{48}Ca,3n)$ at a beam energy of 243 MeV
- (E*=30.9-35.0 MeV) optimized for the production of ²⁹⁰116 and ²⁹¹116. The reaction cross-section was =1 pB and the accumulated beam dose was 1.2e19 ions. This measurement initiated a new series of experiments which resulted in the synthesis of new Z=116 isotopes. The ⁴⁸Ca beam was accelerated by the U400 cyclotron at the FLNR/JINR. The typical beam intensity was 1.2 pµA. The target was enriched to 98.7%. The EVR's recoiling from the target were separated by the DGFRS with a transmission efficiency of 35-40% for Z=114 and 116 nuclei. EVR recoils passed through a tof system and were implanted in a semiconductor array. The position averaged detection efficiency for α -decays of implanted nuclei was 87% of 4π with an energy resolution of 60-90 keV for α 's absorbed in the focal plane detector. Those that escaped registered a summed signal of 140-200 keV in the side detector. All the correlated events observed in these experiments had position deviations corresponding to the given position resolutions: 0.8-1.3 mm for EVR- α signals and 0.5-0.8 mm for EVR-SF signals. Two EVR- α -SF and one EVR- α -a-SF events were seen although two α 's were missed. The only α -decay recorded from the parent had: E α =10.88 MeV 8, t=0.233 ms following evaporation. Experimeters quote measured E α =10.85 MeV 8, T_{1/2}=15 ms +26-6 for a total of two events measured to date. See also 20040g05 and ²⁹³116 and ²⁸⁶114 Adopted Levels.
- 2004Og12, 2004OgZZ discuss all assignments at length. These two papers are identical in most respects. 2004OgZZ report more statistics in some cases.

Theory: see Nuclear Science References.

- Assignment: ²⁴⁵Cm(⁴⁸Ca,3n), E=243 MeV (2004Og07). Daughter of ²⁹⁴118 from ²⁴⁹Cf(⁴⁸Ca,3n), E=265 MeV (2002OgZX,2003OgZZ). A total of two events, one each, taken into account for half-life estimation. 2004Mo15 note that their assignment of mass based on the CN excitation energy may be off by single unit. The evaluators consider
 - all assignments for this decay chain as tentative.

²⁹⁰116 Levels

Cross Reference (XREF) Flags

A ²⁹⁴118 α Decay: Tentative

E(level)	Jπ	XREF	T_1/2	Comments
0.0	0+	A	15 ms +26-6	$T_{1/2}$: from two events (2004Og07). $T_{1/2}(calc){=}12~ms$ from Viola-Seaborg systematics for $Q(\alpha){=}11.00~MeV.$ 2003Au02 suggest 50 ms based on systematics. $\%\alpha{=}100.$
				$\% \alpha$: estimated from 2 events for half-life calculations/2 α -decays.
				β ₀ (theory): 0.072 from 1995Mo29; 0.076 from 2003Mu15; 0.003 from 2005GaZX.

		_	²⁹⁴ 118 a Decay: Tentative 2002OgZX,2003OgZZ,2004Og12
Paren 29411 co: ²⁹⁴ 11 See ²	nt ²⁹⁴ 1 8 -T _{1/} nfidenc 8 -Q(c ²⁹⁴ 118	18: E=0.0; $J\pi=0+$ 2: from one even ce level used. x): from 2002Og1 Adopted Levels f	; T _{1/2} =1.8 ms +84-8; Q(g.s.)=11810 60; %α decay≈100. (2002OgZX,2003OgZZ. ΔT _{1/2} at 68% confidence level). 1.8 ms +750-13 (2004Og12) if 95%) and 2004Og12. or details.
			²⁹⁰ 116 Levels
E(level)	Jπ	T _{1/2}	Comments
0.0	0+	15 ms +26-6	$E(level),J\pi,T_{1/2};$ from the Adopted Levels.
			α radiations
Bran	ching:	2004Mo15 indica	te two events with $E\alpha{=}11.64~MeV$ and $E(SF){=}213~MeV$ but give no additional details.
Εα	E(level)	

11650 60 0.0

 $Q(\beta^{-})=-6100 \ SY; \ S(n)=6750 \ SY; \ S(p)=1820 \ SY; \ Q(\alpha)=10890 \ 70 \ 2003 Au03, 2004 Og12.$

 $Q(\beta^-)\colon$ estimated uncertainty=1220 keV.

S(n): estimated uncertainty=1200 keV. S(p): estimated uncertainty=1300 keV.

Q(α): from Eα=10.74 MeV 7 (2004Og12,2004OgZZ). Other: 11.00 MeV 35 (2003Au03. Syst).

2004Og05,2004Og07,2004Og10,2004Og12: experiments done at Dubna using the U400 accelerator with DGFRS (2000OgZR,2002Su35). Beam was switched off after initial recoil so that daughter products could be measured in the absence of beam related background. This nucleus deduced to occur in the complete fusion reaction 245 Cm(48 Ca,2n) at an energy of 243 MeV corresponding to an excitation energy at target center of 31-35 MeV. Maximized for 2n, 3n evaporation channels. Total beam dose was 1.2×10^{19} ions. Five new decay chains measured by 2004Og07. They could be divided into two types: three decay events comprising the first type, with EVR- α -SF or EVR- α - α -SF lasting =0.5 s and two decay events comprising the second type, with EVR- α - α -SF with a duration of =10 s. Of the three shorter events in the first category, the first α was not observed in two cases. Radioactive properties of longer lived chain compares well with Z=114 (following one α decay) from 245 Cm+ 48 Ca at E*=33 MeV with parent 293 116 and the single event from 244 Pu+ 48 Ca at E*=53 MeV assigned to the decay of 287 114 also reported here. The longer α - α - α -SF from 245 Cm+ 48 Ca at E*=33 MeV deduced to be 291 116. The evaluators note that 2004Og12 and 2004OgZZ are identical in most respects. 2004OgZZ report more statistics in some cases.

Theory: see Nuclear Science References.

Assignment: ²⁴⁵Cm(⁴⁸Ca,2n), E=243 MeV. The evaluators hold that the deduced assignments are tentative, pending verification.

²⁹¹116 Levels

E(level)

x ?

Comments

 $J\pi$: 1/2+ from 1997Mo25 (theory).

T_{1/2}=6.3 ms +116-25.

 $T_{1/2}^{1/2}$: per 2/2 events (half-lives/ α energies) from 2004Og12 (also 2004OgZZ). $T_{1/2}(calc)=22$ ms from Viola-Seaborg systematics for Q(α)=10.89 MeV. 2003Au02 suggest 100 ms based on systematics.

%α≈100.

 $\%\alpha:$ estimated from 2/2 events for half-life calculations/a-decays.

 $\beta_2(theory):~0.072~from~1995Mo29;~0.084~from~2003Mu15;~0.045~from~2005GaZX.$

- $Q(\beta^{-}) = -7230 \ SY; \ S(n) = 8280 \ SY; \ S(p) = 2260 \ SY; \ Q(\alpha) = 10800 \ 70 \ 2003 Au 03, 2004 Og 12.$
- $Q(\beta^-) \colon$ estimated uncertainty=1270 keV.
- S(n): estimated uncertainty=1200 keV. S(p): estimated uncertainty=1230 keV.
- Q(α): from Eα=10.66 MeV 7 (2004Og12,2004OgZZ). Other: 10.71 5 (2003Au03. Syst.).

2001Og01, 2001Og06, 2001Og11: at DUBNA/JINR with ²⁴⁸Cm+⁴⁸Ca at a beam energy of 240 MeV at the center of the target corresponding to an excitation energy of between 30.4 MeV and 35.8 MeV in the CN ²⁹⁶116. The α decay daughters were expected to populate the Z=114 region studied prior to this experiment (see 1999Og10,2000Og05), thereby facilitating their identification. The beam was switched off after the first recoil so that sequential decays were measured without beam associated background. Following a beam dose of 6.6×10¹⁸ ions, on the 35th day of irradiation, one event sequence was seen attributed to ²⁹²116. Probability of randomness was estimated to be <<1×10⁻⁶. E1(²⁹²116)=10.56 MeV, t1=46.9 ms; E2(²⁸⁸114)=9.81 MeV, t2=2.42 s; E3(²⁸⁴112)=9.09 MeV, t3=53.9 s; E(tot)(SF)(²⁸⁰Ds)=197 MeV. Assignment of parent on the basis of comparison with ²⁸⁸114 supported by the Viola-Seaborg systematics. Reassigned to ²⁹³116 *via* the 3*n* channel by 2004Og07 and 2004Og12; see ²⁹³116 Adopted Levels for details.

2004Og12,2004OgZZ: by the complete fusion reaction 248 Cm(48 Ca,4n) at a beam energy of 247 MeV (higher than before) at the center of the target corresponding to an excitation energy of between 36.8 MeV and 41.1 MeV in the CN 296 116 which is about 3 MeV lower than the expected maximum cross-section for the 4n channel. At the current energy, the cross-section had already reached the value 3.3 pb +25-14. A total beam dose of 7.0×10¹⁸ ions was obtained. 2004OgZZ report 6 new EVR- α 1- α 2-SF decay spanning about 0.5 to 2 seconds, which were not seen earlier. Of the six events, in one case the signal from the EVR was not observed and in another instance α 1 escaped. 4 of 5 events recorded in total were used in the estimation of the half-life adopted here (2004OgI2 and 2004OgZZ). The evaluators note that the two papers are identical in many respects. 2004OgZZ report more statistics in a few cases. Others: 2002Og03, 2002Og09, and 2002Og13 summarize earlier work done at Dubna to synthesise Z=116. The events were

Theory: See Nuclear Science References.

Assignment: ²⁴⁸Cm(⁴⁸Ca,4n), E=247 MeV; parent of ²⁸⁸114 (E α =9.95 MeV, T_{1/2}=0.80 s) (2004Og12). IUPAP/IUPAC JWP assessment (2003Ka71): discovery of Z=116 (2000Og05, 2000Og07, 2001Og02, and 2001Og06) was not yet warranted due to unsecured connections to known descendents and the absence of elemental signatures such as x-rays; the evaluators note that the data considered were later reassigned to ²⁹³116. The evaluators consider the current assignments as tentative for reasons applicable to hot fusion reactions relevant here.

²⁹²116 Levels

E(level)	$J\pi$	T _{1/2}	Comments
0.0?	0+	18 ms +16-6	T _{1/2} : per 4/5 events (half-lives/α energies) from 2004Og12 (also 2004OgZZ). T _{1/2} (calc)=38.4 ms from Viola-Seaborg systematics for Q(α)=10.80 MeV.
			%α≈100.

 $\%\alpha$: estimated from 4 events for half-life calculations/5 α decays (2004Og12). $\beta_2(theory):$ 0.070 from 1995Mo29; 0.056 from 2003Mu15; 0.044 from 2005GaZX.

later reassigned to ²⁹³116.

 $Q(\alpha)=10670 \ 60 \ 2004Og12.$

Q(α): from Eα=10.53 MeV 6 (2004Og12). Other: 10.69 MeV 6 from Eα=10.54 MeV 6 (2004OgZZ).

- 2001Og01 and 2001Og06 report α decay chains initially assigned to the even-even nucleus ²⁹²116 and daughters from the ²⁴⁸Cm+⁴⁸Ca reaction thought to be via the 4n evaporation channel. Further experiments using more stringent methods (2004Og07,2004Og12) prompted all of these decay chains to be reassigned to a ²⁹³116 parent via the 3n channel. The original nomenclature is included here for experimental details and methodology leading up to a more conclusive assignment of ²⁹³116 after the evaporation of 3 neutrons. See also 2002Og09 for overview of all experiments done until 2002.
- The first decay event observed for Z=116 was reported from Dubna in 20010g01 by the complete fusion of 248 Cm+ 48 Ca followed by the evaporation of 3 (or 4) neutrons and gammas to produce Z=116 with neutron number 177 (or 176) respectively. The energy chosen was 240 MeV corresponding to an excitation energy of 30.4-35.8 MeV in the 296 116 CN. The 48 Ca+ 5 ions were delivered by the U400 cyclotron at FLNR-JINR operated with the ECR-4M ion source. The EVR's were separated in-flight from the scattered particles and reaction products by the DGFRS (20000gZR). The transmission efficiency for Z=116 nuclei estimated to be 35%. The detection efficiency for α -decays of implanted nuclei was 87% of 4 π . The total counting rate (beam off conditions) for α -particles with E>8 MeV by the entire detector array was 2 per hour. Z=116 was expected to α -decay to Z=114 which had been produced by the same group with 244 Pu(48 Ca, 3 -4n) 288,289 114 (19990g10,20000g05), thereby facilitating the identification of the isotopes. On the 35th day of irradiation following an accumulated beam dose of 6.6×10^{18} one event sequence was observed and tentatively assigned to parent 292 116: E1=10.56 MeV 5, t1=46.9 ms; (beam off) 288 114: E2=9.81 MeV 5, t2=2.42 s; 284 112: E3=9.09 MeV 46; 280 Ds: E(SF)=197 (194+3) MeV; t(SF)=6.93 s.
- The two SF events were recorded in both the focal plane and the side detectors. Assignments were consistent with energies and decay times of observed descendents of Z=114: 288 114 (1999Og10,2000Og05) and one chain starting with the t=1/2 min decay attributed to 289 114 via the 3n evaporation channel, seen only once with the 244 Pu target (1999Og10), still pending confirmation.
- 20010g06 reports two further α -decay chains from experiments started on April 20, 2001. Preliminary assignments were made to ²⁹²116 and its daughters as follows: ²⁹²116: Q1=10.68 MeV 6, T_{1/2}=53 ms +63-19; ²⁸⁸114: Q2=9.96 MeV 6, T_{1/2}=2.6 s +20-8; ²⁸⁴112: Q3=9.28 MeV 6, T_{1/2}=45 s +34-14; ²⁸⁰Ds: T_{1/2}(SF)=7.6 s +5.8-2.3. 30 SF events were also seen during the 91 day bombardment of ²⁴⁸Cm. 15 SF events observed over a subsequent 83-day off-line measurement. Origin of SF events attributed to ^{252,254}Cf and to ²⁵⁶Fm as long lived products of transfer reactions with the ²⁴⁸Cm target (see 1985Ho13).
- 2004Og07: measurements for a series of confirmatory experiments including a new search for Z=116 started at an energy of 243 MeV with ²⁴⁵Cm(⁴⁸Ca,xn) were begun. See 2004Og05 for details of the methodology used and 2002Su35 for additional details on DGFRS. Cross-bombardments and excitation function measurements with ²⁴⁴Pu(⁴⁸Ca,xn) were done to determine the number of neutrons evaporated, thereby allowing a more conclusive determination of isotopes where α decay chains terminate in unknown regions. Daughter nuclei produced in earlier experiments were confirmed. Based on convincing arguments, all earlier assignments of ²⁹²116 from experiments employing a ²⁴⁸Cm target stand reassigned to ²⁹³116.
- 2004Og12, 2004OgZZ: comprehensive studies of excitation functions with a ⁴⁸Ca beam + ²³⁸U and ²⁴²Pu targets were carried out at Dubna. New measurements were begun at one energy each for reactions with ⁴⁸Ca on ²³³U and ²⁴⁸Cm. Cross-bombardments were also undertaken in an attempt to revisit the synthesis of Z=112, Z=114 and Z=116. Previous (re)assignments are confirmed and ²⁹²116 directly measured. The evaluators note that these two papers are identical in most respects. 2004OgZZ report more statistics in a few cases.
- Other: 2002Og09 report results of earlier experiments at Dubna and those with ²⁴⁴Pu and ²⁴⁸Cm rotating targets using a ⁴⁸Ca beam at incident energies of 236 MeV and 240 MeV respectively. The experiments were designed to produce Z=114 and Z=116 at the pb cross-section level with an increased sensitivity of over 2 orders of magnitude over previous attempts. 5 SF events were observed. Two SF events with total energies of 149 MeV and 153 MeV occurred within milliseconds following the implantation of the recoil. These events were assigned to 0.9 ms ^{244mf}Am, the product of transfer reactions. Three SF events terminated α decay sequences. Assigned to ^{288,289}114. Based on this previous assignments for ²⁹²116 following the 10.53 MeV α , were retained as being reasonable in the 4n channel, along with ²⁸⁴112. It was observed that life-times of nuclei Z≥110 were considerably increased over predictions with increasing neutron number. The experiments were collectively offered as proof of enhanced stability in the region around Z=114 and N=184, where shell closure has been theorized to exist. Parents were subsequently reassigned in 2004Og07 with the corresponding changes for their daughters.

Theory: see Nuclear Science References.

Assignment: ²⁴⁸Cm(⁴⁸Ca,3n), E=247 MeV (2004Og12). IUPAP/IUPAC JWP assessment (based on events originally assigned to ²⁹²116. 2003Ka71): discovery of Z=116 was not yet warranted due to unsecured connections to known descendents and the absence of elemental signatures such as x-rays. The evaluators note that the cross-bombardment and excitation function measurements performed by 2004Og07 and 2004Og12 lend further support to the assignment.

		Adopted Levels: Tentative (continued)
		²⁹³ 116 Levels
E(level)	T 1/2	Comments
0.0?	53 ms +62-19	 Jπ: 1/2+ from 1997Mo25 (theory). T_{1/2}: from 2004Og12 for 3/3 events. Other: 61 ms +57-20 per 4/4 events (half-lives/α energies) from 2004OgZZ. T_{1/2}(calc)=85 ms using Viola-Seaborg formalism for Q(α)=10.67 MeV. %α=100. %α=100.
		E α =10.54 MeV 6 (2004OgZZ). Other: E α =10.53 MeV 6(2004Og07,2004Og12). It is probable that this is the ground state. The experimenters have observed that the transition is unhindered from the nearly spherical even-Z ²⁹² 116 nucleus, a fact which facilitated the initial assignment. That this may be the ground state in the presence of the extra neutron is further supported by the <i>unique</i> α -particle energy measured for this odd isotope at one bombarding energy for the three events reported in 20010 α 01, 20010 α 06, and 20020 α 09.

reported in 2001Og01, 2001Og06, and 2002Og09. $\beta_2(theory): -0.070 \mbox{ from 1995Mo29; } 0.043 \mbox{ from 2003Mu15; } 0.028 \mbox{ from 2005GaZX.}$

 $S(p)=660 SY; Q(\alpha)=12300 SY 2003Au03.$

S(p): estimated uncertainty=1520 keV.

 $Q(\alpha) \text{: estimated uncertainty}{=}500 \ keV.$

The data of 1999Ni03 cited by 2000Fi12 have been retracted (2002Ni10) and have not been confirmed in a repeated

experiment at LBNL (2003Gr26). Also, 2001MoZU and 2000HoZZ found no evidence for $^{293}118$ in $^{208}Pb(^{86}Kr,n)$ reaction at 457.6 MeV (2001MoZU) and at 453.9 and 456.7 MeV (2000HoZZ). The statistical analysis of 2000Sc26 also indicate that the data of 1999Ni03 do not originate from radioactive decays with an error probability of less than 5%.

2003Au02 suggest $J\pi\text{=}1/2\text{+}$ based on systematics.
Adopted Levels: Not Observed

 $S(p)=13110 CA; Q(\alpha)=6950 CA 1997Mo25.$

- 1980St05 searched for naturally occurring ²⁹⁴Ds using an FN Tandem accelerator as a sensitive mass spectrometer (placer platinum from Goodnews Bay, Alaska; tof). The observed background leads to an upper limit on ²⁹⁴Ds in the platinum sample of less than one part in 10¹¹. This implies that ²⁹⁴Ds has $T_{1/2}$ less than about 2×10⁸ y, was not produced in the amounts predicted by 1971Sc39, or did not follow its homolog platinum in the geophysical or chemical processing of the material.
- Others: 1969We13, 1973Ge15, and 1974Be02.
- 1997Mo25 calculate $T_{1/2}(\alpha){=}296$ y.
- Theory: see Nuclear Science References.

Adopted Levels: Tentative

 $Q(\alpha)=11810$ 60 2004Og10,2004Og12.

 $Q(\alpha): \ from \ E\alpha{=}11.65 \ MeV \ 6 \ (2004Og10,2004Og12).$

- 2003OgZZ, 2004Og10, 2004Og12: the Dubna group in a collaborative effort with LLNL, synthesized Z=118 by the complete fusion reaction ²⁴⁹Cf(⁴⁸Ca,3n) at an energy of 265 MeV. The CN formed was ²⁹⁷118. Experiments were performed from February through June 2002 totaling 2300 irradiation hours and an accumulated beam dose of 2.5×10¹⁹ ⁴⁸Ca ions. The optimal cross-section and the highest yield of EVR's is expected for the above channel by theory (2002Za19,2002Za16,2002Za01) and complemented by systematic realistic extrapolations from the radioactive properties of neighboring even-even nuclei such as ²⁹²116, ²⁸⁸114, ²⁸⁴112 and ²⁸⁰Ds created with ²⁴⁴Pu and ²⁴⁸Cm targets. Note: 2002OgZX and 2003OgZZ appear to be the same report.
- The beam of 48 Ca ions was provided by the JINR U400 cyclotron and EVR's were separated by DGFRS with magnetic rigidity set to detect Z=118 EVR's extrapolated from experimental data for the region Z=89-116 (20010g09). A rotating target (97.3% 249 Cf) with six separate target sectors, each with an area of 5.3 cm², was used. It was determined that the excitation energy of the 297 118 CN could vary from 26.6-31.7 MeV and subsequent analysis led to an accuracy of ΔE^{*} =4.3 MeV. A tof detector with a 65 mm flight base was mounted ahead of the focal plane detector. X-y position correspondence provided genetic correlations between implanted recoils (α 's or SF) and their subsequent decays. A fission fragment calibration was performed using SF fragments from 252 No with a known average energy release of about 176 MeV.
- 18 SF events observed were separable into two groups by energy: 16 events with an average total E=158 MeV $(125 \le E(tot) \le 175 \text{ MeV})$, 1 event with E(tot)=207 MeV, and 1 event with E(tot)=223 MeV. The corresponding lower limit of half-life for the group of 16 events was estimated to be $T_{1/2}(SF)>0.5$ h ascribed to long lived nuclides in the Cf-Fm region via incomplete fusion reactions suppressed by >5 orders of magnitude in DGFRS. The other two fission events were preceded by recoil signals ascribed to α decay from a higher A parent.

Event 1 (19 March 2002): in particular, the event with E(tot)=207 MeV (TKE=230 MeV) points to a strong correlation of α decays in a EVR- α 1- α 2-SF sequence. The probability of randomness for all 4 events in the sequence was calculated as being less than 1.5×10^{-6} . The instantaneous beam energy was 245.6 MeV corresponding to an excitation energy of 29.8 MeV 20 in the compound system ²⁹⁷118. The events were:

 $E_1 = 11650 \text{ keV} 60$, $t_1 = 2.55 \text{ ms}$

 $E_2 = 10710$ keV 170, $t_2 = 42.1$ ms

 $E_3(SF) = 188 + 19 \text{ MeV}, \quad \tilde{t}_{SF} = 0.52 \text{ s}.$

 E_1 and E_2 were assigned to the α decay of Z=118 (²⁹⁴118) and Z=116 (²⁹⁰116), respectively, and E3 to the two SF fragments of Z=114 (²⁸⁶114).

Event 2 (16 April 2002): for this EVR-SF sequence with E(tot)=223 MeV no α -like signals were detected. Two coincident SF fragments were seen with energies of 137 MeV (focal plane detector) and 86 MeV (side detector). The instantaneous beam energy was 246.1 MeV corresponding to a compound nucleus excitation energy of 30.2 MeV 23. The fissioning event was suggested to belong to the EVR ²⁹⁴118 (t₁=3.16 ms) by 2004Og10. This event was not included in table IV of 2004Og12.

Other: see 2004OgZZ for further discussions.

Theory: see Nuclear Science References.

Assignment: ²⁴⁹Cf(⁴⁸Ca,3n), E=265 MeV (2002OgZX,2003OgZZ,2004Og10,2004Og12). Additional experiments are underway and more detailed studies are required. The evaluators consider all assignments for this decay chain as tentative. Also, 2004Mo15 note that their assignment of mass based on the CN excitation energy may be off by single unit.

²⁹⁴118 Levels

E(level)	Jπ	T 1/2	Comments
0.0?	0+	1.8 ms +84-8	$T_{1/2}: \mbox{ from one event } (2002OgZX, 2003OgZZ. \ \Delta T_{1/2} \ \mbox{at 68\% confidence level}). \ 1.8 \ \mbox{ms } +750-13 \ (2004Og12) \ \mbox{if 95\% confidence level used}. \ T_{1/2}(\mbox{calc})=0.44 \ \mbox{ms from Viola-Seaborg systematics} \ \mbox{for } Q=11.81 \ \mbox{MeV}.$
			$\% \alpha \approx 100$.

 $\%\alpha :$ estimated from one event.

 β_2 (theory): -0.087 from 1995Mo29; 0.077 from 2003Mu15; 0.008 from 2005GaZX.

REFERENCES FOR A = 266 - 294

1959Ig05	G.Igo - Phys.Rev. 115, 1665 (1959)
1966Vi04	V.E.Viola, Jr., G.T.Seaborg - J.Inorg.Nucl.Chem. 28, 741 (1966)
1969We13	J.J.Wesolowski, W.J.R.Jewell, F.Guy - Phys.Lett. B 28, 544 (1969)
1971Sc39	D.N.Schramm, W.A.Fowler - Nature(London) 231, 103 (1971)
1973Ge15	F.H.Geisler, P.R.Phillips, R.M.Walker - Nature(London) 244, 428 (1973)
1974Au05	D.C.Aumann, G.Mullen - Nucl.Instrum.Methods 115, 75 (1974)
1974Be02	K.Behringer, A.Grutter, H.R.von Gunten, A.Schmid, A.Wyttenbach, B.Hahn, U.Moser, H.W.Reist - Phys.Rev. C9, 48 (1974)
1975Mu16	G.Mullen, D.C.Aumann - Nucl.Instrum.Methods 128, 425 (1975)
1980St05	W.Stephens, J.Klein, R.Zurmuhle – Phys.Rev. C21, 1664 (1980)
1982Mu15	G. Munzenberg, P. Armbruster, F. P. Hessberger, S. Hofmann, K. Poppensieker, W. Reisdorf, J. H. R. Schneider, W. F. W. Schneider,
	KH.Schmidt, CC.Sahm, D.Vermeulen - Z.Phys. A309, 89 (1982)
1984Mo07	S.Mordechai, H.T.Fortune, M.Carchidi, R.Gilman - Phys.Rev. C29, 1699 (1984)
1984Mu07	G.Munzenberg, W.Reisdorf, S.Hofmann, Y.K.Agarwal, F.P.Hessberger, K.Poppensieker, J.R.H.Schneider, W.F.W.Schneider,
	KH.Schmidt, HJ.Schott, P.Armbruster, CC.Sahm, D.Vermeulen - Z.Phys, A315, 145 (1984)
1984Og03	Yu.Ts.Oganessian. M.Hussonnois, A.G.Demin, Yu.P.Kharitonov, H.Bruchertseifer, O.Constantinescu, Yu.S.Korotkin,
	S.P.Tretvakova, V.K.Utvonkov, I.V.Shirokovsky, J.Estevez - Radiochim.Acta 37, 113 (1984)
1984Sc13	KH.Schmidt, CC.Sahm, K.Pielenz, HG.Clerc - Z.Phys, A316, 19 (1984)
1984Zv02	I.Zvara, V.P. Domanov, Z.Khvubener, M.R.Shalaevsky, S.N.Timokhin, B.L.Zhuikov, B.Aikhler, G.V.Buklanov -
	Radiokhimiya 26, 76 (1984); Sov.Radiochem. 26, 72 (1984)
1985Ho13	D.C.Hoffman, M.M.Fowler, W.R.Daniels, H.R.von Gunten, D.Lee, K.J.Moody, K.Gregorich, R.Welch, G.T.Seaborg,
	W. Bruchle, M. Brugger, H. Gaggeler, M. Schadel, K. Summerer, G. Wirth, Th. Blaich, G. Herrmann, N. Hildebrand, J. V. Kratz,
	M.Lerch, N.Trautmann - Phys. Rev. C31, 1763 (1985)
1987Mu15	G. Munzenberg, P. Armbruster, G. Berthes, H. Folger, F.P. Hessberger, S. Hofmann, J. Keller, K. Ponnensieker, A.B. Quint,
	W. Reisdorf, KH. Schmidt, HJ. Schott, K. Summerer, L.Zychor, M.E. Leino, R. Hingmann, U. Gollerthan, E. Hanelt
	Z.Phys. A328 49 (1987)
1987ScZR	M Schadel W Bruchle E Jager K Summerer E K Hulet J F Wild R W Lougheed R J Dougan K J Moody - GSI-87-1
10010011	n.15 (1987)
1988Mu15	G. Munzenberg, S. Hofmann, F. P. Hessberger, H. Folger, V. Ninov, K. Ponnensieker, A. B. Quint, W. Reisdorf, HJ. Schott,
	K Summerer P Armhruster M E Leino D Ackermann II Gollerthan E Hanelt W Morawek V Fuiita T Schwab A Turler -
	Z Phys. A330, 435 (1988)
1989Mu16	G. Munzenberg – Nucl Phys. A502, 571c (1989)
19890gZU	Yu Ts Oganessian Yu V Lohanov M Hussonnois Yu P Kharitonov B Gorski O Constantinescu A G Poneko
8	H.Bruchertseifer, R.N. Sagaidak, S.P. Tretvakova, G.V. Buklanov, A.V. Rykhlyuk, G.G. Gulbekvan, A.A. Pleve, G.N. Ivanov,
	V.M.Plotko - Proc.Intern.Shool Phys. 'Enrico Fermi'. Course CIII. Varenna. Italy. P.Kienle. R.A.Ricci. A.Rubbino.
	Eds., North-Holland, Amsterdam, p.258 (1989)
1990Ho03	D C Hoffman D M Lee K E Gregorich M J Nurmia R B Chadwick K B Chen K R Czerwinski C M Gannett H L Hall
	$b_i c_i m_i m_i c_i c_i c_i c_i c_i c_i c_i c_i c_i c$
	R.A.Henderson, B.Kadkhodavan, S.A.Kreek, J.D.Levba - Phys.Rev. C41, 631 (1990)
1991Ga28	R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res.
1991Ga28	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991)
1991Ga28 1991Gr05	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991)
1991Ga28 1991Gr05 1992Ba77	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson -
1991Ga28 1991Gr05 1992Ba77	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992)
1991Ga28 1991Gr05 1992Ba77 1993LaZS	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin,
1991Ga28 1991Gr05 1992Ba77 1993LaZS	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov,
1991Ga28 1991Gr05 1992Ba77 1993LaZS	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyha - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko - Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993)
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko - Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev,
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko - Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, Vu.S.Tsyganov, V.E.Zhuchko,
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko - Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.M.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.W.Lougheed, K.J.Moody, J.F.Wild, E.K.Hulet, J.H.McQuaid - Phys.Rev.Lett. 73, 624 (1994)
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22 1994Ye08	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko - Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.W.Lougheed, K.J.Moody, J.F.Wild, E.K.Hulet, J.H.McQuaid - Phys.Rev.Lett. 73, 624 (1994) A.V.Yeremin, A.N.Andreyev, D.D.Bogdanov, G.M.Ter-Akopian, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev,
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22 1994Ye08	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko - Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, J.F.Wid, E.K.Hulet, J.H.McQuaid - Phys.Rev.Lett. 73, 624 (1994) A.V.Yeremin, A.N.Andreyev, D.D.Bogdanov, G.M.Ter-Akopian, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev - Nucl.Instrum.Methods Phys.Res.
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22 1994Ye08	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyha, - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko - Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.W.Lougheed, K.J.Moody, J.F.Wild, E.K.Hulet, J.H.McQuaid - Phys.Rev.Lett. 73, 624 (1994) A.V.Yeremin, A.N.Andreyev, D.D.Bogdanov, G.M.Ter-Akopian, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev - Nucl.Instrum.Methods Phys.Res. A350, 608 (1994)
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22 1994Ye08 1995Gh04	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko - Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.W.Lougheed, K.J.Moody, J.F.Wild, E.K.Hulet, J.H.McQuaid - Phys.Rev.Lett. 73, 624 (1994) A.V.Yeremin, A.N.Andreyev, D.D.Bogdanov, G.M.Ter-Akopian, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev - Nucl.Instrum.Methods Phys.Res. A350, 608 (1994) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler,
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22 1994Ye08 1995Gh04	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko - Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko - Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.W.Lougheed, K.J.Moody, J.F.Wild, E.K.Hulet, J.H.McQuaid - Phys.Rev.Lett. 73, 624 (1994) A.V.Yeremin, A.N.Andreyev, D.D.Bogdanov, G.M.Ter-Akopian, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev - Nucl.Instrum.Methods Phys.Res. A350, 608 (1994) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan,
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22 1994Ye08 1995Gh04	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba – Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler – Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich – Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson – Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko – Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.W.Lougheed, K.J.Moody, J.F.Wild, E.K.Hulet, J.H.McQuaid – Phys.Rev.Lett. 73, 624 (1994) A.V.Yeremin, A.N.Andreyev, D.D.Bogdanov, G.M.Ter-Akopian, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev – Nucl.Instrum.Methods Phys.Res. A350, 608 (1994) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan, S.Kreek, M.Lane, A.Lyon, M.A.McMahan, M.Neu, T.Sikkeland, W.J.Swiatecki, A.Turler, J.T.Walton, S.Yashita –
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22 1994Ye08 1995Gh04	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko - Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, Vu.S.Tsyganov, V.E.Zhuchko - Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.W.Lougheed, K.J.Moody, J.F.Wild, E.K.Hulet, J.H.McQuaid - Phys.Rev.Lett. 73, 624 (1994) A.V.Yeremin, A.N.Andreyev, D.D.Bogdanov, G.M.Ter-Akopian, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev - Nucl.Instrum.Methods Phys.Res. A350, 608 (1994) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan, S.Kreek, M.Lane, A.Lyon, M.A.McMahan, M.Neu, T.Sikkeland, W.J.Swiatecki, A.Turler, J.T.Walton, S.Yashita - Nucl.Phys. A583, 861c (1995)<
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22 1994Ye08 1995Gh04	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba – Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler – Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich – Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson – Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko – Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.W.Lougheed, K.J.Moody, J.F.Wild, E.K.Hulet, J.H.McQuaid – Phys.Rev.Lett. 73, 624 (1994) A.V.Yeremin, A.N.Andreyev, D.D.Bogdanov, G.M.Ter-Akopian, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev – Nucl.Instrum.Methods Phys.Res. A350, 608 (1994) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan, S.Kreek, M.Lane, A.Lyon, M.A.McMahan, M.Neu, T.Sikkeland, W.J.Swiatecki, A.Turler, J.T.Walton, S.Yashita – Nu
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22 1994Ye08 1995Gh04	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba – Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler – Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich – Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson – Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko – Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko – Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.W.Lougheed, K.J.Moody, J.F.Wild, E.K.Hulet, J.H.McQuaid – Phys.Rev.Lett. 73, 624 (1994) A.V.Yeremin, A.N.Andreyev, D.D.Bogdanov, G.M.Ter-Akopian, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev – Nucl.Instrum.Methods Phys.Res. A350, 608 (1994) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan, S.Kreek, M.Lane, A.Lyon, M.A.McMahan, M.Neu, T.Sikkeland, W.J.Swiatecki, A.Turler, J.T.Walton, S.Yashita – Nucl.Phys. A583
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22 1994Ye08 1995Gh04	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba – Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler – Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich – Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson – Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko – Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko – Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.W.Lougheed, K.J.Moody, J.F.Wild, E.K.Hulet, J.H.McQuaid – Phys.Rev.Lett. 73, 624 (1994) A.V.Yeremin, A.N.Andreyev, D.D.Bogdanov, G.M.Ter-Akopian, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev – Nucl.Instrum.Methods Phys.Res. A350, 608 (1994) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan, S.Kreek, M.Lane, A.Lyon, M.A.McMahan, M.Neu, T.Sikkeland, W.J.Swiatecki, A.Turler, J.T.Walton, S.Yashita – Nucl.Phys. A583
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22 1994Ye08 1995Gh04	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba – Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler – Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich – Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson – Prog.Part.Nucl.Phys. 29, 453 (1992) Yu. A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko – Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko – Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.W.Lougheed, K.J.Moody, J.F.Wild, E.K.Hulet, J.H.McQuaid – Phys.Rev.Lett. 73, 624 (1994) A.V.Yeremin, A.N.Andreyev, D.D.Bogdanov, G.M.Ter-Akopian, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev – Nucl.Instrum.Methods Phys.Res. A350, 608 (1994) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan, S.Kreek, M.Lane, A.Lyon, M.A.McMahan, M.Neu, T.Sikkeland, W.J.Swiatecki, A.Turler, J.T.Walton, S.Yashita – Phys.Rev. C51,
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22 1994Ye08 1995Gh04 1995Gh05	 B.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyha – Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler – Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich – Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson – Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko – Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, Vu.S.Tsyganov, V.E.Zhuchko – Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yuu.S.Tsyganov, V.E.Zhuchko, R.W.Loughed, K.J.Moody, J.F. Wild, E.K.Hulet, J.H.McQuaid – Phys.Rev.Lett. 73, 624 (1994) A.V.Yeremin, A.N.Andreyev, D.D.Bogdanov, G.M.Ter-Akopian, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev – Nucl.Instrum.Methods Phys.Res. A350, 608 (1994) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan, S.Kreek, M.Lane, A.Lyon, M.A.McMahan, M.Neu, T.Sikkeland, W.J.Swiatecki, A.Turler, J.T.Walton, S.Yashita – Nucl.Phys. A583, 861c (199
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22 1994Ye08 1995Gh04 1995Gh05	 B. K. Henderson, B. Kadkhodayan, S.A.Kreek, J.D. Leyba – Phys.Rev. C41, 631 (1990) H.W. Gaggeler, D.T. Jost, U. Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler – Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E. Gregorich – Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C. Barber, N.N. Greenwood, A.Z. Hrynkiewicz, Y.P. Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson – Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A. Lazarev, Yu.V. Lobanov, A.N. Mezentsev, Yu.Ts. Oganessian, V.G. Subbotin, V.K. Utyonkov, F. Sh. Abdullin, V.V. Bechterev, S. Iliev, I.V. Kolesov, A.N. Polyakov, I.M. Sedykh, I.V. Shirokovsky, A.M. Sukhov, Yu.S. Tsyganov, V.E. Zhuchko – Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A. Lazarev, Yu.V. Lobanov, Yu.Ts. Oganessian, V.K. Utyonkov, F. Sh. Abdullin, G.V. Buklanov, B.N. Gikal, S. Iliev, A.N. Mezentsev, Yu.V. Lobanov, Yu.Ts. Oganessian, V.K. Utyonkov, F. Sh. Abdullin, G.V. Buklanov, B.N. Gikal, S. Iliev, A.N. Mezentsev, A.N. Polyakov, I.M. Sedykh, I.V. Shirokovsky, V.G. Subbotin, A.M. Sukhov, Yu.S. Tsyganov, V.E. Zhuchko, R.W. Lougheed, K.J. Moody, J.F. Wild, E.K. Hulet, J.H.McQuaid – Phys.Rev.Lett. 73, 624 (1994) A.V. Yeremin, A.N. Andreyev, D.D. Bogdanov, G.M. Ter-Akopian, V.I. Chepigin, V.A. Gorshkov, A.P. Kabachenko, O.N. Malyshev, A.G. Popeko, R.N. Sagaidak, S.Sharo, E.N. Voronkov, A.V. Taranenko, A.Yu. Lavrentjev – Nucl.Instrum.Methods Phys.Res. A350, 608 (1994) A.Ghiorso, D.Lee, L.P. Somerville, W.Loveland, J.M. Nitschke, W.Ghiorso, G.T. Seaborg, P.Wilmarth, R. Leres, A.Wydler, M.Nurmia, K.Gregorich, R.Gaylord, T.Hamilton, N.J. Hannink, D.C. Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan, S.Kreek, M.Lane, A.Lyon, M.A.McMahan, M.Neu, T.Sikkeland, W.J. Swiatecki, A.Turler, J.T.Walton, S.Yashita – Nucl.Phys. A583, 861c (1995) A.Ghiorso, D.Lee, L.P. Somerville, W.Loveland, J.M. Nitschke, W.Ghiorso, G.T. Seaborg, P.Wilmarth, R.Leres
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22 1994Ye08 1995Gh04 1995Gh05	 B.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko - Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.N.Folyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.W.Lougheed, K.J.Moody, J.F.Wild, E.K.Hulet, J.H.McQuaid - Phys.Rev.Lett. 73, 624 (1994) A.V.Yeremin, A.N.Andreyev, D.D.Bogdanov, G.M.Ter-Akopian, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev - Nucl.Instrum.Methods Phys.Res. A350, 608 (1994) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan, S.Kreek, M.Lane, A.Lyon, M.A.McMahan, M.Neu, T.Sikkeland, W.J.Swiatecki, A.Turler, J.T.Walton, S.Yashita - Nucl.Phys. A583, 861c (1995) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, K.Czerwinski, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffma
1991Ga28 1992Ba77 1993LaZS 1994La22 1994Ye08 1995Gh04 1995Gh05 1995Ho03 1995Ho04	 B.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko - Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev - Nucl.Instrum.Methods Phys.Res. A350, 608 (1994) A.Ghorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan, S.Kreek, M.Lane, A.Lyon, M.A.McMahan, M.Neu, T.Sikkeland, W.J.Swiatecki, A.Turler, J.T.Walton, S.Yashita - Nucl.Phys. A583, 861c (1995) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, K.Czerwinski, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan, S.Kreek, M.Lane, A.Lyon, M.A.McMahan, M.Neu, T.Sikkeland, W.J.Swiatecki, A.Turler, J.T.Walton, S.Yashita - Phys.Rev. C51, R2293 (1995) S.Hofmann, V.Ninov, F.P.Hessberger, P.Armbruster, H.Folger, G.Munzenber
1991Ga28 1991Gr05 1992Ba777 1993LaZS 1994La22 1994Ye08 1995Gh04 1995Gh05 1995Ho03 1995Ho04 1995Ho04	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko - Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, Pw.U.Lobanov, Yu.S.Gedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.W.Loughed, K.J.Moody, J.F.Wild, E.K.Hulet, J.H.McQuaid - Phys.Rev.Lett. 73, 624 (1994) A.V.Yeremin, A.N.Andreyev, D.D.Bogdanov, G.M.Ter-Akopian, V.I.Chepjin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev - Nucl.Instrum.Methods Phys.Res. A350, 608 (1994) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan, S.Kreek, M.Lane, A.Lyon, M.A.McMahan, M.Neu, T.Sikkeland, W.J.Swiatecki, A.Turler, J.T.Walton, S.Yashita - Nucl.Phys.A583, 861e (1995) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, K.Czerwinski, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman,
1991Ga28 1991Gr05 1992Ba777 1993LaZS 1994La22 1994Ye08 1995Gh04 1995Gh05 1995Ho03 1995Ho04 1995Ho04	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba – Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler – Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) R.C.Gargorich – Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C. Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson – Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Stedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko – Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.W.Lougheed, K.J.Moody, J.F.Wild, E.K.Hulet, J.H.McQuaid – Phys.Rev.Lett. 73, 624 (1994) A.V.Yeremin, A.N.Andreyev, D.D.Bogdanov, G.M. Ter-Akopian, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev – Nucl.Instrum.Methods Phys.Res. A350, 608 (1994) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan, S.Kreek, M.Lane, A.Lyon, M.A.McMahan, M.Neu, T.Sikkeland, W.J.Swiatecki, A.Turler, J.T.Walton, S.Yashita – Nucl.Phys.A538, 861 (1995) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, K.Czerwinski, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan, S.Kreek, M.Lane, A.Lyon, M.A.McMahan, M.Neu, T.Sikkelan
1991Ga28 1991Gr05 1992Ba777 1993LaZS 1994La22 1994Ye08 1995Gh04 1995Gh05 1995Ho03 1995Ho04 1995Ho27 1995La20	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba – Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler – Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson – Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko – Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Stevkov, Y.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko – Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.W.Lougheed, K.J.Moody, J.F.Wild, E.K.Hulet, J.H.McQuaid – Phys.Rev.Lett. 73, 624 (1994) A.V.Yeremin, A.N.Andreyev, D.D.Bogdanov, G.M.Ter-Akopian, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev – Nucl.Instrum.Methods Phys.Res. A350, 608 (1994) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan, S.Kreek, M.Lane, A.Lyon, M.A.McMahan, M.Neu, T.Sikkeland, W.J.Swiatecki, A.Turler, J.T.Walton, S.Yashita – Phys.Rev. C51, R2293 (1995) S.Hofmann, V.Ninov, F.P.Hessberger, P.Armbruster, H.F
1991Ga28 1991Gr05 1992Ba77 1993LaZS 1994La22 1994Ye08 1995Gh04 1995Gh05 1995Ho03 1995Ho04 1995Ho04	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) H.W.Gaggeler, D.T.Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C.Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko - Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.W.Lougheed, K.J.Moody, J.F.Wild, E.K.Hulet, J.H.McQuaid - Phys.Rev.Lett. 73, 624 (1994) A.Veremin, A.N.Andreyev, D.D.Bogdanov, G.M.Ter-Akopian, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev - Nucl.Instrum.Methods Phys.Res. A350, 608 (1994) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, K.Czewinski, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan, S.Kreek, M.Lane, A.Lyon, M.A.McMahan, M.Neu, T.Sikkeland, W.J.Swiatecki, A.Turler, J.T.Walton, S.Y
1991Ga28 1991Gr05 1992Ba777 1993LaZS 1994La22 1994Ye08 1995Gh04 1995Gh05 1995Ho03 1995Ho04 1995Ho27 1995La20	 R.A.Henderson, B.Kadkhodayan, S.A.Kreek, J.D.Leyba - Phys.Rev. C41, 631 (1990) R.W. Gaggeler, D.T. Jost, U.Baltensperger, A.Weber, A.Kovacs, D.Vermeulen, A.Turler - Nucl.Instrum.Methods Phys.Res. A309, 201 (1991) K.E.Gregorich - Nucl.Instrum.Methods Phys.Res. A302, 135 (1991) R.C. Barber, N.N.Greenwood, A.Z.Hrynkiewicz, Y.P.Jeannin, M.Lefort, M.Sakai, I.Ulehla, A.H.Wapstra, D.H.Wilkinson - Prog.Part.Nucl.Phys. 29, 453 (1992) Yu.A.Lazarev, Yu.V.Lobanov, A.N.Mezentsev, Yu.Ts.Oganessian, V.G.Subbotin, V.K.Utyonkov, F.Sh.Abdullin, V.V.Bechterev, S.Iliev, I.V.Kolesov, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko - Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.M.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, Proc.Intern.School-Seminar on Heavy Ion Physics, Dubna, Russia, JINR Publishing, Vol.2, p.497 (1993) Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, G.V.Buklanov, B.N.Gikal, S.Iliev, A.N.Mezentsev, A.N.Polyakov, I.M.Sedykh, I.V.Shirokovsky, V.G.Subbotin, A.M.Sukhov, Yu.S.Tsyganov, V.E.Zhuchko, R.W.Lougheed, K.J.Moody, J.F.Wild, E.K.Hulet, J.H.Mequaid - Phys.Rev.Lett. 73, 624 (1994) A.V.Yeremin, A.N.Andreyev, D.D.Bogdanov, G.M.Ter-Akopian, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, S.Sharo, E.N.Voronkov, A.V.Taranenko, A.Yu.Lavrentjev - Nucl.Instrum.Methods Phys.Res. A360, 608 (1994) A.Ghiorso, D.Lee, L.P.Somerville, W.Loveland, J.M.Nitschke, W.Ghiorso, G.T.Seaborg, P.Wilmarth, R.Leres, A.Wydler, M.Nurmia, K.Gregorich, R.Gaylord, T.Hamilton, N.J.Hannink, D.C.Hoffman, C.Jarzynski, C.Kacher, B.Kadkhodayan, S.Kreek, M.Lane, A.Lyon, M.A.McMahan, M.Neu, T.Sikkeland, W.J.Swiatecki, A.Turler, J.T.Walton, S.Yashita -

K.W.Scheller, J.Gorres, S.Vouzoukas, M.Wiescher, B.Pfeiffer, K.-L.Kratz, D.J.Morrissey, B.M.Sherrill, M.Steiner, 1995Sc03 M.Hellstrom, J.A.Winger - Nucl.Phys. A582, 109 (1995) M.Schadel, E.Jager, W.Bruchle, K.Summerer, E.K.Hulet, J.F.Wild, R.W.Lougheed, R.J.Dougan, K.J.Moody -1995Sc53 Radiochim, Acta 68, 7 (1995) 1995 Sm05R.Smolanczuk, J.Skalski, A.Sobiczewski - Phys.Rev. C52, 1871 (1995) $1995 \, \mathrm{SmZY}$ R.Smolanczuk, A.Sobiczewski - Proc.European Physical Society XV Nuclear Physics Divisional Conference, St.Petersburg (Russia), April 18-22, 1995, p.313 (1995) 1996He07 H.Heiselberg, X.-N.Wang - Phys.Rev. C53, 1892 (1996) 1996Ho13 S.Hofmann, V.Ninov, F.P.Hessberger, P.Armbruster, H.Folger, G.Munzenberg, H.J.Schott, A.G.Popeko, A.V.Yeremin, S.Saro, R.Janik, M.Leino - Z.Phys. A354, 229 (1996) 1996Ho16 P.Hoff, P.Baumann, A.Huck, A.Knipper, G.Walter, G.Marguier, B.Fogelberg, A.Lindroth, H.Mach, M.Sanchez-Vega, R.B.E.Taylor, P.Van Duppen, A.Jokinen, M.Lindroos, M.Ramdane, W.Kurcewicz, B.Jonson, G.Nyman, Y.Jading, K.-L.Kratz, A.Wohr, G.Lovhoiden, T.F.Thorsteinsen, J.Blomqvist, and the ISOLDE Collaboration - Phys.Rev.Lett. 77, 1020 (1996) 1996La11 M.R.Lane, K.E.Gregorich, D.M.Lee, M.F.Mohar, M.Hsu, C.D.Kacher, B.Kadkhodayan, M.P.Neu, N.J.Stoyer, E.R.Sylwester, J.C.Yang, D.C.Hoffman - Phys.Rev. C53, 2893 (1996) 1996La12 Yu.A.Lazarev, Yu.V.Lobanov, Yu.Ts.Oganessian, V.K.Utyonkov, F.Sh.Abdullin, A.N.Polyakov, J.Rigol, I.V.Shirokovsky, Yu.S.Tsyganov, S.Iliev, V.G.Subbotin, A.M.Sukhov, G.V.Buklanov, B.N.Gikal, V.B.Kutner, A.N.Mezentsev, K.Subotic, J.F.Wild, R.W.Lougheed, K.J.Moody - Phys.Rev. C54, 620 (1996) 1996LaZY Yu.A.Lazarev - JINR-E7-96-82 (1996) W.D.Mvers, W.J.Swiatecki - Nucl.Phys. A601, 141 (1996) 1996Mv01 1997Ho14 S.Hofmann, F.P.Hessberger, V.Ninov, P.Armbruster, G.Munzenberg, C.Stodel, A.G.Popeko, A.V.Yeremin, M.Leino -Z.Phys. A358, 377 (1997) 1997Mo25 P.Moller, J.R.Nix, K.-L.Kratz - At.Data Nucl.Data Tables 66, 131 (1997) M.Schadel, W.Bruchle, B.Schausten, E.Schimpf, E.Jager, G.Wirth, R.Gunther, J.V.Kratz, W.Paulus, A.Seibert, P.Thorle, 1997Sc48 N.Trautmann, S.Zauner, D.Schumann, M.Andrassy, R.Misiak, K.E.Gregorich, D.C.Hoffman, D.M.Lee, E.R.Sylwester, Y.Nagame, Y.Oura - Radiochim.Acta 77, 149 (1997) $1997 \, \text{Sm}03$ R.Smolanczuk - Phys.Rev. C56, 812 (1997) A.V.Yeremin, D.D.Bogdanov, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, O.N.Malyshev, A.G.Popeko, R.N.Sagaidak, 1997Ye07 G.M.Ter-Akopian, A.Yu.Lavrentjev - Nucl.Instrum.Methods Phys.Res. B126, 329 (1997) 1998Da24 M.Dasgupta, D.J.Hinde, N.Rowley, A.M.Stefanini - Ann.Rev.Nucl.Part.Sci. 48, 401 (1998) 1998Ho13 S.Hofmann - Rep.Prog.Phys. 61, 639 (1998) 1998N i ZR V.Ninov, K.E.Gregorich, C.A.McGrath - Proc.Conf on Exotic Nuclei and Atomic Masses, Bellaire, Michigan, June 23-27, 1998, p.704 (1998); AIP Conf.Proc. 455 (1988) 1998Tu01 A.Turler, R.Dressler, B.Eichler, H.W.Gaggeler, D.T.Jost, M.Schadel, W.Bruchle, K.E.Gregorich, N.Trautmann, S.Taut -Phys.Rev. C57, 1648 (1998) A.Artna-Cohen - Nucl.Data Sheets 88, 155 (1999) 1999Ar21 1999Cw01S.Cwiok, W.Nazarewicz, P.H.Heenen - Phys.Rev.Lett. 83, 1108 (1999) 1999GhZZ A.Ghiorso - Priv.Comm. (1999) 1999GrZM K.Gross - GSI-Nachrichten 1-99, p.5 (1999) 1999HoZV S.Hofmann, F.P.Hessberger, V.Ninov, P.Armbruster, G.Munzenberg, Ch.Stodel, A.Yu.Lavrentev, A.G.Popeko, A.V.Yeremin, S.Saro, M.Leino - GSI 99-1, p.7 (1999) 1999Ni03 V.Ninov, K.E.Gregorich, W.Loveland, A.Ghiorso, D.C.Hoffman, D.M.Lee, H.Nitsche, W.J.Swiatecki, U.W.Kirbach, C.A.Laue, J.L.Adams, J.B.Patin, D.A.Shaughnessy, D.A.Strellis, P.A.Wilk - Phys.Rev.Lett. 83, 1104 (1999); Erratum Phys.Rev.Lett. 89, 039901 (2002); see also 2002GrZZ 1999Og05 Yu.Ts.Oganessian, A.V.Yeremin, G.G.Gulbekian, S.L.Bogomolov, V.I.Chepigin, B.N.Gikal, V.A.Gorshkov, M.G.Itkis, A.P.Kabachenko, V.B.Kutner, A.Yu.Lavrentev, O.N.Malyshev, A.G.Popeko, J.Rohac, R.N.Sagaidak, S.Hofmann, G.Munzenberg, M.Veselsky, S.Saro, N.Iwasa, K.Morita - Eur.Phys.J. A 5, 63 (1999) 19990g07 Yu.Ts.Oganessian, A.V.Yeremin, A.G.Popeko, S.L.Bogomolov, G.V.Buklanov, M.L.Chelnokov, V.I.Chepigin, B.N.Gikal, V.A.Gorshkov, G.G.Gulbekian, M.G.Itkis, A.P.Kabachenko, A.Yu.Lavrentev, O.N.Malyshev, J.Rohac, R.N.Sagaidak, S.Hofmann, S.Saro, G.Giardina, K.Morita - Nature(London) 400, 242 (1999) 19990g10 Yu.Ts.Oganessian, V.K.Utyonkov, Yu.V.Lobanov, F.Sh.Abdullin, A.N.Polyakov, I.V.Shirokovsky, Yu.S.Tsyganov, G.G.Gulbekian, S.L.Bogomolov, B.N.Gikal, A.N.Mezentsev, S.Iliev, V.G.Subbotin, A.M.Sukhov, G.V.Buklanov, K.Subotic, M.G.Itkis, K.J.Moody, J.F.Wild, N.J.Stoyer, M.A.Stoyer, R.W.Lougheed - Phys.Rev.Lett. 83, 3154 (1999) 2000Ar03 P.Armbruster - Eur.Phys.J. A 7, 23 (2000) 2000Be04 M.Bender - Phys.Rev. C61, 031302 (2000) 2000Ei05 R.Eichler, W.Bruchle, R.Dressler, Ch.E.Dullmann, B.Eichler, H.W.Gaggeler, K.E.Gregorich, D.C.Hoffman, S.Hubener, D.T.Jost, U.W.Kirbach, C.A.Laue, V.M.Lavanchy, H.Nitsche, J.B.Patin, D.Piguet, M.Schadel, D.A.Shaughnessy, D.A.Strellis, S.Taut, L.Tobler, Y.S.Tsyganov, A.Turler, A.Vahle, P.A.Wilk, A.B.Yakushev - Nature(London) 407, 63 (2000)2000Fi12 R.B.Firestone, J.Gilat - Nucl.Data Sheets 90, 391 (2000) 2000Ho27 N.E.Holden, D.C.Hoffman - Pure Appl.Chem. 72, 1525 (2000) 2000HoZZ S.Hofmann, F.P.Hessberger, D.Ackermann, P.Armbruster, H.G.Burkhard, B.Kindler, B.Lommel, R.Mann, G.Munzenberg, S.Reshitko, H.J.Schott, A.Yu.Lavrentiev, A.G.Popeko, A.V.Yeremin, S.Antalic, P.Cagarda, S.Saro, M.Leino - GSI 2000-1, p.7 (2000) 20000g05 Yu.Ts.Oganessian, V.K.Utyonkov, Yu.V.Lobanov, F.Sh.Abdullin, A.N.Polyakov, I.V.Shirokovsky, Yu.S.Tsyganov, G.G.Gulbekian, S.L.Bogomolov, B.N.Gikal, A.N.Mezentsev, S.Iliev, V.G.Subbotin, A.M.Sukhov, O.V.Ivanov, G.V.Buklanov, K.Subotic, M.G.Itkis, K.J.Moody, J.F.Wild, N.J.Stoyer, M.A.Stoyer, R.W.Lougheed - Phys.Rev. C62, 041604 (2000)

20000g07	Yu.Ts.Oganessian, V.K.Utyonkov, Yu.V.Lobanov, F.Sh.Abdullin, A.N.Polyakov, I.V.Shirokovsky, Yu.S.Tsyganov,
	G.G.Gulbekian, S.L.Bogomolov, B.N.Gikal, A.N.Mezentsev, S.Iliev, V.G.Subbotin, A.M.Sukhov, O.V.Ivanov, G.V.Buklanov,
	K.Subotic, M.G.Itkis, K.J.Moody, J.F.Wild, N.J.Stoyer, M.A.Stoyer, K.W.Lougheed - Yad.Fiz. 63, No 10, 1769 (2000);
00000 F D	Phys. Atomic Nuclei 63, 1679 (2000)
2000OgZR	Yu.Ts. Oganessian, V.K. Utyonkov, Yu.V. Lobanov, F.Sh. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Yu.S. Tsyganov, S. Iliev,
	V.G.Subbotin, A.M.Sukhov, G.V.Buklanov, A.N.Mezentsev, K.Subotic, U.V.Ivanov - Proc. 4th International Conference
	on Dynamical Aspects of Nuclear Fission, Casta-Papiernicka, Slovak Kepublic, 19-23 Oct. 1998, p.334 (2000)
20000gzs	Yu. Ts. Oganessian $- JINK = 27200 - 259$ (2000)
2000Sc26	K.H.Schmidt – Eur.Phys.J. A 8, 141 (2000)
2000W115	P.A. WIRK, K.E. Gregorich, A. Turler, C.A. Laue, R. Eichler, V. Ninov, J.L. Adams, U.W. Kirbach, M.K. Lane, D.M. Lee,
90007109	J. B. Fatin, D.A. Shaughnessy, D.A. Streins, n. Mische, D.C. Hollman – Flys. Rev. Lett. 63, 2091 (2000)
20002102	V.B.2108420V - Eur.Filys.J. A 6, 61 (2000)
2001AK11	I.A.AKOVAII - NUCL.DATA SNeets 94, 151 (2001) S. M.Smorn, F.B. Hassherger, D.A.Shermerger, S.Artelia, D.Conarda, S.Cmich, P.Kindler, J.Kaianharana, P.Lammel, P.Marn,
2001H006	S.Hofmann, F.P.Hessberger, D.Ackermann, S.Antaite, P.Cagarda, S.Cwiok, B.Kindier, J.Kojounarova, B.Lommei, R.Mann, G.Munzenberg, A.G.Popeko, S.Saro, H.J.Schott, A.V.Yeremin – Eur.Phys.J. A 10, 5 (2001)
2001Ka70	P.J.Rarol, H.Nakanara, B.W.Fetley, E.Vogt - Fure Appl. Chem. 13, 959 (2001) K.Masimata K.Masita I.Tapikata N.Masas B.Vanunga T.Vata K.Vatasi H.Vada T.Suda I.Sugai S.Tabaushi
20011020	F.Morimoto, K.Morita, I.Faninata, N.Iwasa, K.Kanungo, T.Kato, K.Katori, H.Kudo, T.Suda, I.Sugai, S.Fakeuchi, F.Tokanai, Y.Wakasaya, T.Yamaguchi, A.Yeremin, A.Yoneda, A.Yoshida, M.Giurgiu - RIKEN Accelerator Progress Report 2000, p.60 (2001)
20010g01	Yu.Ts.Oganessian, V.K.Utyonkov, Yu.V.Lobanov, F.Sh.Abdullin, A.N.Polyakov, I.V.Shirokovsky, Yu.S.Tsyganov,
	G.G.Gulbekian, S.L.Bogomolov, B.N.Gikal, A.N.Mezentsev, S.Iliev, V.G.Subbotin, A.M.Sukhov, O.V.Ivanov, G.V.Buklanov,
	K.Subotic, M.G.Itkis, K.J.Moody, J.F.Wild, N.J.Stoyer, M.A.Stoyer, R.W.Lougheed, C.A.Laue, Ye.A.Karelin,
	A.N.Tatarinov - Phys.Rev. C63, 011301 (2001)
20010g02	Yu.Ts.Oganessian, M.G.Itkis, A.G.Popeko, V.K.Utyonkov, A.V.Yeremin – Nucl.Phys. A682, 108c (2001)
20010g06	Yu.Ts.Oganessian, V.K.Utyonkov, K.J.Moody – Yad.Fiz. 64, No 8, 1427 (2001); Phys.Atomic Nuclei 64, 1349 (2001)
20010g09	Yu.Ts.Oganessian, V.K.Utyonkov, Yu.V.Lobanov, F.Sh.Abdullin, A.N.Polyakov, I.V.Shirokovsky, Yu.S.Tsyganov,
	A.N.Mezentsev, S.Iliev, V.G.Subbotin, A.M.Sukhov, G.V.Buklanov, K.Subotic, Yu.A.Lazarev, K.J.Moody, J.F.Wild,
	N.J.Stoyer, M.A.Stoyer, R.W.Lougheed, C.A.Laue - Phys.Rev. C64, 064309 (2001)
20010g11	Yu.Ts.Oganessian – Acta Phys.Hung.N.S. 14, 267 (2001)
2001Ya19	A.B.Yakushev, G.V.Buklanov, M.L.Chelnokov, V.I.Chepigin, S.N.Dmitriev, V.A.Gorshkov, S.Hubener, V.Ya.Lebedev, O.N.Malyshev, Yu.Ts.Oganessian, A.G.Popeko, E.A.Sokol, S.N.Timokhin, A.Turler, V.M.Vasko, A.V.Yeremin, I.Zvara – Radiochim.Acta 89, 743 (2001)
2002Ba85	I.M.Band, M.B.Trzhaskovskaya, C.W.Nestor, Jr., P.O.Tikkanen, S.Raman – At.Data Nucl.Data Tables 81, 1 (2002)
2002Du21	Ch.E.Dullmann, W.Bruchle, R.Dressler, K.Eberhardt, B.Eichler, R.Eichler, H.W.Gaggeler, T.N.Ginter, F.Glaus, K.E.Gregorich, D.C.Hoffman, E.Jager, D.T.Jost, U.W.Kirbach, D.M.Lee, H.Nitsche, J.B.Patin, V.Pershina, D.Piguet, Z.Qin, M.Schadel, B.Schausten, E.Schimpf, HJ.Schott, S.Soverna, R.Sudowe, P.Thorle, S.N.Timokhin, N.Trautmann,
	A.Turler, A.Vahle, G.Wirth, A.B.Yakushev, P.M.Zielinski – Nature(London) 418, 859 (2002)
2002Du22	Ch.E.Dullmann, B.Eichler, R.Eichler, H.W.Gaggeler, D.T.Jost, D.Piguet, A.Turler - Nucl.Instrum.Methods Phys.Res.
	A479, 631 (2002)
2002Hi20	D.J.Hinde, M.Dasgupta, A.Mukherjee - Phys.Rev.Lett. 89, 282701 (2002)
2002Ho11	S.Hofmann, F.P.Hessberger, D.Ackermann, G.Munzenberg, S.Antalic, P.Cagarda, B.Kindler, J.Kojouharova, M.Leino,
	B.Lommel, R.Mann, A.G.Popeko, S.Keshitko, S.Saro, J.Uusitalo, A.V.Yeremin - Eur.Phys.J. A 14, 147 (2002)
20021t04	M.G.Itkis, Yu.Ts.Oganessian, V.I.Zagrebaev – Phys.Rev. C65, 044602 (2002)
2002L011	V.M.Lobashev - Prog.Part.Nucl.Phys. 48, 123 (2002) W.Londard V.F. Gonzaldi, J.P. Petrice, C. Parki, P.N.Zichishi, K.Alakhitt, Phys. Rev. C66, 044615 (2002)
2002L015	W.Loveland, K.E.Gregorich, J.B.Patin, D.Peterson, C.Rouki, P.M.Zleiinski, K.Alekiett – Phys.Rev. Cbb, 044b17 (2002)
2002N110	V.Ninov, K.E.Gregorich, W.Loveland, A.Ghlorso, D.C.Hollman, D.M.Lee, H.Nitsche, W.J.Swiatecki, U.W.Kirbach, C.A.Laue, J.L.Adams, J.B.Patin, D.A.Shaughnessy, D.A.Strellis, P.A.Wilk – Phys.Rev.Lett. 89, 039901 (2002); see also 1999Ni03
2002Og03	Yu.Oganessian - Eur.Phys.J. A 13, 135 (2002)
2002Og07	Yu.Ts.Oganessian, A.V.Yeremin, A.V.Belozerov, G.Berek, I.Brida, M.L.Chelnokov, V.I.Chepigin, V.A.Gorshkov, A.P.Kabachenko, S.P.Korotkov, O.N.Malyshev, A.G.Popeko, L.A.Rubinskaya, R.N.Sagaidak, E.M.Smirnova, A.I.Svirikhin – Part and Nucl. Lett. 110, 5 (2002)
2002Og09	Y.T.Oganessian, V.K.Utyonkov, Y.V.Lobanov, F.S.Abdullin, A.N.Polyakov, I.V.Shirokovsky, Yu.S.Tsyganov, G.G.Gulbekian, S.L.Bogomolov, B.N.Gikal, A.N.Mezentsev, S.Iliev, V.G.Subbotin, A.M.Sukhov, O.V.Ivanov, G.V.Buklanov, K. Subbotin, A. Veiren, M.C.Ikie, K. L.Maedr, J.F.Wild, N.J.Staver, M.A.Staver, P.W.Lausherd, C.A.Leur, Fur Phys.
	A. 55 - 501 (2000).
90090~10	A 15, 201 (2002)
20020g10	N. Ogui, A.S. Bouvina – Fuys. Rev. C 00, 001001 (2002)
20020g13	1. Uganessian - rrog. ineor. rnys. (Nyoto), Suppl. 140, 94 (2002) Yu Te Organessian - V. Utanehan, Yu Usaharan, F. Sh Abdullin, A.N. Baluahan, J.V. Shinehanaha, Yu S. Tangaran,
ZUUZUgZA	A.N.Mezentsev, S.Iliev, V.G.Subbotin, A.M.Sukhov, O.V.Ivanov, A.A.Voinov, K.Subotic, V.I.Zagrebaev, M.G.Itkis, K.J.Moody, J.F.Wild, M.A.Stoyer, N.J.Stoyer, C.A.Laue, D.A.Shaughnessy, J.B.Patin, R.W.Lougheed - JINR-D7-2002-287 (2002)
2002Su35	K.Subotic, Yu.Ts.Oganessian, V.K.Utyonkov, Yu.V.Lobanov, F.Sh.Abdullin, A.N.Polyakov, Yu.S.Tsyganov, O.V.Ivanov - Nucl.Instrum.Methods Phys.Res. A481, 71 (2002)
2002Tu05	A.Turler – Eur.Phys.J. A 15, 271 (2002)
2002Za01	V.I.Zagrebaev, Y.Aritomo, M.G.Itkis, Yu.Ts.Oganessian, M.Ohta – Phys.Rev. C65, 014607 (2002)
2002Za16	V.Zagrebaev - Prog.Theor.Phys.(Kyoto), Suppl. 146, 642 (2002)
2002Za19	V.I.Zagrebaev - J.Nucl.Kadiochem.Sci. 3, No 1, 13 (2002)

2003Au02	G.Audi, O.Bersillon, J.Blachot, A.H.Wapstra - Nucl.Phys. A729, 3 (2003)
2003Au03	G.Audi, A.H.Wapstra, C.Thibault – Nucl.Phys. A729, 337 (2003)
2003GaZR	H.W.Gaggeler, A.Turler - The Chemistry of Superheavy Elements, Matthias Schadel, ed., Kluwer Academic Publishers, Dordrecht, p.237 (2003)
2003Ge09	L.S.Geng, H.Toki, J.Meng - Phys.Rev. C 68, 061303 (2003)
2003Gi05	T.N.Ginter, K.E.Gregorich, W.Loveland, D.M.Lee, U.W.Kirbach, R.Sudowe, C.M.Folden III, J.B.Patin, N.Seward, P.A.Wilk, P.M.Zielinski, K.Aleklett, R.Eichler, H.Nitsche, D.C.Hoffman - Phys.Rev. C 67, 064609 (2003); Erratum Phys.Rev. C 68, 029901 (2003)
2003Gr26	K.E.Gregorich, T.N.Ginter, W.Loveland, D.Peterson, J.B.Patin, C.M.Folden III, D.C.Hoffman, D.M.Lee, H.Nitsche, J.P.Omtvedt, L.A.Omtvedt, L.Stavsetra, R.Sudowe, P.A.Wilk, P.M.Zielinski, K.Aleklett – Eur.Phys.J. A 18, 633 (2003)
2003Ka71	P.J.Karol, H.Nakahara, B.W.Petley, E.Vogt - Pure Appl.Chem. 75, 1601 (2003)
$2003{ m Kr}24$	J.V.Kratz - Pure Appl.Chem. 75, 103 (2003)
2003Mu 15	I.Muntian, Z.Patyk, A.Sobiczewski – Yad.Fiz. 66, 1051 (2003); Phys.Atomic Nuclei 66, 1015 (2003)
2003Mu26	I.Muntian, S.Hofmann, Z.Patyk, A.Sobiczewski – Acta Phys.Pol. B34, 2073 (2003)
2003OgZY	Yu.Ts.Oganessian, V.K.Utyonkov, Yu.V.Lobanov, F.Sh.Abdullin, A.N.Polyakov, I.V.Shirokovsky, Yu.S.Tsyganov, G.G.Gulbekian, S.L.Bogomolov, A.N.Mezentsev, S.Iliev, V.G.Subbotin, A.M.Sukhov, A.A.Voinov, G.V.Buklanov, K.Subotic, V.I.Zagrebaev, M.G.Itkis, J.B.Patin, K.J.Moody, J.F.Wild, M.A.Stoyer, N.J.Stoyer, D.A.Shaughnessy, J.M.Kenneally, R.W.Lougheed - JINR-E7-2003-178 (2003)
2003OgZZ	Y.T.Oganessian, V.K.Utyonkov, Y.V.Lobanov, F.S.Abdullin, A.N.Polyakov, I.V.Shirokovsky, Y.S.Tsyganov, A.N.Mezentsev, S.Iliev, V.G.Subbotin, A.M.Sukhov, O.V.Ivanov, A.A.Voinov, K.Subotic, V.I.Zagrebaev, M.G.Itkis, K.J.Moody, J.F.Wild, M.A.Stoyer, N.J.Stoyer, C.A.Laue, D.A.Shaughnessy, J.B.Patin, R.W.Lougheed - UCRL-ID-151619 (2003)
2003Tu05	A.Turler, Ch.E.Dullmann, H.W.Gaggeler, U.W.Kirbach, A.B.Yakushev, M.Schadel, W.Bruchle, R.Dressler, K.Eberhardt, B.Eichler, R.Eichler, T.N.Ginter, F.Glaus, K.E.Gregorich, D.C.Hoffman, E.Jager, D.T.Jost, D.M.Lee, H.Nitsche, J.B.Patin, V.Pershina, D.Piguet, Z.Qin, B.Schausten, E.Schimpf, HJ.Schott, S.Soverna, R.Sudowe, P.Thorle, S.N.Timokhin, N.Trautmann, A.Vahle, G.Wirth, P.M.Zielinski - Eur.Phys.J. A 17, 505 (2003)
2003Ya22	A.B.Yakushev, I.Zvara, Yu.Ts.Oganessian, A.V.Belozerov, S.N.Dmitriev, B.Eichler, S.Hubener, E.A.Sokol, A.Turler, A.V.Yeremin, G.V.Buklanov, M.L.Chelnokov, V.I.Chepigin, V.A.Gorshkov, A.V.Gulyaev, V.Ya.Lebedev, O.N.Malyshev, A.G.Popeko, S.Soverna, Z.Szeglowski, S.N.Timokhin, S.P.Tretyakova, V.M.Vasko, M.G.Itkis - Radiochim.Acta 91, 433 (2003)
2004Ba86	D.N.Basu - J.Phys.(London) G30, B35 (2004)
2004Da11	M.Dasgupta, D.J.Hinde - Nucl.Phys. A734, 148 (2004)
2004DmZZ	S.N.Dmitriev, Yu.Ts.Oganessian, V.K.Utyonkov, S.V.Shishkin, A.V.Yeremin, Yu.V.Lobanov, Yu.S.Tsyganov, V.I.Chepigin, E.A.Sokol, G.K.Vostokin, N.V.Aksenov, M.Hussonnois, M.G.Itkis, H.W.Gaggeler, D.Schumann, H.Bruchertseifer, R.Eichler, D.A.Shaughnessy, P.A.Wilk, J.M.Kenneally, M.A.Stover, J.F.Wild - JINR-E12-2004-157 (2004)
$2004 \mathrm{Dr} \mathrm{ZZ}$	A.Drouart, J.L.Charvet, R.Dayras, L.Nalpas, C.Volant, A.Chbihi, C.E.Rodriguez, J.D.Frankland, M.Morjean, C.Stodel, M.Chevallier, D.Dauvergne, R.Kirsch, P.Lautesse, C.Ray, E.Testa, C.Cohen, D.Jacquet, M.Laget - Priv.Comm. (2004)
2004F008	C.M.Folden III, K.E.Gregorich, Ch.E.Dullmann, H.Mahmud, G.K.Pang, J.M.Schwantes, R.Sudowe, P.M.Zielinski, H.Nitsche, D.C.Hoffman - Phys.Rev.Lett. 93, 212702 (2004)
2004Ga18	H.W.Gaggeler, W.Bruchle, Ch.E.Dullmann, R.Dressler, K.Eberhardt, B.Eichler, R.Eichler, C.M.Folden, T.N.Ginter, F.Glaus, K.E.Gregorich, F.Haenssler, D.C.Hoffman, E.Jager, D.T.Jost, U.W.Kirbach, J.V.Kratz, H.Nitsche, J.B.Patin, V.Pershina, D.Piguet, Z.Qin, U.Rieth, M.Schadel, E.Schimpf, B.Schausten, S.Soverna, R.Sudowe, P.Thorle, N.Trautmann, A.Turler, A.Vahle, P.A.Wilk, G.Wirth, A.B.Yakushev, A.von Zweidorf - Nucl.Phys. A734, 208 (2004)
2004GaZU	Y.K.Gambhir, A.Bhagwat, M.Gupta - Priv.Comm. (to be published in Proc. EXON 2004) (2004)
2004GuZW	M. Gupta, A.Bhagwat, Y.K.Gambhir - Priv.Comm. (to be published in Proc. EXON 2004) (2004)
20041105	M.G.Itkis, S.Aysto, S.Degnini, A.A.Bogacnev, L.Corradi, O.Dorvaux, A.Gadea, G.Giardina, F.Hanappe, F.M.Itkis, M.Jandel, J.Kliman, S.V.Khlebnikov, G.N.Kniajeva, N.A.Kondratiev, E.M.Kozulin, L.Krupa, A.Latina, T.Materna, G.Montagnoli, Yu.Ts.Oganessian, I.V.Pokrovsky, E.V.Prokhorova, N.Rowley, V.A.Rubchenya, A.Ya.Rusanov, R.N.Sagaidak, F.Scarlassara, A.M.Stefanini, L.Stuttge, S.Szilner, M.Trotta, W.H.Trzaska, D.N.Vakhtin, A.M.Vinodkumar, V.M.Vokrosensky, V.I.Zagrebaev, – Nucl.Phys. A734, 136 (2004)
$2004{ m Ma}01$	O.N.Malyshev, A.V.Yeremin, A.G.Popeko, A.V.Belozerov, M.L.Chelnokov, V.I.Chepigin, V.A.Gorshkov, S.Hofmann, M.G.Itkis, A.P.Kabachenko, Yu.Ts.Oganessian, R.N.Sagaidak, S.Saro, A.V.Shutov, A.I.Svirikhin - Nucl.Instrum.Methods
2004MaZS	A Marinov S Gelberg D Kolb G W A Newton $=$ nucl-ex/0411017 11/9/2004 (2004)
2004Mo14	K.Morinat, K.Morimoto, D.Kaji, S.Goto, H.Haba, E.Ideguchi, R.Kanungo, K.Katori, H.Koura, H.Kudo, T.Ohnishi, A.Ozawa, J.C.Peter, T.Suda, K.Sueki, I.Tanihata, F.Tokanai, H.Xu, A.V.Yeremin, A.Yoneda, A.Yoshida, YL.Zhao, T.Zheng - Nucl.Phys. A734, 101 (2004)
$2004{ m Mo}15$	K.Moody, for the Dubna-Livermore Collaboration - Nucl.Phys. A734, 188 (2004)
2 0 0 4Mo 2 6	K.Morita, K.Morimoto, D.Kaji, H.Haba, E.Ideguchi, J.C.Peter, R.Kanungo, K.Katori, H.Koura, H.Kudo, T.Ohnishi, A.Ozawa, T.Suda, K.Sueki, I.Tanihata, H.Xu, A.V.Yeremin, A.Yoneda, A.Yoshida, YL.Zhao, T.Zheng, S.Goto, F.Tokanai - J.Phys.Soc.Jpn, 73, 1738 (2004)
$2004{ m Mo}27$	K.Morimoto, K.Morita, D.Kaji, S.Goto, H.Haba, E.Ideguchi, R.Kanungo, K.Katori, H.Koura, H.Kudo, T.Ohnishi, A.Ozawa, J.C.Peter, T.Suda, K.Sueki, I.Tanihata, F.Tokanai, H.Xu, A.V.Yeremin, A.Yoneda, A.Yoshida, TL.Zhao, T.Zheng -
$2004{ m Mo}40$	Kuci. ruys. A130, 129 (2004) K.Morita, K.Morimoto, D.Kaji, H.Haba, E.Ideguchi, R.Kanungo, K.Katori, H.Koura, H.Kudo, T.Ohnishi, A.Ozawa, T.Suda, K.Sueki, I.Tanihata, H.Xu, A.V.Yeremin, A.Yoneda, A.Yoshida, YL.Zhao. T.Zheng – Eur.Phys.J. A 21, 257 (2004)
2004Mo42	K.Morita, K.Morimoto, D.Kaji, T.Akiyama, S.Goto, H.Haba, E.Ideguchi, R.Kanungo, K.Katori, H.Koura, H.Kudo, T.Ohnishi, A.Ozawa, T.Suda, K.Sueki, H.Xu, T.Yamaguchi, A.Yoneda, A.Yoshida, Y.Zhao - J.Phys.Soc.Jpn. 73, 2593 (2004)

2004Mo43	K.Morita, K.Morimoto, D.Kaji, Yu.L.Zhao, A.Yoshida, T.Suda, A.Yoneda, T.Ohnishi, H.Haba, E.Ideguchi, H.S.Xu, T.Zheng, H.Kudo, K.Sueki, K.Katori, I.Tanihata – Acta Phys.Hung.N.S. 19, 53 (2004)
2004MoZU	K.Morita - Priv.Comm. (to be published in Proc. EXON 2004) (2004)
20040g02	Yu.Ts.Oganessian, A.V.Yeremin, A.G.Popeko, O.N.Malyshev, A.V.Belozerov, G.V.Buklanov, M.L.Chelnokov, V.I.Chepigin,
	v.A.GOISHKOV, S.HOIMAIII, M.G.IKRS, A.I. KAUACHEIKO, D.K.HUIFI, G.MUIZEIDEIG, R.N.Sagaluak, S.Salo, HJ.Schott, P. Starishen, A.V.Schoten, A.I.Schichkin, C.V. Vastakin, Eur. Dhan, I.A.10, 2 (2004)
00040-00	B.Streicher, A. Snutov, A.I.Svirikhin, G.K.VOSTOKIN - EUT. Phys.J. A 19, 3 (2004)
20040g03	G.G.Gulbekian, S.L.Bogomolov, A.N.Mezentsev, S.Iliev, V.G.Subbotin, A.M.Polyakov, I.V.Snirokovsky, Yu.S.Isyganov, V.I.Zagrebaev, M.G.Itkis, J.B.Patin, K.J.Moody, J.F.Wild, M.A.Stoyer, N.J.Stoyer, D.A.Shaughnessy, J.M.Kenneally, R.W.Lougheed - Phys.Rev. C 69, 021601 (2004); Erratum Phys.Rev. C 69, 029902 (2004)
2004Og05	 Yu.Ts.Oganessian, V.K.Utyonkov, Yu.V.Lobanov, F.Sh.Abdullin, A.N.Polyakov, I.V.Shirokovsky, Yu.S.Tsyganov, G.G.Gulbekian, S.L.Bogomolov, B.N.Gikal, A.N.Mezentsev, S.Iliev, V.G.Subbotin, A.M.Sukhov, A.A.Voinov, G.V.Buklanov, K.Subotic, V.I.Zagrebaev, M.G.Itkis, J.B.Patin, K.J.Moody, J.F.Wild, M.A.Stoyer, N.J.Stoyer, D.A.Shaughnessy, J.M.Kenneally, R.W.Lougheed - Nucl.Phys. A734, 109 (2004)
20040g06	Yu.Ts.Oganessian, A.V.Yeremin, A.G.Popeko, O.N.Malyshev, A.V.Belozerov, G.Buklanov, M.L.Chelnokov, V.I.Chepigin,
	V.A.Gorshkov, S.Hofmann, M.G.Itkis, A.P.Kabachenko, B.Kindler, G.Munzenberg, R.N.Sagaidak, S.Saro, HJ.Schott, B.Streicher, A.V.Shutov, A.I.Svirikhin, G.K.Vostokin – Nucl.Phys. A734, 196 (2004)
20040g07	Yu.Ts.Oganessian, V.K.Utyonkov, Yu.V.Lobanov, F.Sh.Abdullin, A.N.Polyakov, I.V.Shirokovsky, Yu.S.Tsyganov,
-	G.G.Gulbekian, S.L.Bogomolov, B.N.Gikal, A.N.Mezentsev, S.Iliev, V.G.Subbotin, A.M.Sukhov, A.A.Voinov, G.V.Buklanov,
	K.Subotic, V.I.Zagrebaev, M.G.Itkis, J.B.Patin, K.J.Moody, J.F.Wild, M.A.Stoyer, N.J.Stoyer, D.A.Shaughnessy,
	J.M.Kenneally, R.W.Lougheed - Phys.Rev. C 69, 054607 (2004)
20040g10	Yu.Ts.Oganessian, V.K.Utyonkov, Yu.V.Lobanov, F.Sh.Abdullin, A.N.Polyakov, I.V.Shirokovsky, Yu.S.Tsyganov,
	G.G.Gulbekian, S.L.Bogomolov, B.N.Gikal, A.N.Mezentsev, S.Iliev, V.G.Subbotin, A.M.Sukhov, A.A.Voinov, G.V.Buklanov,
	K.Subotic, V.I.Zagrebaev, M.G.Itkis, K.J.Moody, J.F.Wild, M.A.Stoyer, N.J.Stoyer, D.A.Shaughnessy, J.M.Kenneally,
	J.B.Patin, R.W.Lougheed - Prog.Theor.Phys.(Kyoto), Suppl. 154, 406 (2004)
$2004 \mathrm{Og} 12$	Yu.Ts.Oganessian, V.K.Utyonkov, Yu.V.Lobanov, F.Sh.Abdullin, A.N.Polyakov, I.V.Shirokovsky, Yu.S.Tsyganov, G.G.Gulbekian, S.L.Bogomolov, B.N.Gikal, A.N.Mezentsev, S.Iliev, V.G.Subbotin, A.M.Sukhov, A.A.Voinov, G.V.Buklanov,
	K.Subotic, V.I.Zagrebaev, M.G.Itkis, J.B.Patin, K.J.Moody, J.F.Wild, M.A.Stoyer, N.J.Stoyer, D.A.Shaughnessy, J.M.Kenneally, P.A.Wilk, R.W.Lougheed, R.I.Ilkaev, S.P.Vesnovskii - Phys.Rev. C 70, 064609 (2004); Erratum
20040~77	rnys.nev. U 71, 02302 (2000) Yr Te Generacier V V Utanshan Yr V Laberen F. Ch Abdullin A. N. Delashen I. V. Shinshenshu, Yr S. Tengeren
20040g22	I U.I.S. Oganessian, v.R. Otyonkov, IU.V. Lobanov, F. S. LADUMIII, A. N. Folyakov, I.V. Snirokovsky, IU.S. Isyganov, G.G. Gulhakian, S.I. Bagamalay, P.N. Gikal, A.N. Magantsay, S. Ulay, V.G. Subhatin, A.M. Subhay, A.A. Vainay, G.V. Buklanov,
	K. Subatic V. J. Zagrabay, M. Citkis, J. R. Patin, K. J. Mondy, J. F. Wild, M. A. Shukarov, N. A. Shukarov, D. A. Shanghnassy
	R. Suborte, V.I.Zagiebaev, M.G.Itkis, J.B.Iatin, K.J.Moudy, J.F.Wild, M.A.Kotoyer, N.J.Stoyer, D.A.Shaughnessy, I.M.Kannally, P.A.Will, R.W.Langhad, R.F.Illbauv, S.P.Vaenavskii, - HNR-F7, 2004-180 (2004)
2004Pe06	9. M. Reinearity, T. A. Witk, R. W. Lougheeu, R. Hinkaev, St. Vesnovski – 51(Ref. 2004–2004–2004–2004) V. Parshina, T. Rasting, C. Sarna-Tudoran, J. Anton, B. Fricka – Nucl. Phys. A 724, 200 (2004)
2004PrZW	E.V. Prokhorova, A.A. Bogachev, I.M. Itkis, M.G. Itkis, M.Jandel, J.Kliman, G.N. Kniajeva, N.A. Kondratiev, E.M. Kozulin,
	L.Krupa, Yu.Ts.Oganessian, I.V.Pokrovsky, A.Ya.Rusanov, V.M.Voskressenski, V.Bouchat, F.Hanappe, T.Materna,
	O.Dorvaux, N.Rowley, C.Schmitt, L.Stuttge, G.Giardina - Priv.Comm. (to be published in Proc. EXON 2004) (2004)
2004Ro03	G.Royer, K.Zbiri, C.Bonilla - Nucl.Phys. A730, 355 (2004)
2004Vo24	A.von Zweidorf, R.Angert, W.Bruchle, S.Burger, K.Eberhardt, R.Eichler, H.Hummrich, E.Jager, HO.Kling, J.V.Kratz,
	B.Kuczewski, G.Langrock, M.Mendel, U.Rieth, M.Schadel, B.Schausten, E.Schimpf, P.Thorle, N.Trautmann, K.Tsukada, N.Wiehl, G.Wirth – Radiochim.Acta 92, 855 (2004)
2004Ya09	A.B.Yakushev, I.Zvara, Yu.Ts.Oganessian, A.V.Belozerov, S.N.Dmitriev, B.Eichler, S.Hubener, E.A.Sokol, A.Turler,
	A.V.Yeremin, G.V.Buklanov, M.L.Chelnokov, V.I.Chepigin, V.A.Gorshkov, A.V.Gulyaev, V.Ya.Lebedev, O.N.Malyshev,
	A.G.Popeko, S.Soverna, Z.Szeglowski, S.N.Timokhin, S.P.Tretyakova, V.M.Vasko, M.G.Itkis - Nucl.Phys. A734, 204 (2004)
2005GaZX	Y.K.Gambhir, A.Bhagwat, M.Gupta - nucl-th/0505067 (2005)
2005 GaZY	Y.K.Gambhir, A.Bhagwat, M.Gupta - Priv.Comm. (2005)
2005Gr19	K.E.Gregorich, W.Loveland, D.Peterson, P.M.Zielinski, S.L.Nelson, Y.H.Chung, Ch.E.Dullmann, C.M.Folden III,
	K.Aleklett, R.Eichler, D.C.Hoffman, J.P.Omtvedt, G.K.Pang, J.M.Schwantes, S.Soverna, P.Sprunger, R.Sudowe,
	R.E.Wilson, H.Nitsche – Phys.Rev. C 72, 014605 (2005)
2005KiZW	T.Kibedi, T.W.Burrows, M.B.Trzhaskovskaya, C.W.Nestor, Jr Proc.Intern.Conf.Nuclear Data for Science and
	Technology, Santa Fe, New Mexico, 26 September-1 October, 2004, R.C.Haight, M.B.Chadwick, T.Kawano, P.Talou, Eds.,
	Vol.1, p. 268 (2005); AIP Conf.Proc. 769 (2005)

2005ScZZ M.Schaedel - Priv.Comm. (2005)