skip navigation links 
 
 Search Options 
Index | Site Map | FAQ | Facility Info | Reading Rm | New | Help | Glossary | Contact Us blue spacer  
secondary page banner Return to NRC Home Page
Fuel Cycle Facilities
What We Regulate
Stages of the Nuclear Fuel Cycle
Uranium Milling
Uranium Conversion
Uranium Enrichment
Fuel Fabrication
How We Regulate
Regulations, Guidance, and Communications
Licensing
New Fuel Facility Licensing
Oversight
Public Involvement in the Fuel Cycle Program
Related Links
Location of Uranium Milling Facilities
Location of Fuel Cycle Facilities
Producing Nuclear Fuel (NUREG/BR-0280)
Quick Links
Materials Quick Links

Uranium Conversion

After the yellowcake is produced at the mill, the next step is conversion into pure uranium hexafluoride (UF6) gas suitable for use in enrichment operations. During this conversion, impurities are removed and the uranium is combined with fluorine to create the UF6 gas. The UF6 is then pressurized and cooled to a liquid. In its liquid state it is drained into 14-ton cylinders where it solidifies after cooling for approximately five days. The UF6 cyclinder, in the solid form, is then shipped to an enrichment plant. UF6 is the only uranium compound that exists as a gas at a suitable temperature.

One conversion plant is operating in the United States: Honeywell International Inc. (Docket No. 40-3392) in Metropolis, Illinois. Canada, France, United Kingdom, China, and Russia also have conversion plants.

As with mining and milling, the primary risks associated with conversion are chemical and radiological. Strong acids and alkalis are used in the conversion process, which involves converting the yellowcake (uranium oxide) powder to very soluble forms, leading to possible inhalation of uranium. In addition, conversion produces extremely corrosive chemicals that could cause fire and explosion hazards.



Privacy Policy | Site Disclaimer
Tuesday, February 13, 2007