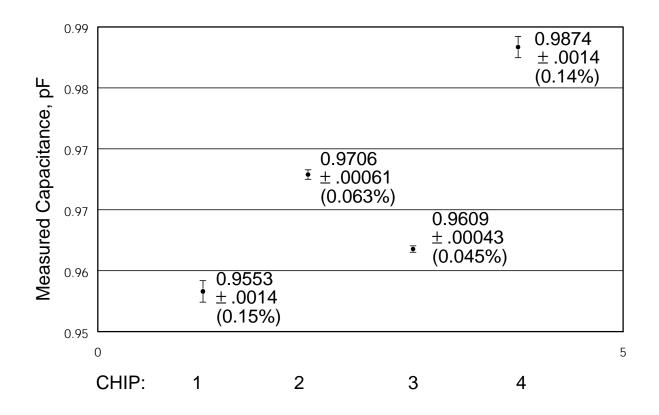
Absolute Accuracy: 3% uncalibrated, 1% with single calibration

Applications:


- Study process variation (within-chip, chip-to-chip, run-to-run) of onchip capacitors
- Measure on-chip calibration capacitors
- Measure interconnect parasitics

Example:

Array of 8 on-chip capacitors Nominal value: **0.959 pF**

Measured value (ave. of 32 caps. on 4 chips): 0.963 pF

On-chip variation (one s): **0.10**% Chip-to-chip variation: **1.50**%

Precision Capacitance Measurement Circuit

The left side of $C_{unknown}$ is alternately connected to V_{ref} and ground at a frequency f_{ck} . The charging current I_{chg} through M1 is measured.

• Capacitance:
$$C = \frac{I_{chg}}{(V_{ref} + V_{\epsilon}) \cdot f_{ck}}$$

• Error:
$$\frac{\Delta C}{C} = \frac{V_{\varepsilon}}{V_{ref}} \approx \frac{V_{DD}}{V_{ref}G_A}$$
; (GA = gain of comparator)

• Insensitive to:

- comparator offset voltage
- parasitic capacitance
- switch charge injection