# **CMOS Preamp/Shaper for STAR SVT**

P. O'Connor, BNL

- G. Gramegna, Politecnico di Bari
- S. Hart, Wayne State Univ.

## <u>Goal:</u>

A CMOS preamp/shaper for particle tracking using Silicon Drift Detectors

| $C_{det}$         | 0.8 pF                   |
|-------------------|--------------------------|
| ts                | 50 nsec unipolar         |
| ENC               | < 250 e <sup>-</sup> rms |
| P <sub>diss</sub> | < 5 mW                   |
| I <sub>leak</sub> | to 100 nA                |

# **INITIAL DESIGN STUDY AUG. - SEPT. 1994**

## **STRATEGIES**

- Series noise: capacitive match
- Parallel noise:

No high-value resistor available in CMOS process

=> Use MOS feedback resistor (PMOS transistor in triode region)

#### > Self-bias circuit for feedback MOSFET gate:



- high stability, low capacitance in feedback MOSFET without critical adjustments

- RF ~ 5 MΩ

#### > Adaptive pole-zero cancellation



- increases linearity

- adjusts to high-leakage, high-signal conditions

#### > Power dissipation

- use minimum current needed for speed and noise
- Class AB output stage

# FABRICATION HISTORY

First prototype May 1995

- Orbit 2.0 micron process
- 6 circuit variations
- Verify self-bias and pole-zero schemes
- Study interface to detector
- Results:
  - Feedback resistor scheme works well
  - Low noise
  - Handles 1.5uA leakage current









# 50 ns

#### PREAMP WAVEFORMS

#### PREAMP/SHAPER WAVEFORMS

## Second prototype Aug. 1995

Convert 6-channel design to HP 1.2 micron technology

Same behavior as first run except lower noise



## Third prototype Sept. 1995

- 16 channel design
- added driver stage
- serially-controlled calibration and channel disable
- shared bias over 16 channels
- ESD protection experiment
- channel pitch 167 microns
- 3 power supplies (+3.7, +2.5, -2.5)
- RESULTS

Noise, gain, waveform as before

Power dissipation 11.5 mW/chan

Crosstalk 0.8% (nearest neighbor); 0.3% (others)

Gain variation 0.6% channel-to-channel

Studied power reduction strategies

 developed carrier board, test box for IC testing

## Fourth (Mar. 1996) and fifth (May 1996) prototypes

 16 channel version matched to bipolar PASA footprint

- Power decreased to 6.5 mW/channel
- 2 supplies +3.7V, -2.5V
- Deleted serially-controlled calibration and channel disable
- added gain control, DC sense mode, high drive capability
- layout error in original submission

## IC37 Results: Gain, Noise, and Offset Uniformity



# **CMOS PASA Compared to Bipolar PASA**

- 1. Higher RF, no IB
  - lower parallel noise, ENC0
- 2. Higher gm in input transistor
  - lower "noise slope" dENC/dCdet
  - higher Pdiss
- 3. Larger linear dynamic range
- 4. No external components needed
- 5. All channels testable using internal calibration capacitors
- 6. Lower development cost and faster turnaround

# **Status and Plans**

## Chips available

- 4 tested carrier boards w/pins - for test on PASA/SCA board
- 2 tested carrier boards w/o pins - for SDD/PASA tests
- 11 untested bare die
  - for hybrid tests

## No further design for STAR

## No further chip production