

Front-End ASIC for a GEM Based Time Projection Chamber

<u>G. De Geronimo</u>, J. Fried, P. O'Connor, G. Smith, V. Radeka, B. Yu Instrumentation Division, Brookhaven National Laboratory, Upton, NY

C. Thorn

LEGS Group, Physics Department, Brookhaven National Laboratory, Upton, NY

Laser Electron Gamma Source : Time Projection Chamber (TPC)

Interpolated Zigzag Pad Readout for Double Gas Electron Multiplier (GEM)

pitch 2mm resolution 200µm rms

Front-End Electronics – Specifications

Tracking Measurement

- Low-rate low-multiplicity
- Energy triggered pad
- Energy neighbor pads (centroid)
- Timing of triggered pad (z)

Specifications

- ENC < 500e⁻ rms (GEM gain 500)
- Timing < 20ns rms (drift time 5µs)
- Preamplifier/shaper/BLH
- Adjustable gain \approx 17-32 mV/fC
- <u>Peak-detector</u>
- Neighbor channel/chip enable
- Timing-detector (TAC)
- Channel masking
- Calibration
- On-chip buffers
- Token/flag readout

Simulated Pad Capacitance

gap [µm]	C _{BOT}	C _{TOP}	C _X	C _{XY}	С _{тот} [fF]
50	967	37	82	1742	4652
75	983	37	68	1457	4070
100	998	38	60	1292	3725

Front-End Electronics – Preamplifier Power

energy resolution < 250 rms electrons (600ns peaking time, 5pF)</p>

ASIC Readout Channel - Block Diagram

INPUT n-MOSFET

- optimized for operating region
- ENC<250 rms electrons
- NIM A480, p.713

CONTINUOUS RESET

- feedback MOSFET
- self adaptive
- low noise
- fully compensated
- NIM A421, p.322
- TNS 47, p.1458

SHAPER

- amplifier with passive feedback
- dual stage multiple feedback
- 2nd order, 600ns peaking time
- adjustable channel gain (3-bit)

BASELINE STABILIZER (BLH)

- band-gap referenced
- low-frequency feedback
- slew-rate limited follower
- high dc stability < 1mV
- low channel dispersion < 4mV
- TNS 47, p.818

PEAK DETECTOR

- two-phase configuration
- offset error cancellation
- high absolute accuracy < 0.2%
- NIM A484, p.544

TIMING DETECTOR

- time-to-amplitude converter
- internal or external ramp
- two-phase configuration
- timing resolution < 20ns rms

≈ 350 μW

$\approx 900 \ \mu W$

Continuous Reset – Single Stage

Continuous Reset – Dual Stage

- charge gain N1xN2
- high linearity
- low noise
- self-adaptive

 $Rs = 200k\Omega$, $N1xN2 = 16x4 \rightarrow I_{eq} \approx 60pA$

low-voltage \rightarrow low dynamic range

Continuous Reset – Low Voltage Approach

Continuous Reset – Low Voltage Approach – Dual Stage

Peak Detector – Classical CMOS Configuration

- + detects and holds peak without external trigger
- + provides accurate **timing** signal (peak found)
- low accuracy (op-amp offset, CMRR)
- poor drive capability

Peak Detector - Two-Phase Configuration

Write Phase

- sub-threshold : track mode
- over-threshold : peak-detect mode
 - like *classical* configuration

Read Phase

- self-switching (peak found, timing)
- op-amp re-used as buffer
- op-amp errors canceled
- enables rail-to-rail sensing
- high drive capability

Peak Detector - Two-Phase Configuration

Token Passing with Flag Readout

Readout – data on chip

Readout – empty chip

Photo by Anand Kandasamy

Summary

- 32-channel front-end ASIC for TPC
- Energy measurement
- Timing measurement
- Neighbor channel enabling
- High-linearity low-voltage continuous reset
- High-accuracy two-phase peak detector
- Token passing with flag sparsifying readout

Acknowledgment

•Anand Kandasamy and John Triolo – Instrum. Div., BNL

•DOE