

NSLS Annual Users' Meeting May 20-22, 2002

The New Detector for EXAFS at NSLS

Anthony Kuczewski, Peter Siddons - <u>NSLS</u>, BNL

Rolf Beuttenmuller, Zheng Li - Semiconductor Laboratory, Instrum. Div., BNL

Gianluigi De Geronimo, Paul O'Connor - Microelectronics, Instrum. Div., BNL

Si sensor, interconnect, front-end & processing electronics, readout electronics, assembly

Outline

- Si sensor
 o segmentation
- Interconnect
- Front-end & processing electronics (ASIC)
 reset, shaping, stabilization, layout
- Readout electronics
- First experimental results

Typical fluorescence EXAFS measurement geometry

Resolution vs Rate

$$\mathsf{FWHM} = \sqrt{\mathsf{A}_1(\mathbf{C}_p + \mathbf{C}_i) \cdot \frac{\mathsf{rate}}{f_{\mathsf{T}}}} + \mathsf{A}_2 \cdot \frac{\mathsf{leak}}{\mathsf{rate}}$$

Resolution vs rate

Optimum segmentation

- front-end electronics (channel count, power)
- fringe capacitance (component of C_p)
- parasitic C_i
- charge sharing (≈20µm/side) and trapping (gap/side)

2nd order, empirical approach

Beam through sample sensor

Si n-type high resistivity wafer 250 μ m thick, N = 384 p⁺ \approx 1mm \times 1mm pixels, gaps 10 μ m, 30 μ m, 50 μ m

Interconnecting pixel to front-end electronics

- + interconnect parasitic
- + bond length
- fringe capacitance
- charge sharing and trapping

- + bond length
- interconnect parasitic
- dielectric losses

 $\begin{array}{l} 6mm \times 10 \mu m, \ Si_3N_4 \ (\epsilon_r = 6.5, \textit{tan}(\delta) = 0.001), \ 3\mu m, \ C_i \approx 1.2 pF \\ \delta FWHM_{loss} = 8.5/q \cdot \sqrt{2kTC_p \ tan(\delta)} \approx 170 eV \end{array}$

- + interconnect parasitic
- constraint on ASIC area and layout
- fluorescence from Pb (Sn/Pb/Ag)
- illumination from segmented side

- + dielectric losses
- ± interconnect parasitic
- bond length

Detector-ASIC photo

quadrant

Front-end channel overview

Technology CMOS 0.35µm 3.3V 2P4M

Charge preamplifier

Continuous reset

- current gain of 24
- fully linear
- self-adapts to leakage current
- minimum noise contribution

Continuous reset – dual stage

 $Rs\approx 200 k\Omega\,\rightarrow\,I_{eq}\approx 0.75 pA$

Shaping

Baseline stabilization

Layout (CMOS 3.3V 2P4M 0.35µm)

 3×24 -bit COUNTERS - 690µm

ASIC overview

CMOS 0.35 μ m 3.3V 2P4M 180,000 MOSFETs, size 3.6 \times 6.3 mm² 8mW / channel

- 32 readout channels
 - o self adaptable continuous reset
 - o high order shaper
 - settable peaking time (0.5µs, 1µs, 2µs, 4µs)
 - settable gain (750mV/fC, 1500mV/fC)
 - band-gap referenced output baseline
 - output baseline stabilization (BLH)
 - o 1 threshold and 2 window discriminators
 - \circ 4× 6-bit DACs for fine window adjustments
 - o 3× 24-bit counters
 - o test mode
 - o analog output monitor
 - o pixel leakage current monitor
- Serial Peripheral Interface (SPI)
 - o global settings
 - \circ monitors enabling
 - o test enabling
 - \circ channels masking
 - o DACs setting
 - o counters readout

ASIC photo

32 channels, $3.6 \times 6.3 \text{ mm}^2$

Readout

Readout interface

Automatic threshold equalization

before correction

after correction

Current detector

head - preamplifiers

 \approx 100 channels, > 350 eV, < 1 MHz

rack – shapers ...

New detector

 ≈ 400 channels, < 300 eV, > 10MHz

Next steps

- Test at high rate (in excess of 50kHz / pixel)
- Gap selection (10µm, 30µm, 50µm)
- ASIC optimization
- Test of four-quadrant version
- Peltier cooler implementation

Acknowledgment

DOE (support) Veljko Radeka, Pavel Rehak, Graham Smith (discussion) John Triolo (technical)