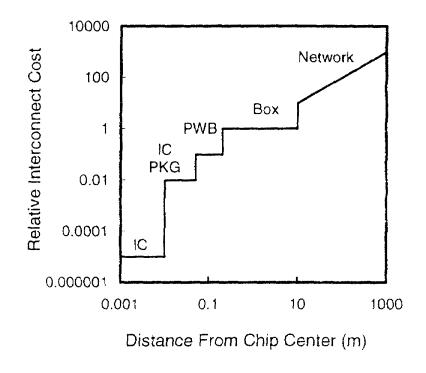
Monolithic Electronics for Multichannel Detectors

Paul O'Connor, Brookhaven National Laboratory

Workshop on position-sensitive Neutron Detectors, June 28 – 30, 2001

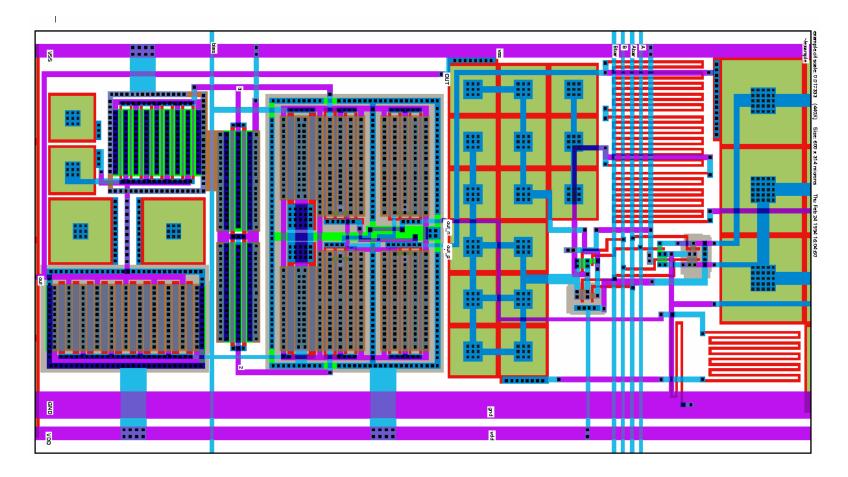

Outline

- Monolithic circuits for scientific research
- Technology selection and access
- Preamplifier and shaping amplifier design
- Impact of scaling
- BNL preamp/shaper examples
- Sampling systems
- Peak detection and derandomization
- Summary and future directions

Monolithic Front Ends

- Can be efficiently mass-produced with excellent economy of scale:
 - E.g., maskset + 10 wafers ~ \$100K, 500 chips/wafer
 - Additional wafer ~ \$5K
 - Incremental cost ~ \$10/chip
 - Chip may have 16 128 channels
- Can be located close to dense detector electrode arrays
 - pixels, micropattern & segmented cathode designs
- Can combine functions on single chip, replacing PCB/hybrid/cable connections with lower cost on-chip connection
- Can reduce power*

Cost of Interconnect


ISSCC 2000

Custom Monolithics – technology options

- Bipolar
 - Workhorse of "old" analog
 - Available from a handful of vendors
 - Speed/power advantage over CMOS (diminishing)
 - Low integration density
- Standard CMOS
 - Suitable for most analog designs
 - Best for combining analog and digital
 - Highest integration density
 - Widely available
 - Short life cycle (3 years/generation)
- BiCMOS
 - Complex process, viability uncertain

- Silicon on insulator (SOI)
 - Modest speed advantage for digital
 - Drawbacks for analog
- SiGe
 - Complexity equivalent to BiCMOS
 - Extremely fast bipolar device plus submicorn CMOS
 - Availability increasing
- GaAs
 - Unsuitable for wideband analog

Analog CMOS layout

Access to Monolithic Processes

Multiproject (shared wafer) foundry runs

In the U.S.

MOSIS service <u>www.mosis.org</u>

Europe

Europractice <u>www.imec.be/europractice</u>

Design tools

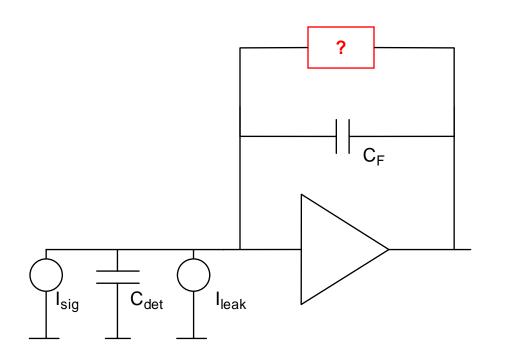
Public domain

MAGIC

bach.ece.jhu.edu/~tim/programs/ magic/magic7.html

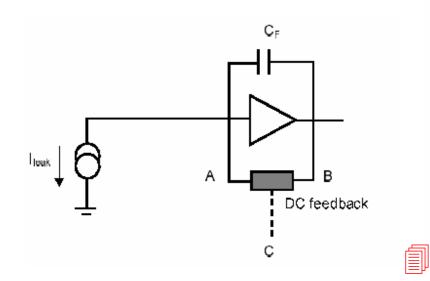
vlsi.cornell.edu/magic

CommercialCadencewww.cadence.comMentorwww.mentor.comTannerwww.tanner.com

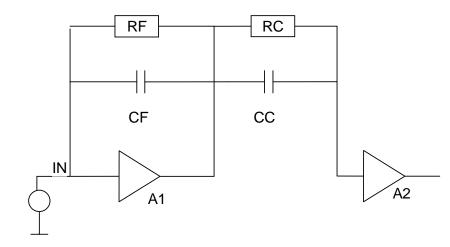

Preamplifier Design: Front Transistor Optimization

- For MOSFETs, the input device must be properly dimensioned to match C_{det}:
 - 1/f noise minimized for $C_{gs} = C_{det}$
 - Series thermal noise minimized for $C_{gs} < C_{det}, \mbox{ exact value depends on } C_{det}/I_d$
- For Bipolar transistors, must choose the collector current
 - Depends on C_{det}/t_m
- MOS will have superior noise when

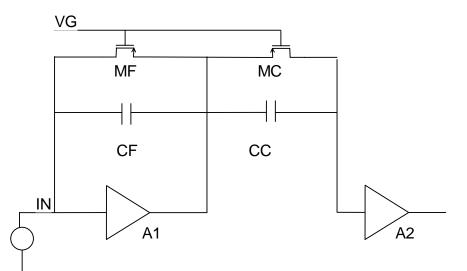
-
$$t_m / \tau_{el} > \beta_{BJT}$$


- $kT/K_F > \beta_{BJT}$
- Bipolar favored for short shaping, low power.

Preamp Reset – Requirements


- all charge preamplifiers need DC feedback element to discharge C_F
- usually, a resistor in the MΩ GΩ range is used
- monolithic processes don't have high value resistors
- we need a circuit that behaves like a high resistor and is also
 - insensitive to process, temperature, and supply variation
 - low capacitance
 - lowest possible noise
 - linear

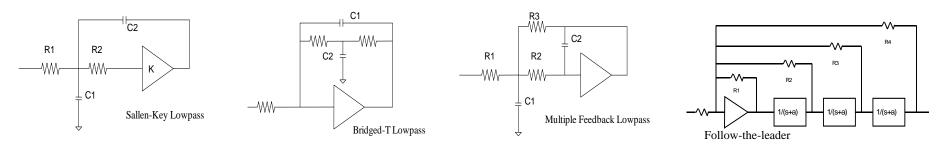
Preamp Reset – Configurations



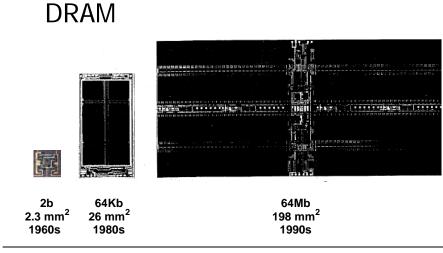
Feedback type	Circuit	R _{eff} (I _{leak} =0)	Advantages/ Disadvantages
Physical resistor	а - ₩-в	R	+ simple - hard to make large R - parasitic C - doesn't adjust to I _{leak}
MOS switch	A B C(pulse)	$\frac{1}{C_F \cdot f_{reset}}$	+ simple - dead time - switch noise
Triode MOS	A B C Bias	$\frac{1}{\beta \cdot (V_{gs} - V_T)}$	+ compact + adjusts to I _{leak} - nonlinear
Feedback g _m	A gm B C (Vref)	$\frac{1}{g_m}$	+ adjusts to I _{leak} - complex - excess noise - nonlinear
Attenuat- ing cur- rent mirror	A A _I <<1 B	$\frac{R}{A_i}$	+ aux. output for PZC - doesn't adjust to I _{leak}

Nonlinear Pole-zero Compensation

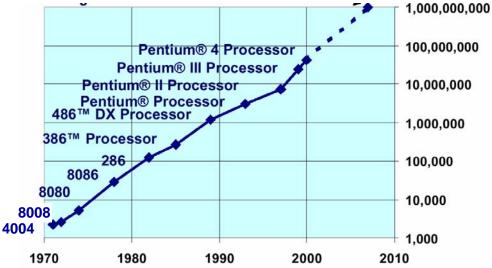
- <u>Classical</u>
 - $RF \cdot CF = RC \cdot CC$
 - Zero created by RC,CC cancels pole formed by RF, CF


G. Gramegna, P. O'Connor, P. Rehak, S. Hart, "CMOS preamplifier for low-capacitance detectors", NIM-A 390, May 1997, 241 – 250.

- IC Version
 - CC = N · CF
 - $(W/L)_{MC} = N \cdot (W/L)_{MF}$
 - Zero created by MC, CC cancels pole formed by MF, CF
 - Rely on good matching characteristics of CMOS FETs and capacitors

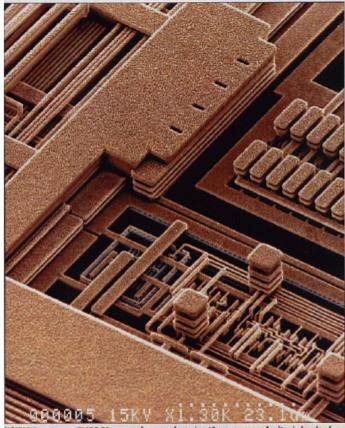

Pulse Shaping with Monolithic Circuits

- Passive components in monolithic technology are non-ideal:
 - Tolerance typically $\pm 20\%$ from lot to lot.
 - Values restricted to C < 50 pF, R < 100K.
 - Difficulty in setting accurate filter time constants
- Low supply voltage in submicron CMOS (1.8 3.3V)
 - Restricts dynamic range
- Feedback circuits give the most stable and precise shaping
 - But require more power than other approaches


Filter topologies

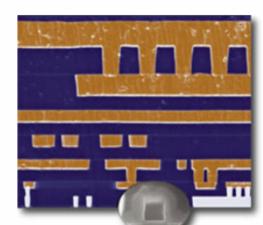
CMOS Scaling

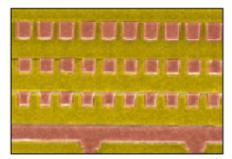
Intel microprocessor



- Driven by digital VLSI circuit needs
- Goals: in each generation
 - 2X increase in density
 - 1.5X increase in speed
 - Control short channel effects
 - Maintain reliability level of < 1 failure in 10⁷ chip-hours

CMOS Technology Roadmap


Year	85	88	91	94	97	00	02	04	07	10	13
Min. feature size [μm]	2	1.5	1.0	0.7	0.5	0.35	0.25	0.18	0.13	0.10	0.07
Gate oxide [nm]	44	33	22	16	11	7.7	5.5	4.0	2.9	2.2	1.6
Power supply [V]	5	5	5	5	5/3.3	3.3	2.5	1.8	1.2	1	.7
Threshold voltage [V]	1.0	0.9	0.8	0.7	0.6	0.5	0.45	0.4	0.3	0.3	0.3


IBM Cu-11 Process (Blue Logic)

5

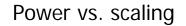
 IBM Corp.'s new CMOS 75 process for manufacturing ICs uses copper for its six levels of interconnections, and has effective transistor channel-lengths of only 0.12 µm. It is the first commercial fabrication process to use copper wires [see "The Damascus connection," p. 25].

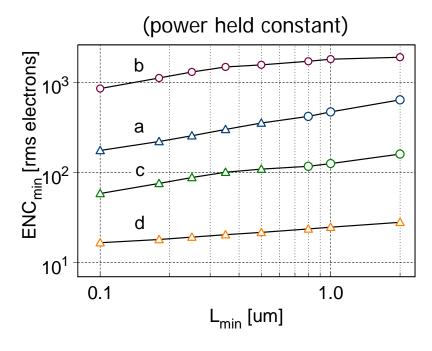
Section showing Cu-11 copper and low-k dielectric process.

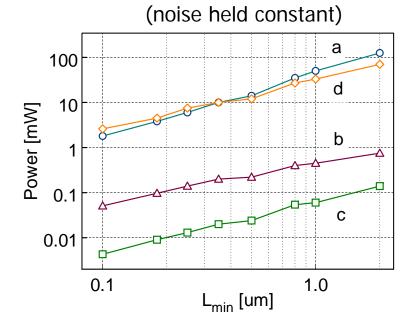
- $L_{eff} = 0.08 \ \mu m$, $L_{drawn} = 0.11 \ \mu m$
- Up to 40 million wireable gates
- Trench capacitor embedded DRAM with up to 16 Mb per macro
- Dense high-performance,comp lable SRAMs
- Power supply:1.2 V with 1.5 V opt on
- I/O power supply:3.3 V(dual oxide option)/
- 2.5 V(dual oxide option)/1.8 V/1.5 V
- Power dissipation of 0.009 µW/MHz/gate
- Gate delays of 27 picoseconds (2-input NAND gate)
- Seven levels of copper for global routing
- Low-k dielectric for high performance and reduced power and noise
- HyperBGA (flip chip):2577 total leads

CMOS scaling and charge amplifier performance

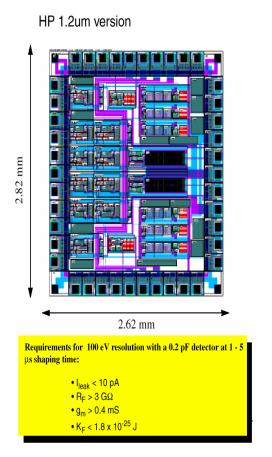
- Fundamental noise mechanisms
 - so far, no dramatic changes with scaling
- Noise
 - slight improvement with scaling
 - higher device f_T reduces series thermal noise
- Weak- and moderate inversion operation more common
 - need different matching to detector capacitance.
- Reduced supply voltage
 - difficult to get high dynamic range
- Many difficulties with "end of the roadmap" devices

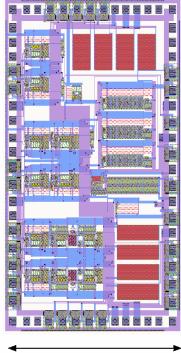

P. O'Connor, G. DeGeronimo, "Charge amplifiers in scaled CMOS", NIM-A accepted for publication


Impact of technology scaling on charge amplifier performance

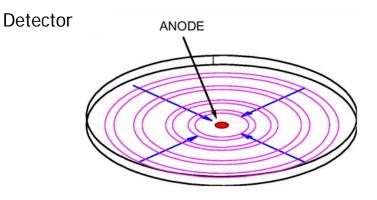

4 detector scenarios for scaling study

$\mathbf{C}_{_{\mathrm{det}}}$	t	Р	I.	Detector	Typical Application
30	75	10	.001	Wire Chamber	Tracking, Imaging
15	25	0.2	10	Si Strip	Tracking
0.3	25	0.02	1	Si Pixel	Tracking
3	2500 - 500*	10	0.01	Semiconductor	Spectroscopy
pF	ns	mW	nA	-	-
	30 15 0.3 3	30 75 15 25 0.3 25 3 2500 - 500*	30 75 10 15 25 0.2 0.3 25 0.02 3 2500 - 500* 10	30 75 10 .001 15 25 0.2 10 0.3 25 0.02 1 3 2500 - 500* 10 0.01	Image: Note of the second se

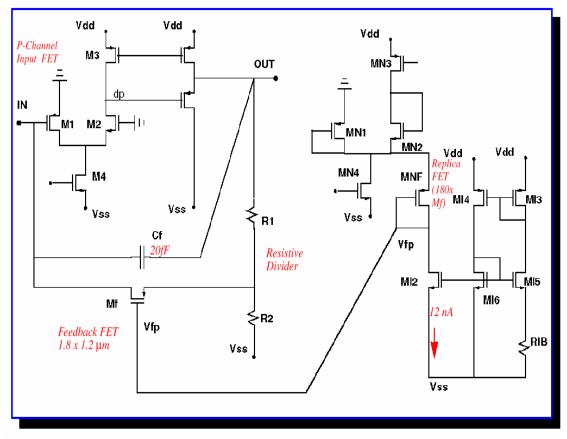

Noise vs. scaling



Drift Detector Preamplifier



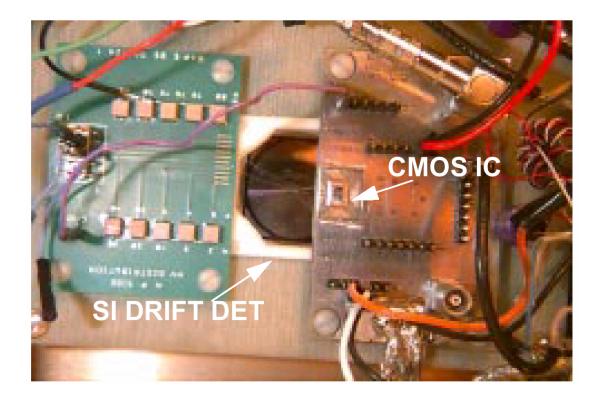
AMS 1.2um version



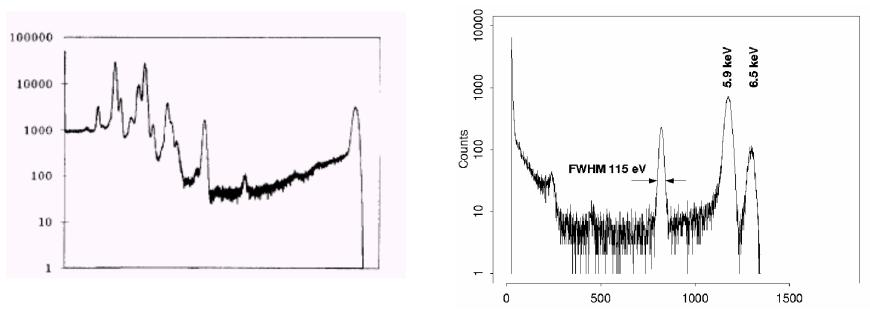
2.56 mm

- Used with ultra-low capacitance silicon drift detector, C_{det} < 0.3 pF
- Preamp only, used with external shaper
- Purpose: explore lowest noise possible with CMOS
- Reset system: MOS transistor with special bias circuit to achieve stable, > 100 GΩ equivalent resistance

Drift detector preamplifier – simplified schematic

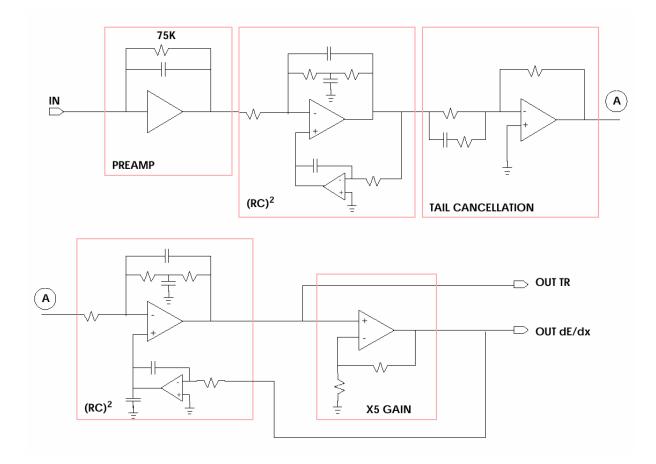


Preamplifier



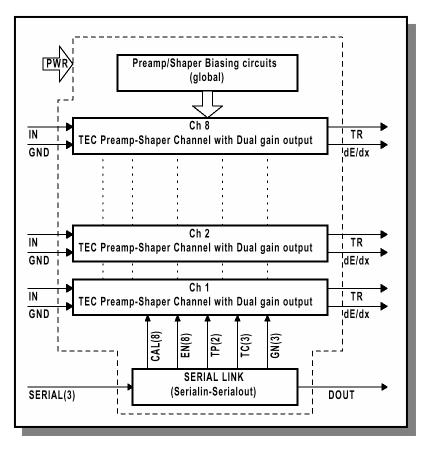
hnl

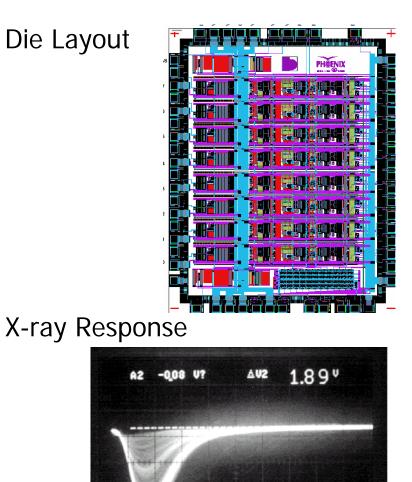
Drift Detector & CMOS Preamplifier


Drift detector preamplifier – results

- Spectra of ²⁴¹Am and ⁵⁵Fe taken with 5mm Φ Si drift detector and CMOS X-ray preamplifier. Detector and circuit cooled to -75 C.
- External 2.4 µs shaping.
- ENC = $13 e^{-1}$ rms.
- Noise without detector: 9 e⁻

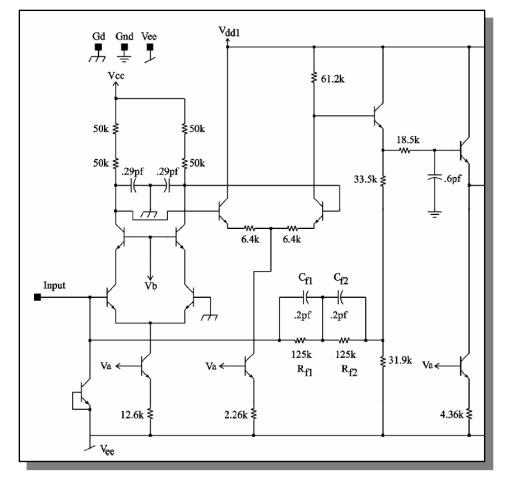
P. O'Connor et.al., "Ultra Low Noise CMOS Preamplifier-shaper for X-ray Spectroscopy", NIM A409 (1998), 315-321


Time Expansion Chamber & Transition Radiation Detector Preamp/Shaper


- 1m MWPC with
 20 pF C_{DET}
- Fast (70 ns) shaping for charged particle tracking
- Dual gain outputs for measurement of dE/dx and Transition Radiation

TEC-TRD Preamp/Shaper

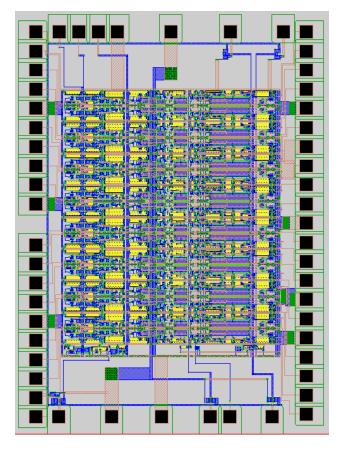
Block Diagram

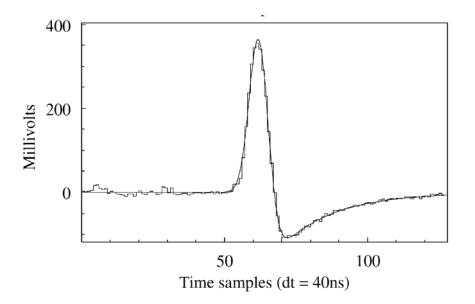

A. Kandasamy, E. O'Brien, P. O'Connor, W. VonAchen, "A monolithic preamplifier-shaper for measurement of energy loss and transition radiation" IEEE Trans. Nucl. Sci. 46(3), June 1999, 150-155

500mC

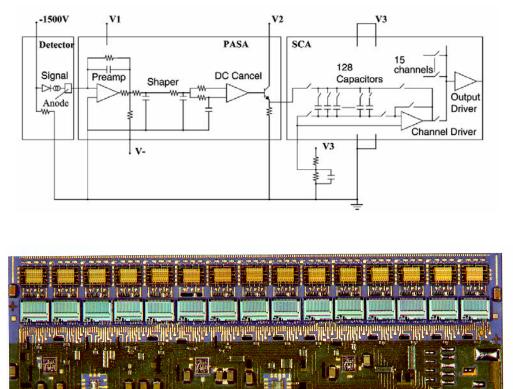
100ns

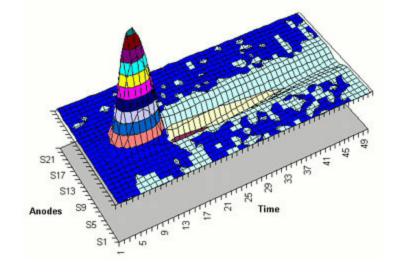
Silicon Vertex Tracker Preamp/Shaper




- Direct connection to lowcapacitance (3 pF) silicon drift detector
- Fast shaping (50 ns) for tracking
- Low power requirement (< 5 mW/chan.)
- Silicon bipolar technology

SVT Preamp/Shaper



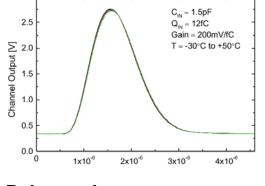

Output Waveform

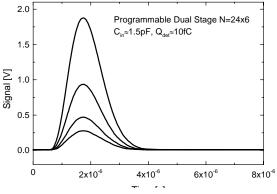
SVT 240-channel Multi-Chip Module

D. Lynn et al., "A 240 channel thick film multi-chip module for readout of silicon drift detectors", NIM A439 (2000), 418 - 426

BNL Preamp/Shaper ICs, 1995 - 2001

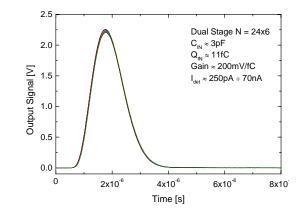
PROJECT	Hi-res.	RHIC - PHENIX	RHIC - STAR	LHC - ATLAS	Industry	NSLS – HIRAX	Units
	Spectroscopy				Partnership		
DETECTOR	Si drift	Time Expansion	Silicon Vertex	Cathode Strip	CdZnTe gamma	Si Pixel	
		Chamber	Tracker	Chamber	ray detector		
Function	Preamp	Preamp/Shaper	Preamp/Shaper	Preamp/Shaper	Preamp/Shaper	Preamp/Shaper/	
						Counter	
C _{DET}	0.3	30	3	50	3	1.5	pF
Peaking	2400	70	50	70	600:1200:2000:4	500:1000:2000:4	ns
Time					000	000	
Gain	10	2.4:12 - 10/25	40:70:90	4	30:50:100:200	750:1500	mV/fC
Power	10	30	3.8	33	18	7	mW/channel
ENC	10	1250	400	2000	100	24	rms electrons
Dynamic	1250	4600	700	1900	5600		
Range							
Technology	CMOS 1.2 um	CMOS 1.2 um	Bipolar 4 GHz	CMOS 0.5 um	CMOS 0.5 um	CMOS 0.35 um	
Input	PMOS	NMOS	NPN	NMOS	NMOS	PMOS	
Transistor	150/1.2 um	4200/1.2 um	10 uA	5000/0.6 um	200/0.6 um	400/0.4 um	
Reset	Compensated	Polysilicon,	Nwell,	Compensated	Compensated	Compensated	
Scheme	PMOS, > $1G\Omega$	75 kΩ	250 kΩ	NMOS, 30 M Ω	PMOS	NMOS	
No.	6	8	16	24	16	32	
Channels							
Die Size	7.3	15	8	20	19	16	mm ²

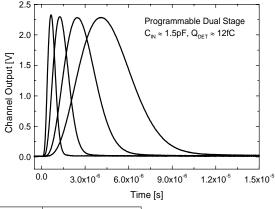

Practical amplifier considerations


3.0

Pulse vs. Temperature

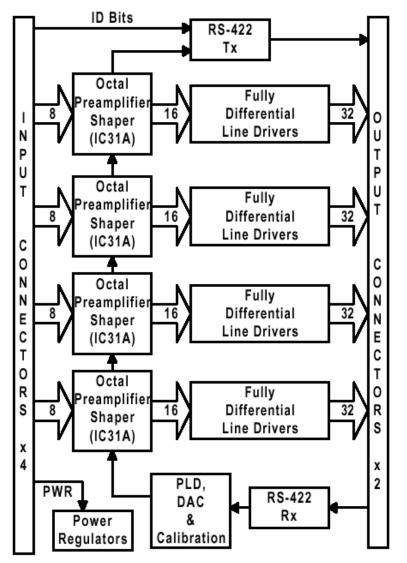
Gain variation

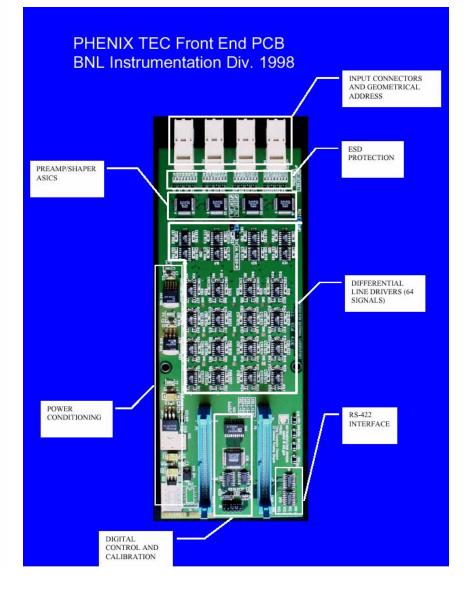

- Preamplifier reset
- High order filters
- Programmable pulse
 parameters
- Circuit robustness:
 - Self-biasing
 - Low-swing, differential I/O
 - Circuits tolerant to variations in
 - Temperature
 - Process
 - Power supply
 - DC leakage current
 - Loading



Pulse vs. I_{leak}

Peaking time variation

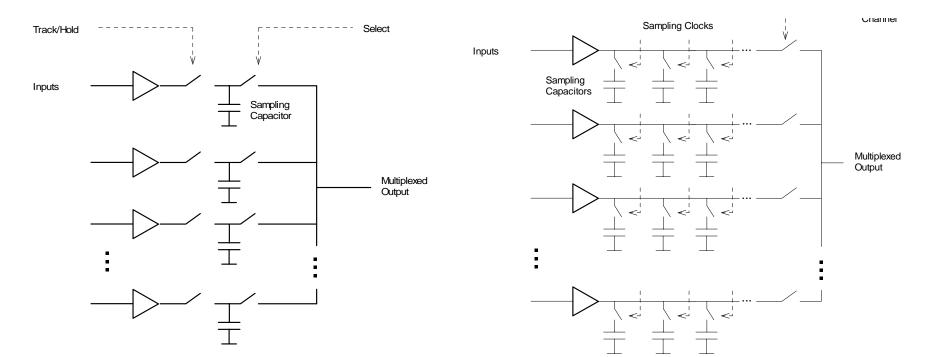




	Baseline	< 0.3mV/nA	<30 µV/V	75 μV/∘C	< 8 mV	-	Zout ~ 150 Ω
							limit
/	Gain	< 0.1%/nA	<.001%/V	-0.04%/°C	< 0.1%	<0.1%/pF	No slew-rate
		lleak	Supply	Temperature	Rate (to 5/tp)	Cin	Zload
,			•				

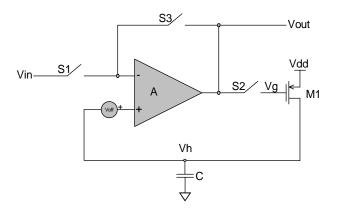
G. De Geronimo et.al., "A generation of CMOS readout ASICs for CZT detectors", IEEE Trans. Nucl. Sci. 47, Dec. 2000, 1857 - 1867

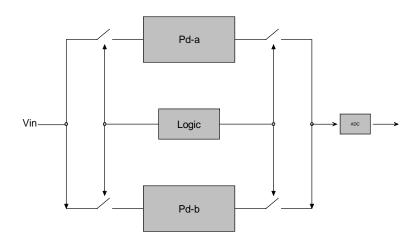
TEC Front-End Card

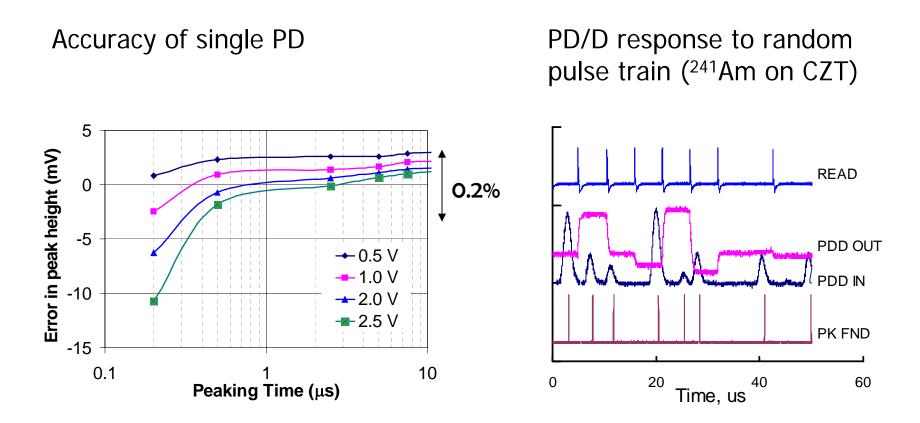

What goes between the preamp/shaper and the ADC?

- Experimental needs differ
 - number of channels
 - occupancy
 - rate
 - trigger
- Usually, its too expensive to put an ADC per channel
- Anyway the ADC would usually not be doing anything useful
 - Occupancy < 100%, so no events most of the time in most channels
- What is the most efficient way to use the ADC(s)?

Analog Sampling and Multiplexing


Track-and-hold (triggered systems)


Analog memory (non-triggered)


New Peak Detector and Derandomizer

- Self-triggered
- Self-sparsifying
- New 2-phase configuration allows rail-to-rail operation, eliminates offsets
 - absolute accuracy ~ 0.2%
 - to within 300 mV of rails
- Two or more peak detectors in parallel can be used to derandomize events
 - If a second pulse arrives before the readout of the first pulse in Pd-a, it is detected and stored on Pd-b.

First experimental results

G. DeGeronimo, P. O'Connor, A. Kandasamy, "Analog Peak Detect and Hold Circuits Part 2: The Two-Phase Offset-Free and Derandomizing Configurations", NIM-A submitted for publication

Summary and Future Directions

- Today's monolithic technology can be used effectively for lownoise front ends.
- Technology scaling, by reducing the area and power per function, wil allow increasingly sophisticated signal processing on a single die.
- Integrated sensors will be developed for some X-ray and charged-particle tracking applications.
- Interconnecting the front end to the detector and to the rest of the system will continue to pose challenges.