Readout Electronics for a High-Rate CSC Detector

<u>P. O'Connor</u>, V. Gratchev, A. Kandasamy, V. Polychronakos, V. Tcherniatine, BNL, Upton, NY, USA J. Parsons, W. Sippach, Columbia University Nevis Laboratories, Irvington, NY, USA

CSC Overview

Functionality

60,000 channels of on-chamber readout electronics:

- Charge-sensitive preamplifier/shaper
- Calibration system
- Switched capacitor array analog memory
- Analog-digital converter
- Data concentration
- Detector Control System card (DCS)

Requirements

CSC electronics finds the muon position by interpolation of the charge collected in 3-5 adjacent strips.

Physics requirement is to measure this charge with sufficient precision to achieve a resolution 1/100 of the strip pitch, to assign the time of the avalanche to within one beam crossing, in a high rate environment where the rate per strip may reach 650 kHz at η =2.7.

Chamber mechanics

CSC Readout Architecture

96-channel front end cards:

8 x 96 = 768 Precision coordinate channels 96 Transverse coordinate channels

Total number of channels:

864 channels per Chamber 864 x 32 = 27648 per each endcap

Total number of cards per endcap:

Electronics Overview

Amplifier-Storage Module (ASM) Boards:

96-channel boards that interface to the cathode strips

Signal Processing

Signal to noise ratio

$$\sigma_x/x = k \sigma_0/Q$$
 $k \sim 2$

Want $\sigma_x/x \sim .01$ Require $\sigma_Q/Q < 1/200$ $Q_{ave} \sim 70$ fC $=> \sigma_Q = 2000 \text{ e-}$

Shaping

Pulse width must be kept short to avoid pileup:

FW1%M < 430 ns.

CR-RCⁿ shaper very asymmetric: short peaking time (noise), or high n.

Complex-pole shaper:

More symmetric pulse for same n. Reduce noise without increasing power.

Shaper Pole Positions

Ohkawa, NIM 138 (1976) 85-92, "Direct Syntheses of the Gaussian Filter for Nuclear Pulse Amplifiers"

Shaping Filters with Complex Poles

CR - RC6
7th order complex

(we use bipolar shape to reject LF noise)

Preamp/Shaper ASIC (P/S)

Technology: 0.5 um CMOS

Behavioral model (MathCAD) finds ENC as function of Power, W, and L.

Includes:

- Strong, moderate, weak inversion regime with continuous expressions based on EKV model
- Transistor DL, DW
- Short gate effect on Vt
- Output conductance $g_d = g_d(I_{ds}, L)$
- Body effect
- 1/f noise from measurements on HP 0.5um process
- Hot electron excess noise (dependent on L, VDS) from literature

Numerical optimizer finds L and W for lowest noise with power as constraint.

Preamp Optimization

Preamp ENC vs. W and L

CSC Preamp/Shaper

Block Diagram

96-channel ASM Board

This board would read out signals from 2 CSC planes. A similar board on the opposite face of the chamber would read out the other 2 planes.

The transition board re-maps the 96 strips into a single row connector on the long edge of the top side.

Density per channel is 6X higher than LAr Front End Board

SCA Block Diagram

144 cells/channel16 channels, organized as 4 groups of (3 + 1 reference)Simultaneous read and write (deadtimeless)

SCA Die Photograph

Technology (final version): DMILL 0.7µm CMOS

P/S Results

Measurement board

Pulse Shape simulated (solid red line) and measured (blue dotted line)

P/S Results

Channel-to-channel variation (2%)

P/S Linearity

P/S Noise Results

Noise vs. input capacitance

Simulated: \times

Measured: O

P/Shigh rate response

Pileup

Recovery from 2X overdrive

P/S Output Driver Results

Effect of resistive and capacitive loading

200 fC input

Output loading: Resistive

Capacitive

ATLAS CSC Preamp/Shaper IC

Technology	0.5 μm CMOS
Channels	16
Die size	2.78 x 3.96 mm
Architecture	Single-ended
Intended Cdet	20 – 100 pF
Input device	NMOS W/L = $5000/0.6 \mu m$,
	Id = 4mA
Noise	1140 + 17.6 e-/pF
Gain	3.8 mV/fC
Max. linear charge	450 fC
Class AB Output swing	To power supply - 250 mV
Pulse shape	7 th order complex Gaussian,
	bipolar
Pulse peaking time, 5% -	73 ns
100%	
FW1%M	340 ns
Max. output loading (3%	500 Ω, 500 pF
distortion)	
Crosstalk	0.8% adjacent, 0.5% non-
	adjacent channel
Power supply	Single +3.3V
Power Dissipation	32.5 mW/chan

Planned future work

Test of modified SCA

- verify operation of new readout logic
- evaluate readout rate

First prototype ASM board:

- controller for modified SCA
- package for P/S
- chain test with detector at high rate beam

Radiation effects

- evaluate ASICs
- evaluate COTS components of ASM board

Data concentrator

- algorithm development and simulation
- partitioning, mechanics, interconnect

P/S second iteration prototype

- power dissipation
- configurable gain and peaking time

TTC and DCS interfaces

Faraday shield and cooling