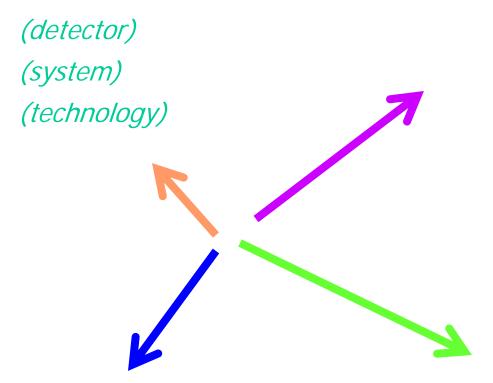

Impact of Technology Scaling on Low Noise Front End Circuits

Paul O'Connor, Brookhaven National Laboratory
Snowmass 2001
July 9 2001

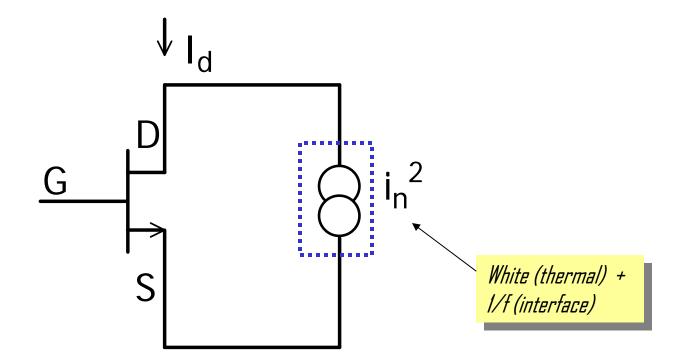
Charge preamplifier/shaper as detector front end

- Low noise is critical for many experiments
 - Ageing of gas detectors
 - Fast, inefficient scintillators
 - Thin semiconductors for tracking
 - Position determination by interpolation
 - Particle ID by dE/dx

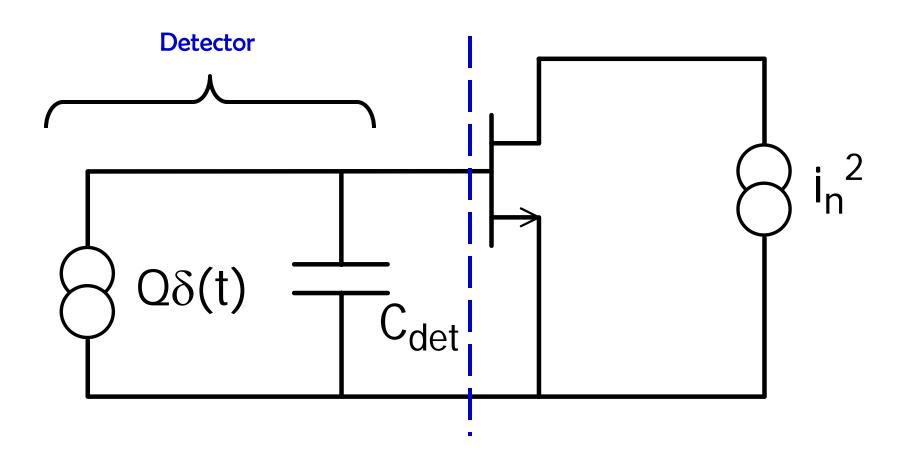

Outline

- Low noise analog design in monolithic CMOS
 - Preamplifier design
 - Shaping amplifier
- Circuit examples
- MOS Scaling and CSA design
 - Noise mechanisms in scaled devices
 - Optimum capacitive match to detector
 - Noise, dynamic range, and power vs. scaling length
- Interconnect issues
 - Detector-to-preamplifier
 - Front end-to-ADC

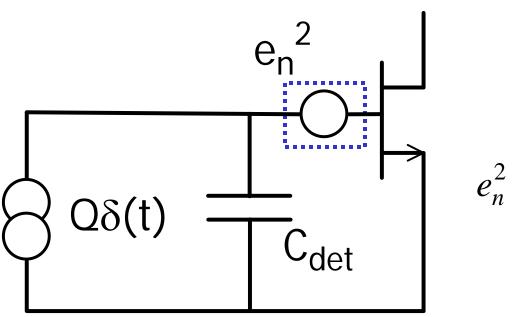
Low Noise Analog Design


MOS Charge Amplifier Design

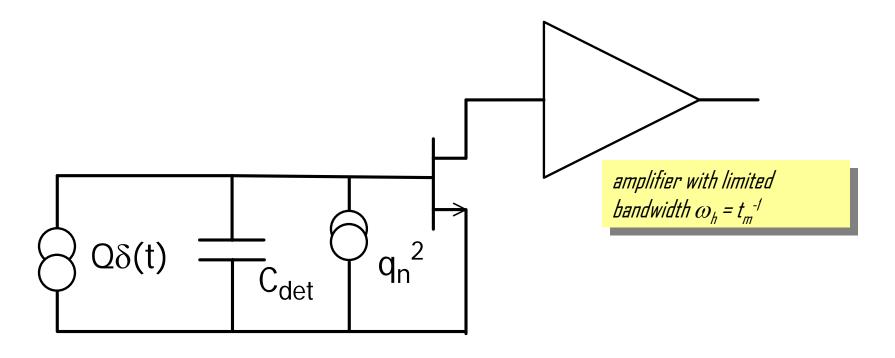
- Key parameters:
 - $-C_{det}$, I_{det} , Q_{max}
 - Rate, P_{diss}
 - f_T, K_F, I_{in}
- Key design decisions
 - C_{gs}/C_{det}
 - Reset system
 - Weighting function



MOSFET Channel Thermal Noise


Drain current and its fluctuation:

MOSFET connected to detector



Transform noise to input

$$e_n^2 = \frac{4kT\gamma}{g_m} + \frac{K_F}{C_{gs}f}$$

Equivalent input noise charge

$$ENC^{2} = \left(\frac{4kT}{g_{m}t_{m}} + \frac{K_{F}}{C_{gs}}\right)C_{in}^{2}$$

Device sizing for minimum ENC

• Increasing MOS size decreases noise sources while increasing transistor contribution to C_{in}

$$ENC^{2} = \left(\frac{4kT}{g_{m} \cdot t_{m}} + \frac{K_{F}}{C_{gs}}\right) C_{in}^{2}$$

$$C_{in} = C_{gs} + C_{det}$$

=> optimum transistor size for series white and 1/f noise:

$$C_{gs,sw,opt} = \alpha_{sw} C_{det}$$

$$C_{gs,1/f,opt} = \alpha_{1/f} C_{det}$$

Optimized ENC

• Transistor cutoff frequency $g_m = C_{gs} \cdot \omega_T = C_{gs} / \tau_{el}$

$$ENC_{sw,opt} \approx \sqrt{kTC_{det}} \sqrt{\frac{\tau_{el}}{t_m}}$$

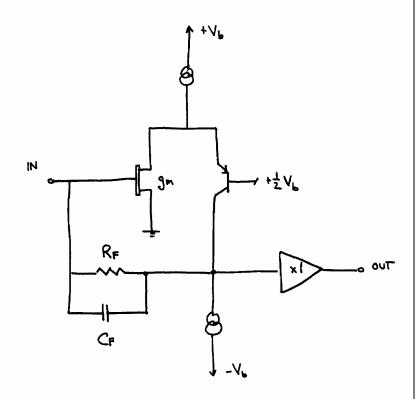
$$ENC_{1/f,opt} \approx \sqrt{K_F C_{det}}$$

- Key ingredients for low ENC:
 - low C_{det}
 - long t_m
 - short τ_{el}
 - Low K_F

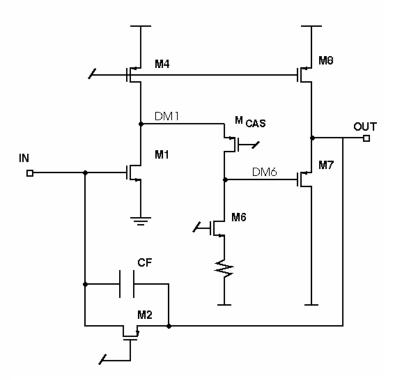
Parallel noise

- From any noise current source connected to input:
 - Detector biasing resistor

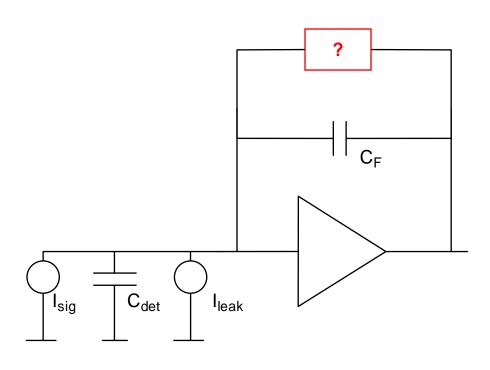
$$ENC_{par} = \sqrt{\frac{4kTt_m}{R_p}}$$


Capacitive matching – composite noise

- $C_{det} = 3 \text{ pF}$
- $t_m = 1 \, \mu s$
- $P_{diss} = 1 \text{ mW}$
- $I_{leak} = 100 \text{ pA}$
- Technology: 0.35 μm NMOS



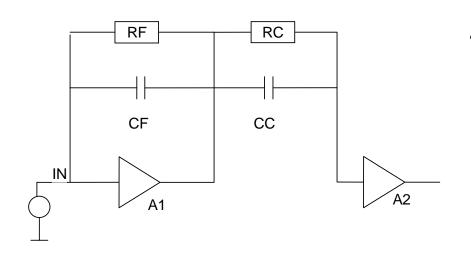
Basic Charge Amplifier

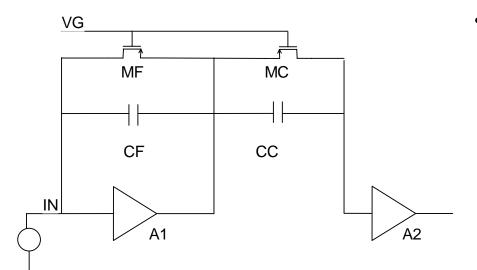

Configuration based on discrete/hybrid design

CMOS implementation

Preamp Reset – Requirements

- all charge preamplifiers need DC feedback element to discharge C_F
- usually, a resistor in the $M\Omega$ $G\Omega$ range is used
- monolithic processes don't have high value resistors
- we need a circuit that behaves like a high resistor and is also
 - insensitive to process, temperature, and supply variation
 - low capacitance
 - lowest possible noise
 - linear


Preamp Reset – Configurations

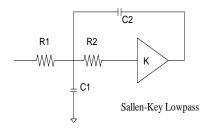

Feedback type	Circuit	R _{eff} (I _{leak} =0)	Advantages/ Disadvantages
Physical resistor	а -{W}- В	R	+ simple - hard to make large R - parasitic C - doesn't adjust to I _{leak}
MOS switch	A B C(pulse)	$\frac{1}{C_F \cdot f_{reset}}$	+ simple - dead time - switch noise
Triode MOS	A B C Bias	$\frac{1}{\beta \cdot (V_{gs} - V_T)}$	+ compact + adjusts to I _{leak} - nonlinear
Feedback g _m	$A \bigoplus_{g_m}^B C_{\text{(Vref)}}$	$\frac{1}{g_m}$	+ adjusts to I _{leak} - complex - excess noise - nonlinear
Attenuat- ing cur- rent mirror	A _I <<1 B	$\frac{R}{A_i}$	+ aux. output for PZC - doesn't adjust to I_{leak}

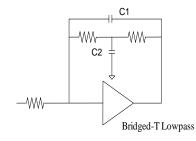
Nonlinear Pole-zero Compensation

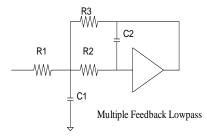
Classical

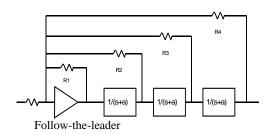
- $-RF \cdot CF = RC \cdot CC$
- Zero created by RC,CC cancels pole formed by RF, CF

G. Gramegna, P. O'Connor, P. Rehak, S. Hart, "CMOS preamplifier for low-capacitance detectors", NIM-A 390, May 1997, 241 – 250.

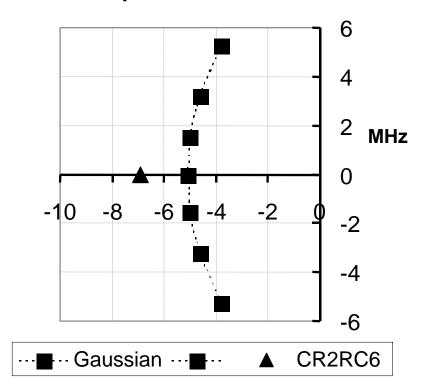

IC Version


- $-CC = N \cdot CF$
- $(W/L)_{MC} = N \cdot (W/L)_{MF}$
- Zero created by MC, CC
 cancels pole formed by MF, CF
- Rely on good matching characteristics of CMOS FETs and capacitors


Integrated Shaping Amplifiers


- Limits the bandwidth for noise
- Gives controlled pulse shape appropriate for rate
- Control baseline fluctuations
- Bring charge-to-voltage gain to its final value
- By its saturation characteristics, sets upper limit on Q_{in}
- Feedback circuits give the most stable and precise shaping
 - At the expense of power dissipation
 - Poor tolerance of passives limits accuracy of the poles and zeros
- High-order shapers give the lowest noise for a given pulse width

Filter topologies

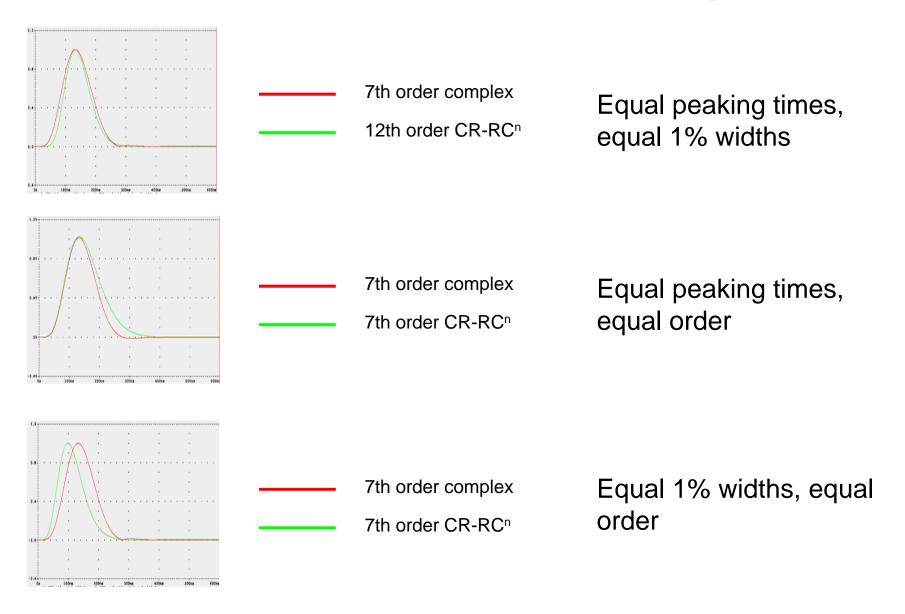


Complex pole approximation to Gaussian pulse

Shaper Pole Positions

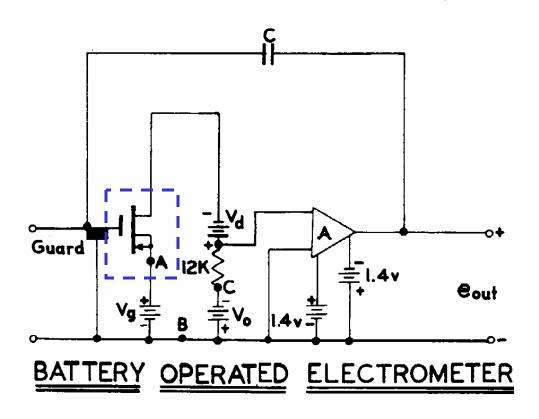
Ohkawa synthesis method (Ohkawa, NIM 138 (1976) 85-92, "Direct Syntheses of the Gaussian Filter for Nuclear Pulse Amplifiers")

For given filter order, gives closest approx. to a true Gaussian

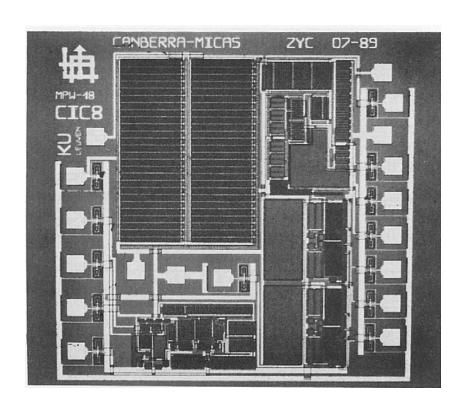

More symmetrical than CR-RCⁿ filter of same order for same peaking time

Noise weighting functions:

$$I_{L.comolex}/I_{L.CR-RC} = 1.18$$
 series


$$I_{2,complex}/I_{2,CR-RC} = 0.81$$
 parallel

Complex shapers: advantages


Examples

Charge Amplifier based on Silicon MOSFET (1967)

V. Negro et al., "A Guarded Insulated Gate Field Effect Electrometer", IEEE Trnas. Nucl. Sci. Feb. 1967, 135 – 142 J.B. McCaslin, "A Metal-Oxide-Semiconductor Electrometer Ionization Chamber", UCRL-11405 (1964)

Spectroscopy amplifier (1989)

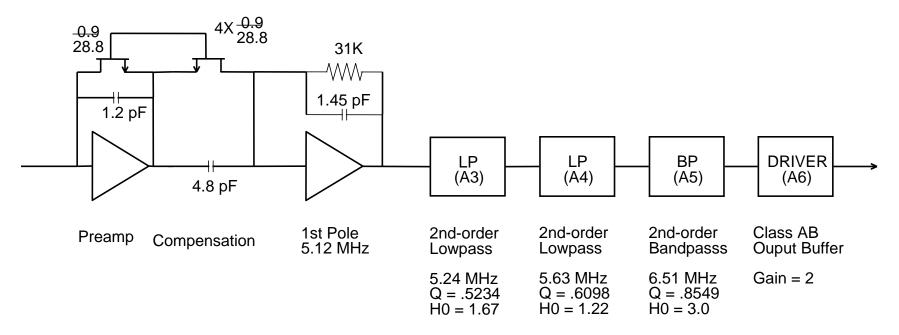
Technology 3.0 µm CMOS

Power Supply +/- 5V

Chip size 2.5 x 2.5 mm

Channels 1

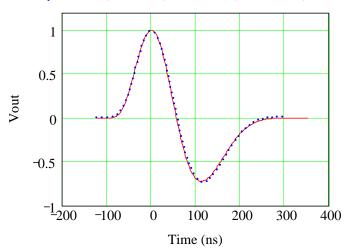
 C_{det} 300 - 1000 pF

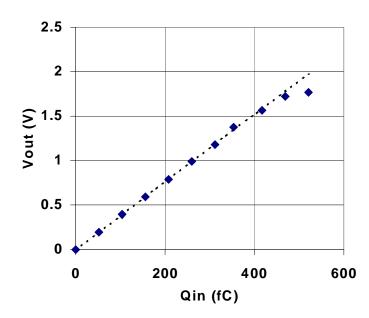

Reset external resistor

Shaping $CR-RC^4$, 1.6 µs $3800 + 4.1 e^{-}/pF$

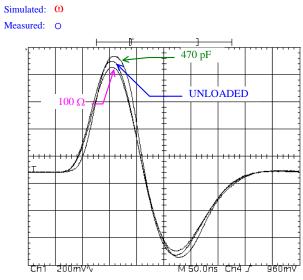
Power dissipation 96 mW

Z. Chang, W. Sansen, *Low-Noise Wide-Band Amplifiers in Bipolar and CMOS Technologies*, Kluwer 1991 Ch. 5

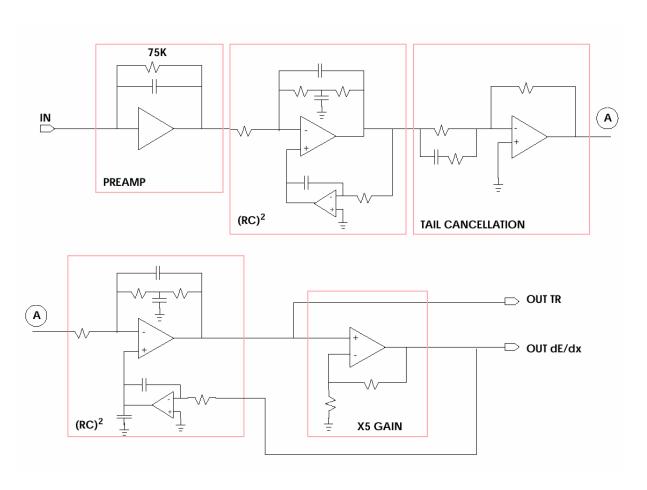

Preamp-shaper for cathode strip chamber

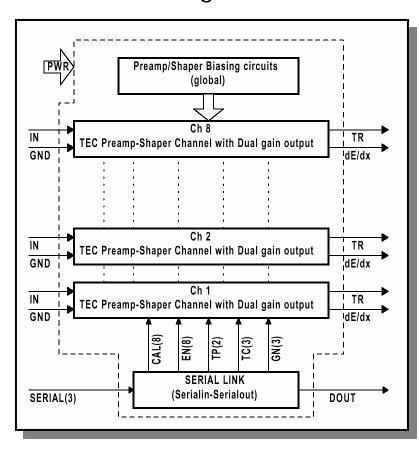


- Detector: cathode strips of 0.5m MWPC with 50 pF C_{DET}
- Charge interpolation to 1/100 of the strip pitch
- Fast (70 ns), 7th order bipolar shaping for charged particle tracking in high rate environment


Preamp-shaper for cathode strip chamber

Pulse Shape simulated (solid red line) and measured (blue dotted line)

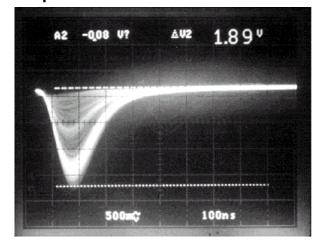



Time Expansion Chamber & Transition Radiation Detector Preamp/Shaper

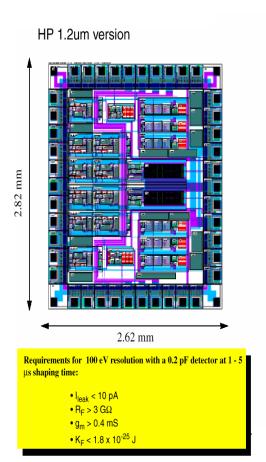
- 1m MWPC with
 20 pF C_{DFT}
- Fast (70 ns)
 shaping for
 charged particle
 tracking
- Dual gain outputs for measurement of dE/dx and Transition Radiation

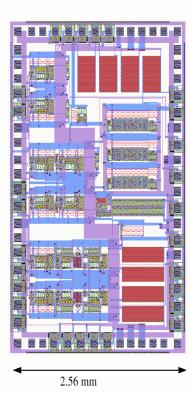
TEC-TRD Preamp/Shaper

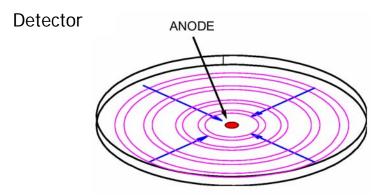
Block Diagram

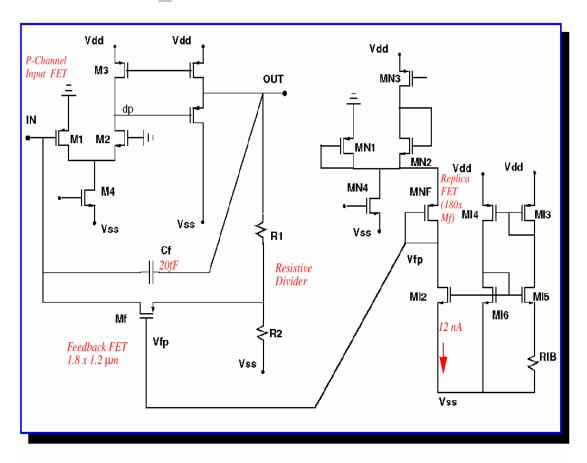


A. Kandasamy, E. O'Brien, P. O'Connor, W. VonAchen, "A monolithic preamplifier-shaper for measurement of energy loss and transition radiation" IEEE Trans. Nucl. Sci. 46(3), June 1999, 150-155

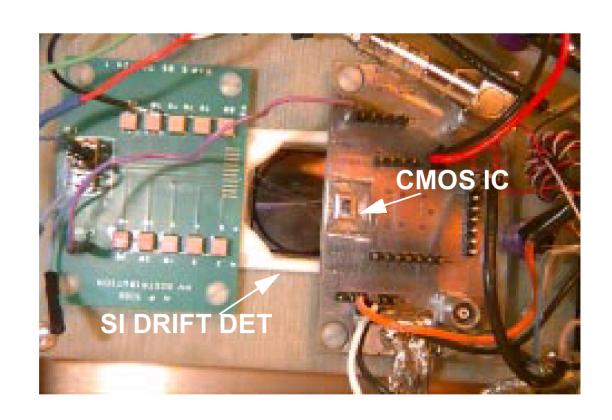

Die Layout

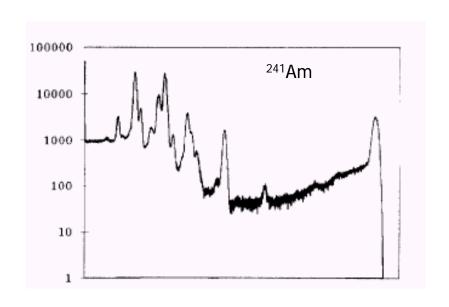

X-ray Response

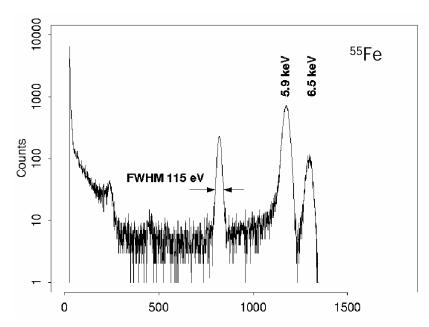

Drift Detector Preamplifier


AMS 1.2um version

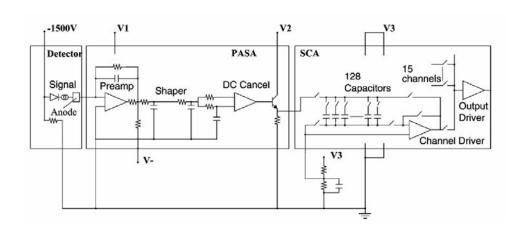
- Used with ultra-low capacitance silicon drift detector, C_{det} < 0.3 pF
- Preamp only, used with external shaper
- Purpose: explore lowest noise possible with CMOS
- Reset system: MOS transistor with special bias circuit to achieve stable, $> 100 \text{ G}\Omega$ equivalent resistance

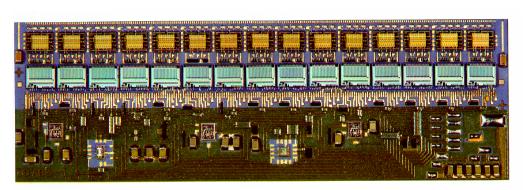

Drift detector preamplifier – simplified schematic

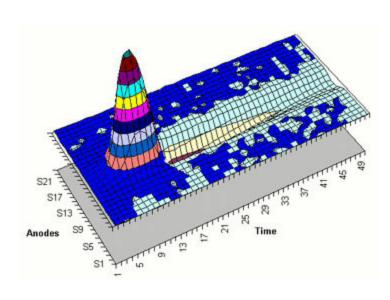

Preamplifier


Bias Circuit

Drift Detector & CMOS Preamplifier


Drift detector preamplifier – results



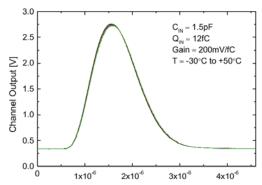


- Spectra of 241 Am and 55 Fe taken with 5mm Φ Si drift detector and CMOS X-ray preamplifier. Detector and circuit cooled to -75 C.
- External 2.4 μs shaping.
- ENC = $13 e^{-1}$ rms.
- Noise without detector: 9 e-

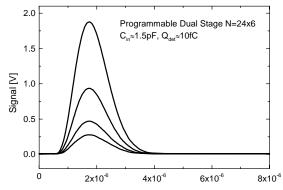
SVT 240-channel Multi-Chip Module

D. Lynn et al., "A 240 channel thick film multi-chip module for readout of silicon drift detectors", NIM A439 (2000), 418 - 426

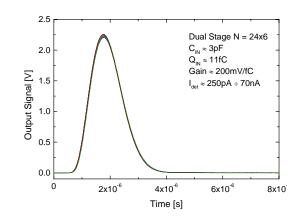
BNL Preamp/Shaper ICs, 1995 - 2001

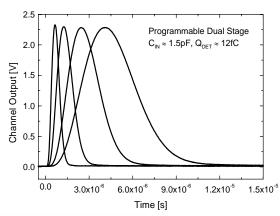

PROJECT	Hi-res.	RHIC - PHENIX	RHIC - STAR	LHC - ATLAS	Industry	NSLS - HIRAX	Units
	Spectroscopy				Partnership		
DETECTOR	Si drift	Time Expansion	Silicon Vertex	Cathode Strip	CdZnTe gamma	Si Pixel	
		Chamber	Tracker	Chamber	ray detector		
Function	Preamp	Preamp/Shaper	Preamp/Shaper	Preamp/Shaper	Preamp/Shaper	Preamp/Shaper/	
						Counter	
C _{DET}	0.3	30	3	50	3	1.5	pF
Peaking	2400	70	50	70	600:1200:2000:4	500:1000:2000:4	ns
Time					000	000	
Gain	10	2.4:12 - 10/25	40:70:90	4	30:50:100:200	750:1500	mV/fC
Power	10	30	3.8	33	18	7	mW/channel
ENC	10	1250	400	2000	100	24	rms electrons
Dynamic	1250	4600	700	1900	5600		
Range							
Technology	CMOS 1.2 um	CMOS 1.2 um	Bipolar 4 GHz	CMOS 0.5 um	CMOS 0.5 um	CMOS 0.35 um	
Input	PMOS	NMOS	NPN	NMOS	NMOS	PMOS	
Transistor	150/1.2 um	4200/1.2 um	10 uA	5000/0.6 um	200/0.6 um	400/0.4 um	
Reset	Compensated	Polysilicon,	Nwell,	Compensated	Compensated	Compensated	
Scheme	PMOS, $> 1G\Omega$	75 kΩ	250 kΩ	NMOS, 30 M Ω	PMOS	NMOS	
No.	6	8	16	24	16	32	
Channels							
Die Size	7.3	15	8	20	19	16	mm ²

Practical amplifier considerations



- High order filters
- Programmable pulse parameters
- Circuit robustness:
 - Self-biasing
 - Low-swing, differential I/O
 - Circuits tolerant to variations in
 - Temperature
 - Process
 - Power supply
 - DC leakage current
 - Loading

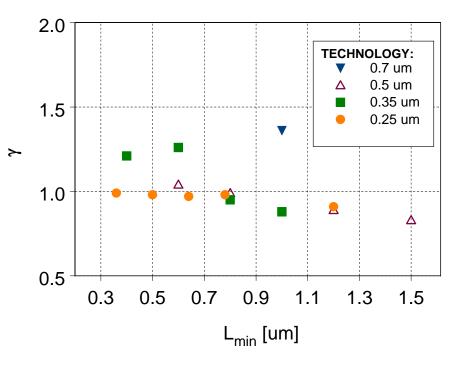

Pulse vs. Temperature


Gain variation

Pulse vs. I_{leak}

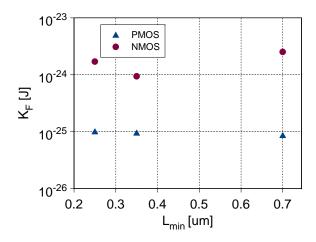
Peaking time variation

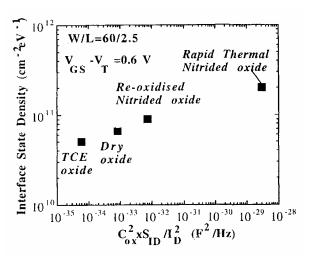
Baseline	< 0.3mV/nA	<30 μV/V	75 μV/°C	< 8 mV	-	Zout ~ 150 \(\Omega\)
						limit
Gain	< 0.1%/nA	<.001%/V	-0.04%/°C	< 0.1%	<0.1%/pF	No slew-rate
	l _{leak}	Supply	Temperature	Rate (to 5/tp)	Cin	Zload


MOS Scaling and Charge Amplifier Design

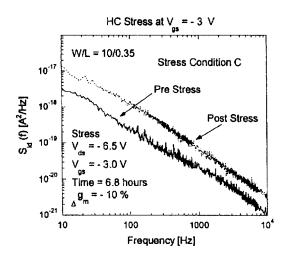
Scaling issues

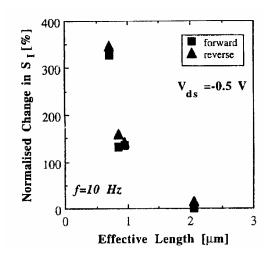
- Fundamental device noise mechanisms
 - Hot electron effects
 - New process steps effect on 1/f noise
 - Gate tunnelling current
- Change of the current-voltage characteristics
 - Increase of weak inversion current
 - Mobility decrease
 - Velocity saturation
 - Drain conductance (device intrinsic DC gain)
- Power supply scaling


Series white noise

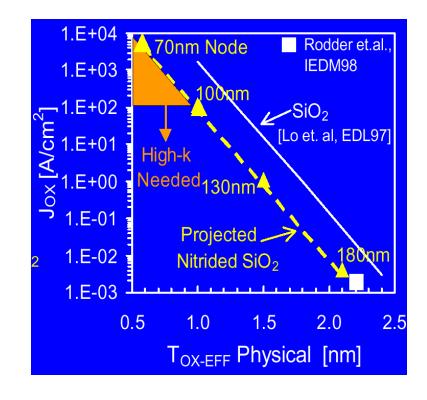

- Parameter $\gamma = gm * Rn$
- Some models predict γ >> 1
 for short channel devices
- At moderate inversion and low > VDS, γ remains in the range
 0.8 < γ < 1.4
- Shallow junctions increase S/D series resistance => noise

1/f noise in submicron CMOS

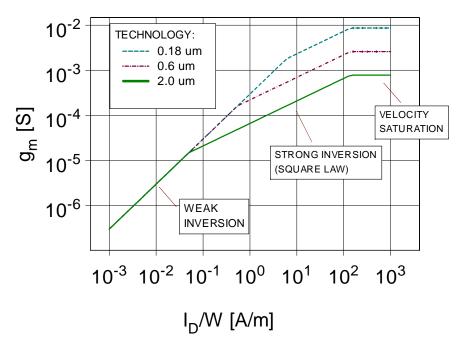

- Processes with n+/p+ poly gates and retrograde wells create surfacechannel PMOS – PMOS 1/f noise to become more like NMOS?
- Shallow junctions required for scaled processes limit the thermal budget – hence gate process will have reduced post-oxidation anneal and higher trap density, higher 1/f
- For ultrathin gates new dielectrics with higher trap densities will be used (nitrided, halogenated, H2 annealed)



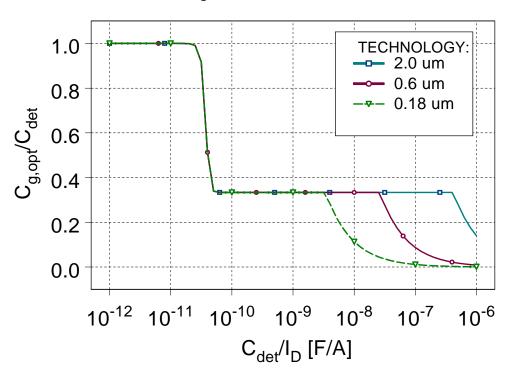
1/f noise and hot carrier stress


- Hot carrier stress generates new oxide/interface traps.
- 1/f noise more sensitive than change in static parameters:
 - $\Delta g_m 10\%$ $- \Delta (1/f) + 400\%$
- Worse for shorter channel lengths
- A device engineered for "acceptable" degradation of V_{th} and g_m may show unacceptable increase in 1/f noise over the same period.
- The operating point of the device will determine the stability of the long-term 1/f noise

Gate tunneling current


- Gate current expected to increase
 100 200 x per generation below
 0.18 μm
- $J_{ox} \sim 100 \text{ A/cm}^2 \text{ projected for } L_{min} = 0.1 \text{ } \mu\text{m} \text{ generation with nitrided } SiO_2$
- Considered tolerable for digital circuits (total gate area per chip ~ 0.1 cm²)
- Typical CSA input FET would have I_G ~ 1 10 μ A; ENCp ~ 2000 7000 rms e- at 1 μ sec

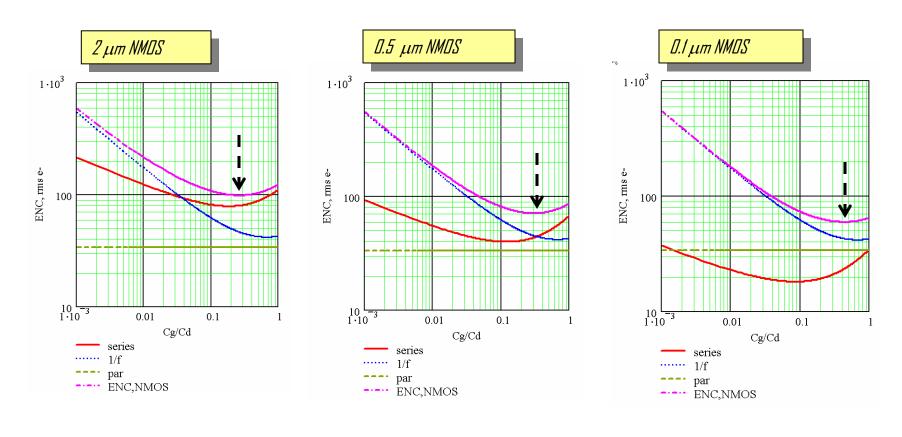
SiO₂ gate leakage current (Lo et al., Electron Dev. Letters 1997)


Departure from square-law characteristics

- Submicron devices are less often operated in strong inversion, squarelaw region.
- Influences behavior of series white thermal noise
- Square-law devices have minimum series noise when $C_{qs} = C_{det}/3$
- For other regions of operation, minimum noise can be for larger or smaller values of \mathcal{C}_{gs}

Generalized capacitive matching condition

- Drain current = constant
- Ratio of C_{gs} to C_{det} determined by C_{det}/I_{d} :

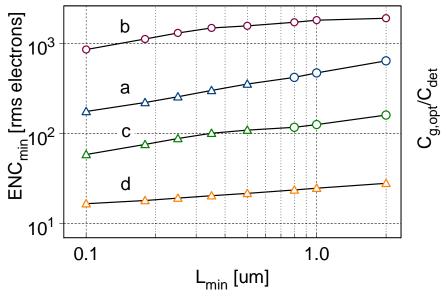


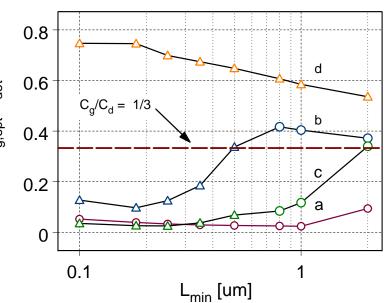
C _{det} / I _D Ratio	Region of operation	Optimum capacitive match		
$\frac{C_{\text{det}}}{I_D} < \frac{6\mu}{v_{sat}^2}$	Velocity saturated	$C_{gs} = C_{det}$		
$\frac{6L^2}{\mu(nkT/q)^2} < \frac{C_{\text{det}}}{I_D} < \frac{6\mu}{v_{sat}^2}$	Strong- inversion square-law	$C_{gs} = C_{det} / 3$		
$\frac{C_{\text{det}}}{I_D} > \frac{6L^2}{\mu (nkT/q)^2}$	Weak inversion boundary	$C_{gs} = \frac{2L^2I_D}{C_{\text{det}}(nkT/q)^2}$		

P. O'Connor, G. De Geronimo, "Prospects for Charge Sensitive Amplifiers in Scaled CMOS", NIM-A accepted for publication

Capacitive match vs. scaling – mixed white, 1/f and parallel noise

• $C_{det} = 3 \text{ pF}$, $t_m = 1 \text{ } \mu\text{s}$, $P_{diss} = 1 \text{ mW}$, $I_{leak} = 100 \text{ pA}$

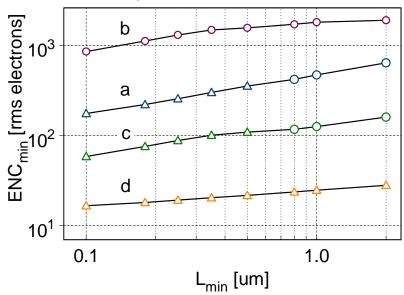

Noise vs. scaling for mixed white, 1/f, and parallel noise


4 detector scenarios for scaling study

System	$\mathbf{C}_{_{det}}$	<u>t</u> ,	P	I	Detector	Typical Application
<u>a</u>	30	75	10	.001	Wire Chamber	Tracking, Imaging
<u>b</u>	15	25	0.2	10	<u>Si</u> Strip	Tracking
<u>c</u>	0.3	25	0.02	1	Si Pixel	Tracking
<u>d</u>	3	2500 - 500*	10	0.01	Semiconductor	Spectroscopy
UNITS	pF	ns	mW	nA	-	-

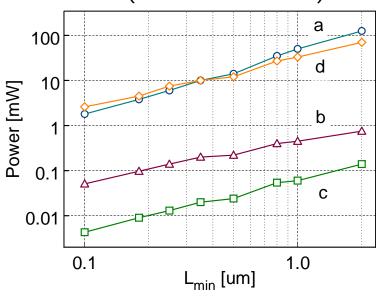
Noise vs. scaling

Optimum gate width vs. scaling

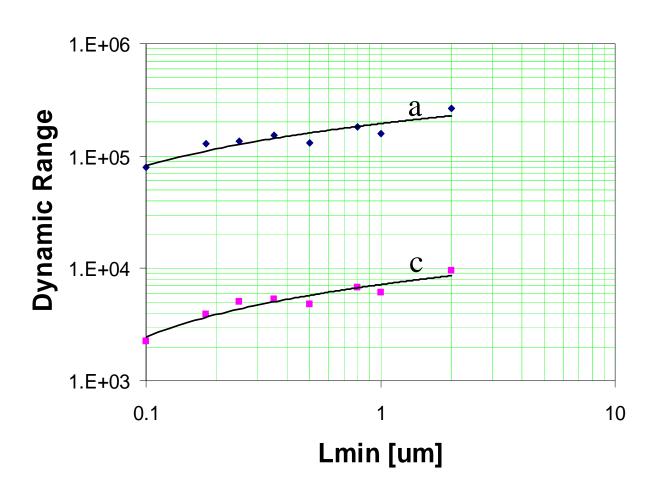

Noise and Power vs. Scaling

4 detector scenarios for scaling study

System	$\mathbf{C}_{_{\mathtt{det}}}$	<u>t</u> ,	P	I	Detector	Typical Application
<u>a</u>	30	75	10	.001	Wire Chamber	Tracking, Imaging
<u>b</u>	15	25	0.2	10	<u>Si</u> Strip	Tracking
<u>c</u>	0.3	25	0.02	1	Si Pixel	Tracking
<u>d</u>	3	2500 - 500*	10	0.01	Semiconductor	Spectroscopy
UNITS	pF	ns	mW	nA	-	-


Noise vs. scaling

(power held constant)



Power vs. scaling

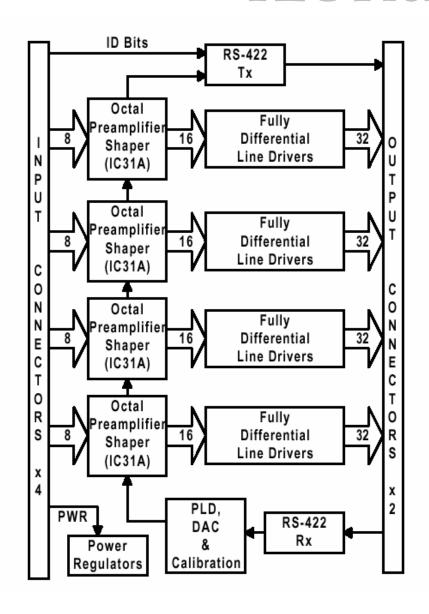
(noise held constant)

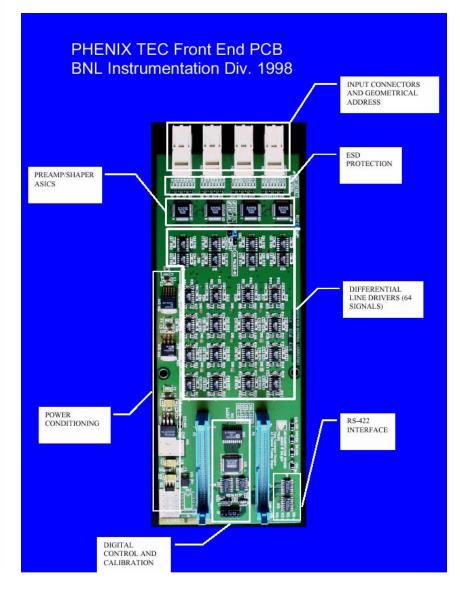


Dynamic Range vs. scaling

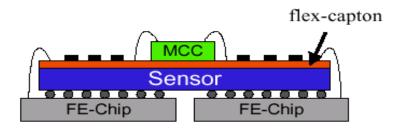
Interconnect

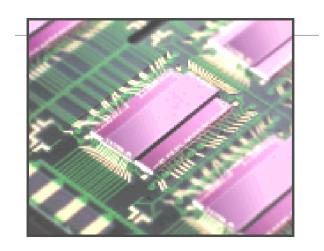
Cost of Interconnect

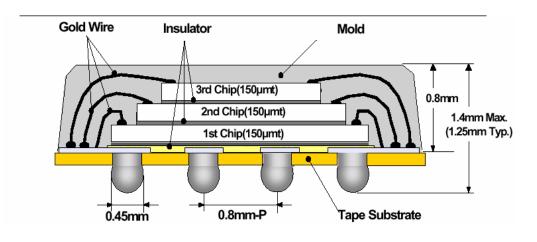


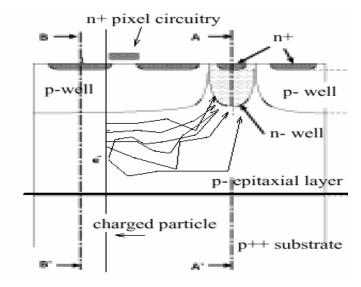

ISSCC 2000

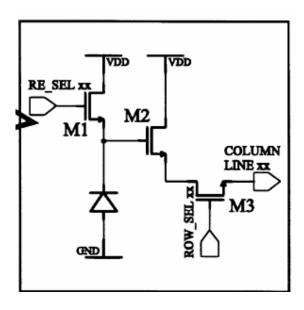
Interconnect issues in monolithic front ends

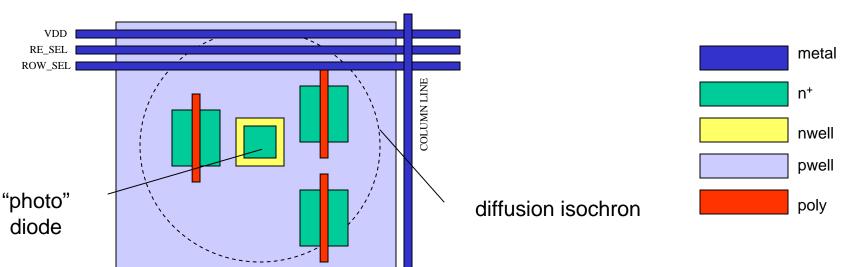

- Detector preamplifier
 - Lowest possible capacitance
 - Maintain small form factor
 - Ease of assembly
- Front end ADC
 - Efficient use of expensive "analog" interconnect


TEC Front-End Card




Make the chip a part of the detector





Make the detector part of the chip

What goes between the preamp/shaper and the ADC?

- Experimental needs differ
 - number of channels
 - occupancy
 - rate
 - trigger
- Usually, its too expensive to put an ADC per channel
- Anyway the ADC would usually not be doing anything useful
 - Occupancy < 100%, so no events most of the time in most channels
- What is the most efficient way to use the ADC(s)?

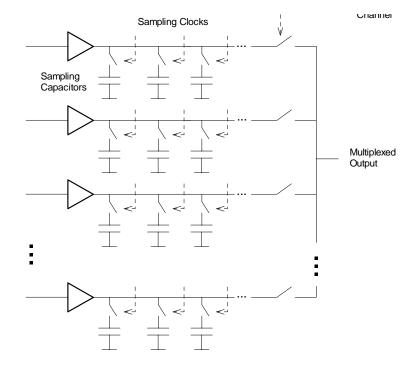
Analog Sampling and Multiplexing

Inputs

Track-and-hold (triggered systems)

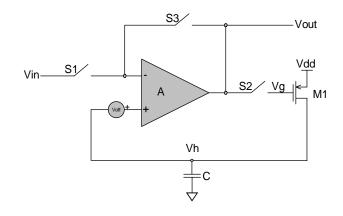
Track/Hold

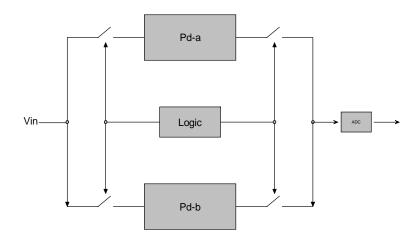
Inputs


Select

Sampling Capacitor

Multiplexed Output


T

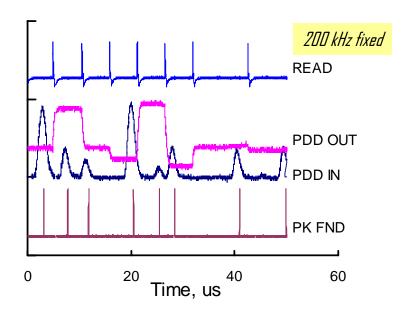

Analog memory (non-triggered)

New Peak Detector and Derandomizer

- Self-triggered
- Self-sparsifying
- New 2-phase configuration allows rail-to-rail operation, eliminates offsets
 - absolute accuracy ~ 0.2%
 - to within 300 mV of rails
- Two or more peak detectors in parallel can be used to derandomize events
 - If a second pulse arrives before the readout of the first pulse in Pd-a, it is detected and stored on Pd-b.

First experimental results

10


Accuracy of single PD

0.1

5
0
10
-10
-15
-15
-15

Peaking Time (µs)

PD/D response to random pulse train (241Am on CZT)

G. DeGeronimo, P. O'Connor, A. Kandasamy, "Analog Peak Detect and Hold Circuits Part 2: The Two-Phase Offset-Free and Derandomizing Configurations", NIM-A submitted for publication

Conclusions

- Today's CMOS technology can be used to make low noise front ends whose performance is nearly as good as the best discrete units
- In the future, increasing device cutoff frequency and gate oxide quality will help improve noise BUT
 - Potentially serious increases in 1/f noise and gate current may accompany new process sequences
 - Low supply voltage will hamper high dynamic range
- Increasing attention will have to be paid to interconnect at the technology, circuit, and architecture levels