

Research in Alcohol-Fueled Engines at EPA NVFEL NEVC Annual Meeting

Matthew Brusstar U. S. Environmental Protection Agency National Vehicle and Fuel Emissions Laboratory

February 25, 2003

Presentation Overview

- Historical overview of alcohol research at EPA
- Significance of EPA research
- EPA engine operating with methanol/ethanol:
 - Design and operation advantages of alcohol fuels
 - Efficiency benefits
 - Low Criteria Pollutant Emissions
- Economic Impact
- Technical challenges
- Summary

EPA Program in Alcohol Fuels Research

- Research and engine test programs initiated at EPA in late 70's/early 80's
 - Successful methanol-fueled engine and vehicle demonstrations
- More recently, EPA had the lead in fuel effects studies under PNGV program
 - Development of advanced methanol-fueled engines
 - Demonstration of clean diesel and DME engines
- Recent transition to ethanol research, due to market/legislative interest
- Mission: Provide market with clean alternatives

Significance of EPA Research

- Legislative Push: on renewable fuels market
 - EPAct (1992):
 - Objectives for non-petroleum fueled fleet vehicles:

MY	Fleet FFV %	
2000	10%	
2010	30%	

- 2000 objective not achieved (~2%)
- Significant percent of fleet FFVs use gasoline
- Energy Policy Act (2002), Renewable Fuels Standard:
 - Pending mandate of renewable fuels, particularly ethanol.
- <u>Technology Pull</u>: Clean, high-efficiency engines
 - Creates economic incentive to operate with alcohols

Design Advantages with Alcohol Fuels

- Alcohol advantages over gasoline/diesel fuels:
 - High octane number
 - Higher heat of vaporization
 - Higher flame speed
 - Cooler combustion
 - Potential benefits to engines:
 - Low NOx emissions
 - Higher thermal efficiency, especially at low power
 - More power output capacity

Description of EPA Engine*

- Characteristics of EPA alcohol engine
 - Optimized for use with alcohol fuels
 - Conventional FFV injection, ignition and exhaust aftertreatment systems
 - Combined traits of gasoline and diesel engines
- Objectives
 - Low criteria emissions: demonstrate Tier II-level
 - High efficiency: >1/3 better than gasoline engine
- (*-More Detail: SAE Publication: upcoming Powertrain & Fluid Systems Conference, October, 2002)

Efficiency: Methanol

33% higher efficiency with methanol Broad region of high efficiency

Efficiency: Ethanol

25% higher efficiency with ethanol Further optimization ongoing

Economic Impact

- Estimated Fleet Vehicle Annual Fuel Costs*:
 - Gasoline: \$1400/yr
 - E85 FFV: \$1867/yr
 - EPA Engine: \$1400/yr

(*-based on sedan fleet vehicle, 20k miles/year, \$1.40/gal fuel price)

- Engine costs:
 - Comparable to FFV engine
 - 1/4 cheaper than a diesel
- Clean, renewable alternative
 - potential market pull-through

Criteria Pollutant Emissions

Pollutant	Output (g/kW-hr)	Tier II/Bin 5 Equivalent* (g/kW-hr)
NOx	< 0.2	0.25
CO	< 0.2	11.6
NMOG	< 0.2	0.32

*-For an "aerodynamic" 3000 lb vehicle

Low emissions with conventional exhaust aftertreatment Enables attainment of Tier II-level emissions

Technical Challenges

- Cold starting
 - Ongoing work with single cylinder engines
 - Earlier work at EPA down to -29 °C
- Engine component durability
 - Ignition system
 - Fuel system
 - Not yet addressed in our research
 - Addressed by FFV manufacturers

Summary

- Economic benefits of engines optimized for alcohols
 - Annual vehicle fuel costs similar to gasoline vehicles
 - High engine efficiency: 1/3 better than gasoline
 - Engine manufacturing costs expected to be similar to gasoline engines
- Low Criteria Emissions
 - Enables attainment of emissions on level of Tier II