CRUISE REPORT

ALPHA HELIX CRUISE 213

15 August to 6 September 1998
I. Project Title: Collaborative Research: Prolonged production and trophic transfer to predators: Processes at the Inner Front of the Southeastern Bering Sea

Chief Scientist: Terry E. Whitledge
School of Fisheries and Ocean Sciences
University of Alaska Fairbanks
Fairbanks, Alaska 99775-7220
Phone: (907) 474-7229
FAX: (907) 474-7204
e-mail: terry@ims.uaf.edu

Support: NSF OPP-9617287
II. Scientific Purpose: It is hypothesized that elevated primary production at the inner front of the southeastern Bering Sea continues longer than in the upper mixed layer of non-frontal waters, and that this production provides an energy source throughout the summer for a food web that supports shearwaters, salmon, and their zooplankton prey. To test this hypothesis, we collected and interpreted observations on physical and biological features in the vicinity of the inner front to determine: 1) the availability of nutrients in the euphotic zone, 2) the physical processes responsible for enhanced vertical flux of nutrients, 3) prirnary production, 4) the distribution, abundance and trophic ecology of near-surface swarms of euphausiids and other zooplankton, and 5) the distribution, abundance, and foraging ecology of shearwaters, and 6) by stable isotope enrichment, trophic pathways from phytoplankton to shearwaters at and away from the front. This cruise was the last of four planned for this project.

III. Personnel

Terry E. Whitledge	Chief Sci.	UAF	USA	Chem Oceanography
Steve Zeeman	Co-PI	U. New England	USA Primary Production	
Ken O. Coyle	Co-PI	UAF	USA Zooplankton	
Nancy Kachel	Res. Assoc. PMEL		USA Physical Oceanog.	
Cheryl Baduini	Student	UCI	USA Ornithology	
Heather Revilee	Student	UCI	USA Ornithology	
David Hyrenbach	Student	Scripps	USA Ornithology	
John Carlson	Student	Montana State U	USA Ornithology	
Taekeun Rho	Student	UAF	Korea Nutrients/Pigments	

Keven Neely	Technician	U. Texas	USA Nutrients
Alexey Pinchuk	Technician	UAF	Russia Zooplankton
Viktor G. Egorov	Sr. Scientist	I. Energy Problems	Russia UV Radiation Effects

Cruise Activity Log

DATE/TIME
15 August 0900
18 August 1730
18 August 2100
19 August 0900

ACTIVITY
Depart Seward
Arrive Dutch Harbor
Depart Dutch Harbor
Arrive Line-C of Slime Bank Grid. Hove to due to high winds. Blowing 30-50 knots.
1230 Still blowing $35-55$ knots. Continue to hove to near SBC-1
1500 Still blowing $30-45$ knots.
1600 Wind down to 15 knots. Start CTD transect at SBC-1
20 August 0015 End SBC-line and transit to SBA-line
0630 End SBA-line and transit to SBE-line
1330 In Situ prod \& N-15 prods at SBE-6
1700 End SBE-line CTD survey
1715 Deploy HTI acoustics for SBE-10 to SBE-1 transect; bird obs
2130 End HTI acoutics at SBE-1
21 August 0030 Mocness tows at SBE-3
0220 Deploy HTI and Mocness at SBC-3
0830 Collect birds at SBE-3
1000 Collect more birds at SBE-3
1130 In situ prod \& N-15 prods at SBC-1
1315 Deploy HTI acoustics \& XBT's for SBC-1 to SBC-12 transect; bird obs
1930 Start Mocness tows at SBC-11
2130 Start Mocness tows at SBC-9
22 August 0100 Start Mocness tows at SBC-12
0300 Start Mocriess tows at SBC-7
0430 Start Mocness tows at SBC-6
0910 Collect birds at SBE-4
1300 In situ prod \& N-15 prods at SBC-12
1530 Move to SBA-12 for possible acoustic run
1630 Depart Slime Bank for Cape Newenham grid
2245 Start Cape Newenham transect at CNC-20
23 August 0840 Re -start transect at CNC-18 after weather delay
1900 Stop CTD transect after CNC-2 due to poor weather conditions
1915 Continue bird observations along CNCX transrct
2130 Stop bird observations at CNC-X8
2200 Depart CNC line for Nunivak Island grid

24 August		Underway to Nunivak Island with poor weather conditions
25 August	0420	Start Nunivak Island CTD transect at NIC-12
	1100	Stop Nunivak Island CTD transect at NIC-1 due to poor weather
	1130	transit to station NIA-1 to wait for good weather
26 August	0830	Start CTD transect stations at NIA-1
	1530	Finish A line transect at NIA-11 and depart for NIE-11
	1645	Start E line transect at NIE-11
	2130	Finish E line transect at NIE-1
	2320	Deploy HTI and Mocness at NIC-6
27 August	0050	Deploy HTI and Mocness at NIC-7A
	0230	Deploy HTI and Mocness at NIC-8A
	0400	Deploy HTI and Mocness at NIC-9A
	0550	Deploy HTI and Mocness at NIC-11A
	0800	Deploy HTI acoustics for NIC-12 to NIC-1 transect; bird obs
	1400	In situ prod \& N-15 prods at NIC-1; TSRB and UV sensors deployed
	1600	Deploy HTI acoustics for NIE-1 to NIE-12 transect; bird obs
	2315	Deploy HTI and Mocness at NIC-5
28 August	0230	Deploy HTI and Mocness at NIC-X6
	0445	Deploy HTI and Mocness at NIE-X8
	0800	Deploy HTI acoustics for NIC-1 to NIC-X8 transect; bird obs
	1240	Collect bird specimens at NIC-X8
	1250	In situ prod \& N-15 prods at NIC-X8; TSRB and UV sensors deployed
	1420	Deploy HTI acoustics for NIC-X8 to NIC-X15 transect, bird obs
	2200	Deploy HTI and Mocness at NIC-X12
29 August	0030	Deploy HTI and Mocness at NIE-X14
	0215	Deploy HTI and Mocness at NIC-X15
	0320	Start Nunivak to St Paul CTD transect at NIC-X15; Calvet samples
	1400	In situ prod \& N-15 prods at NIC-8; TSRB and UV sensors deployed
30 August		0300 Finish Nunivak to St. Paul CTD transect at NP-5
	0820	Start bird obs transect to East while underway to Cape Newenham line
	2020	Collect birds
31 August	0800	Start CTD transect at CNC-12; bird obs; Calvet samples
	1230	In situ prod \& N-15 prods at CNC-4; TSRB and UV sensors deployed
	1630	Stopped CTD operation at CNC-2 because of high wind and seas
	1745	Resumed CTD transect at CNC-X1
1 September	r 0220	Finished CTD transect at CNC-X16
	0840	Collect birds near CNE-X16
	1030	Deploy HTI at CNC-X16
	1100	Terminate HTI due to rough seas and bad data
	1400	In situ prod \& N-15 prods at CNE-X17; TSRB and UV sensors deployed

1650 Start CTD transect at CNE-X15
1710 Stop CTD transect due to rough seas; anchor at Cape Pierce
2 September 0815 Depart anchorage
0930 Collect birds near CNE-X17
1130 Start CTD transect at CNE-X15
1550 Deploy UV sensor at CNEX-9
Deploy HTI at CNE-X8; Bird Observations started
End bird obs but continue HTI to CNE-X14
Deploy Mocness and HTI at CNC-X14
3 September 0045 Deploy Mocness and HTI at CNC-X12
Deploy Mocness and HTI at CNC-X8
Deploy Mocness and HTI at CNC-X1
Start bird transect and HTI from CNC-X8 to offshore with XBT
Depoy In Situ Productivity at CNC-1
Continue bird transect and HTI from CNC-1 to offshore
Recover HTI and start bird collecting at CNC-11
Deploy Mocness and HTI at CNC-10
Deploy Mocness and HTI at CNC-2
4 September 0140 Deploy Mocness and HTI at CNC-6
Deploy Mocness and HTI at CNC-10
Start bird transect and HTI from CNC-10 to CNC-20 with XBT
Deploy In Situ Productivity at CNC-17
Continue bird transect and HTI from CNC-17 to CNC-20
Start XBT transect from CNC-20 to CNC-14
Deploy Mocness and HTI at CNC-14
5 September 0220 Deploy Mocness and HTI at CNC-17
Deploy Mocness and HTI at CNC-20
0545 Depart CN line for Dutch Harbor

Summary of Results

The late summer of 1998 in the Bering Sea was quite variable with short periods of good weather interspersed with wind events. However, the winds only prevented work for about 3 days during the total cruise so all sampling goals were exceeded. This description only presents highlights. Check the work group reports for specific details.

At Slime Bank there was no evidence of the coccolithophorid bloom. On the contrary, initial particulate filters gave the appearance of diatoms. The general conditions were typical for this sampling area.

The coccolithophorid bloom was first observed about mid-way of the transit from the Slime Bank grid to the Cape Newenham C-line. It was a very sharp transition and was quite noticeable since the sun was shining. The remainder of the cruise was in the coccolithophorid waters except for the short time while near St. Paul Island. During transit from St. Paul Island back to the Cape Newenham line, the ship passed through coccolithophorid "rich" water, to clear water and back to coccolithophorid water. This was interpreted to be relatively new water possibly advected onto the shelf from the shelfbreak submarine canyon. Nutrient results supported the hypothesis that the coccolithophorid bloom was still present in 1998 because the mixed layer nutrients were in very low concentrations.

Although very few dead birds was observed during the cruise, there was an apparent lack of feeding on euphausids. Many of the collected birds had been eating fish. This was in apparent contrast to several large patches of euphausids that were collected in nearby areas by the Mocness tows and HTI scattering data. There were no particularly unusual whale or mammal sightings during the trip.

Physical Oceanography

Nancy B. Kachel

At Slime Bank we occupied three lines of Ctd stations on August 20-2: twelve stations on the C-line and 7 stations on each the A and E lines. Also, a line of 20 XBTs was stations were taken on the SBC line on August 21. The upper water layer was well mixed to $\sim 35 \mathrm{~m}$ and had temperatures between 9° and $10.5^{\circ} \mathrm{C}$ and salinities between 31.6-31.8 psu. The inner front was found between stations SBC08 where the bottom is approximately 80 m deep. The temperature below the pycnocline decreased to $5.8^{\circ} \mathrm{C}$, while the observed salinity increases to >32.3psu. Shoreward of station \#6 on each line, the water column was well-mixed or poorly stratified, with increasingly fresher, warmer waters found closer to shore.

At the Nunivak Island grid a total of 42 Ctd stations were occupied: all 12 stations on the main grid on the C-line and generally every second station on the A and E -lines. We repeated the length of the C-line from inshore at NICX15 to offshore and NIC15, occupying every other station. The inshore edge of the inner front was found near the 04 positions on each line, at about 50 m depth. The warmest temperatures in the upper layer were $6-7^{\circ} \mathrm{C}$. Below the thermocline the temperature in the cold pool was about $3.5^{\circ} \mathrm{C}$. We found that salinities varied by less than 0.5 psu and sigma-t by ~ 0.6. The coccolithiphorid bloom was evident throughout the Nunivak grid area when we were there, and was visible all the way to the Pribilovs.

A line of five CTD stations was occupied going east from the Pribilovs on the way to the Cape Newenham grid. Warmer, saltier water was present next to the islands, but temperatures less than $2.5^{\circ} \mathrm{C}$ were sampled in the heart of the cold pool. We transited out of the coccolith bloom at a longitude of $\sim 166^{\circ} 25^{\prime} \mathrm{W}$.

One line of Ctd stations was occupied on Aug. 23-24 at the Cape Newenham grid before bad weather sent us to the Nunivak Island area. The coccolith bloom was present in the area at that time, but had disappeared by the time we reoccupied Newenham grid on August 31. By September 3, a somewhat weakened bloom was again seen. A total of 37 Ctd stations were taken along the gridlines, excluding isolated productivity stations. All but six of the Ctds were located on the C-Line.

The first occupation of the CNC line began at CNC20 located in the cold pool region.
CNC18 and 17 are close to the site of NOAA/PMEL Buoy 2. The inner front was assumed to be positioned near CNC04, although we never saw completely unstratified water column on this date. On The August 31-September 1 transect completely unstratified water column was observed between CNCX6 and CNCX14. Over the cold pool the surface mixed layer depth increase from 28m on August 23 to 32m on September 5 at CNC18. The surface layer temperature decreased from near 10° to $7^{\circ} \mathrm{C}$. The bottom temperature remained $3.5^{\circ} \mathrm{C}$. The difference on more the $6^{\circ} \mathrm{C}$ above and below the thermocline observed here on August 23 was the largest amount seen in the three grid areas.

In addition to the Ctd lines, we took a line of 34 XBTs on the CNC line on September 4 and 5 from CNC5 to CNC20.

HX213 August 15 to September 7, 1998 CTD Lines Occupied

Line ID	Sta. ID	Cast No.	Date(s)
Slime Bank			
SBA	SBA $10,8,6,5,4,2,1$	15-22	Aug. 20
SBC	SBC1-12	3-14	Aug. 20
SBE	SBE1,2,4-6,8,10	23-32	Aug. 20-21
Nunivak Island			
NIA	NIA 1,3,5,6,7,9,11	60-67	Aug. 26
NIC	NIC12-1 (incl.)	48-59	Aug. 25
NIE	NIE11,9,8,7,5,4,6,1	68-75	Aug. 27
NICX (long)	$\begin{aligned} & \text { NICX } 15, x 13, x 11, x 8, x 4 \\ & \text { NIC } 1,3-6,8,10,12,13,15 \end{aligned}$	80-97	Aug. 29-30
Cape Newenham			
CNC	$\begin{aligned} & \mathrm{CNC} 20,18,16,14,12, \\ & 9,8,6,4,2 \end{aligned}$	38-47	Aug. 23-24
CNC2	$\begin{aligned} & \text { CNC12,10,7,6,4,2, } \\ & \text { CNCX2,4,6,10,14,16,17 } \end{aligned}$	103-117	Aug. 31-Sept. 1
CNEX (inner only)	CNEX15,X13,X11,X9	120-126	Sept. 2
CNC (outer only)	CNC 20-14(incl.)	131-137	Sept. 4
Pribilov Is. To Cape Newenham Line			
NP	NP1-5	98-102	Aug. 30
Other Stations			
Resurrection Bay	ResBay	1	Aug. 15
Gulf of Alaska	GAI	2	Aug. 15

Cruise	Cast No	Sta.ID	Date/Time	Lat	Long	Bottom	Cast Comment
						Depth	Depth
HX213	1	RES2.5	8/15/98 18:41	60.0234	-149.359	264	252 no PAR
HX213	2	GAK1	8/15/98 20:25	59.8445	-149.466	270	268 no PAR
HX213	3	SBC1	8/20/98 00:12	55.0975	-163.854	27	26 no PAR
HX213	4	SBC2	8/20/98 00:57	55.1386	-163.887	32	32 no PAR
HX213	5	SBC3	8/20/98 01:32	55.1786	-163.92	44	42 no PAR
HX213	6	SBC4	8/20/98 02:08	55.2185	-163.955	53	50 no PAR
HX213	7	SBC5	8/20/98 02:57	55.2603	-163.987	59	55 PAR SN 4497 added
HX213	8	SBC6	8/20/98 03:34	55.3005	-164.023	77	74
HX213	9	SBC7	8/20/98 04:13	55.3413	-164.057	86	81
HX213	10	SBC8	8/20/98 04:51	55.3811	-164.091	96	92
HX213	11	SBC9	8/20/98 05:34	55.4224	-164.125	96	92
HX213	12	SCB10	8/20/98 06:18	55.4626	-164.158	98	95
HX213	13	SBC11	8/20/98 07:01	55.5036	-164.19	98	95
HX213	14	SBC12	8/20/98 07:46	55.5439	-164.225	96	92
HX213	15	SBA12	8/20/98 09:06	55.5896	-164.05	96	94
HX213	16	SBA10	8/20/98 10:05	55.5081	-163.982	92	90
HX213	17	SBA8	8/20/98 11:02	55.4267	-163.917	89	86
HX213	18	SBA6	8/20/98 12:00	55.3456	-163.85	71	67
HX213	19	SEA5	8/20/98 12:38	55.3053	-163.816	65	63
HX213	20	SEA4	8/20/98 13:14	55.2646	-163.783	57	56
HX213	21	SBA2	8/20/98 14:08	55.1836	-163.717	58	46
HX213	22	SBA1	8/20/98 14:42	55.1424	-163.683	44	40
HX213	23	SBE1	8/20/98 16:30	55.0511	-164.028	29	26
HX213	24	SBE2	8/20/98 17:08	55.0909	-164.064	39	38
HX213	25	SBE4	8/20/98 18:02	55.1728	-164.131	54	51
HX213	26	SBE5	8/20/98 18:38	55.2121	-164.164	63	59
HX213	27	SBE6	8/20/98 19:20	55.2531	-164.199	74	73
HX213	28	SBE06	8/20/98 20:29	55.2527	-164.197	72	23 Prod-Z
HX213	29	SBE06	8/20/98 21:07	55.2539	-164.192	72	41 Prod-R
HX213	30	SBE08	8/20/98 23:23	55.3373	-164.262	96	94
HX213	31	SBE10	8/21/98 00:23	55.4178	-164.327	100	95
HX213	32	SBE10	8/21/98 00:50	55.4213	-164.308	100	95
HX213	33	SBC01	8/21/98 19:06	55.096	-163.859	26	27 Prod-Z
HX213	34		8/21/98 19:37	55.0961	-163.859	0	23 Prod-Ro
HX213	35	SCB 12	8/22/98 20:57	55.5442	-164.227	100	94 Prod
HX213	36	SBC12	8/22/98 21:20	55.545	-164.226	100	41 Prod
HX213	37	SCB 12	8/22/98 21:52	55.5444	-164.226	100	36 Prod
HX213	38	CNC20	8/23/98 06:48	56.6452	-164.247	77	71 Coccoliths
HX213	39	CNC18	8/23/98 16:44	56.8003	-164.082	74	73 first seen
HX213	40	CNC16	8/23/98 17:58	56.9552	-163.915	72	69
HX213	41	CNC14	8/23/98 19:12	57.1093	-163.748	68	68
HX213	42	CNC12	8/23/98 20:28	57.2651	-163.578	61	64 Prod
HX213	43	CNC10	8/23/98 21:58	57.3427	-163.497	60	54
HX213	44	CNC08	8/23/98 23:41	57.42	-163.412	52	47
HX213	45	CNC06	8/24/98 00:38	57.4978	-163.332	47	42
HX213	46	CNC04	8/24/98 01:35	57.576	-163.248	47	41
HX213	47	CNC02	8/24/98 02:29	57.6525	-163.165	0	44
HX213	48	NIC12	8/25/98 12:08	58.432	-168.571	62	59
HX213	49	NIC11	8/25/98 12:57	58.473	-168.529	62	58
HX213	50	NIC10	8/25/98 13:33	58.512	-168.487	60	57

Cruise	Cast No	Sta.ID	Date/Time	Lat	Long	Bottom Depth	Cast Comment Depth
HX213	51	NIC09	8/25/98 14:13	58.551	-168.441	58	56
HX213	52	NIC08	8/25/98 14:42	58.5901	- 168.399	54	55
HX213	53	NIC07	8/25/98 15:20	58.6286	-168.355	53	50
HX213	54	NIC06	8/25/98 15:53	58.6684	-168.312	50	48
HX213	55	NIC05	8/25/98 16:30	58.7099	-168.271	49	51
HX213	56	NIC04	8/25/98 16:57	58.7452	-168.225	48	46
HX213	57	NIC03	8/25/98 17:35	58.784	-168.181	47	47
HX213	58	NIC02	8/25/98 18:11	58.8227	-168.138	44	42
HX213	59	NIC01	8/25/98 18:51	58.8621	-168.096	43	43
HX213	60	NIA01	8/26/98 16:43	58.9161	-168.276	45	42
HX213	61	NIA03	8/26/98 17:41	58.8397	-168.362	47	44
HX213	62	NIA05	8/26/98 18:42	58.7617	-168.447	50	47
HX213	63	NIA06	8/26/98 19:17	58.7228	-168.49	51	49
HX213	64	NIA07	8/26/98 19:59	58.6821	-168.535	53	51
HX213	65	NIA09	8/26/98 21:18	58.6037	- 168.62	58	57
HX213	66	NIA 11	8/26/98 22:09	58.5257	-168.707	63	62 Prod-Z
HX213	67	NIA11	8/26/98 22:46	58.5265	- 168.707	63	24 Prod-R
HX213	68	NIE11	8/27/98 01:10	58.4194	-168.349	61	58
HX213	69	NIE09	8/27/98 01:59	58.4979	-168.265	57	53
HX213	70	NIE08	8/27/98 02:28	58.5366	-168.222	55	52
HX213	71	NIE07	8/27/98 02:56	58.5756	-168.179	0	49
HX213	72	NIE05	8/27/98 03:41	58.6536	-168.092	49	44
HX213	73	NIE04	8/27/98 04:10	58.6924	-168.049	47	45
HX213	74	NIE03	8/27/98 04:38	58.7313	-168.006	46	44
HX213	75	NIE01	8/27/98 05:22	58.8091	-167.919	43	39
HX213	76	NIC01	8/27/98 $21: 24$	58.8618	-168.091	44	42 Prod-Z
HX213	77	NICO 1	8/27/98 21:49	58.8608	-168.096	44	22 Prod-R
HX213	78	NICX8	8/28/98 19:57	59.1739	-167.752	40	38 Prod-Z
HX213	79	NICX8	8/28/98 20:23	59.1739	-167.749	40	24 Prod-R
HX213	80	NICX15	8/29/98 11:20	59.6397	-167.233	30	30
HX213	81	NICX13	8/29/98 12:45	59.4837	-167.405	31	29
HX213	82	NICX11	8/29/98 14:05	59.3276	-167.579	36	33
HX213	83	NICX8	8/29/98 15:24	59.1711	-167.753	40	38
HX213	84	NICX4	8/29/98 16:39	59.0179	-167.927	41	36
HX213	85	NIC01	8/29/98 17:56	58.8619	-168.1	43	40
HX213	86	NIC03	8/29/98 18:47	58.7846	-168.185	46	44
HX213	87	NIC04	8/29/98 19:13	58.7458	-168.227	47	46
HX213	88	NIC05	8/29/98 19:39	58.7067	-168.271	48	50
HX213	89	NIC06	8/29/98 20:16	58.6673	-168.314	51	50
HX213	90	NIC08	8/29/98 21:02	58.59	-168.399	55	54
HX213	91	NIC08	8/29/98 21:04	58.5901	-168.398	55	52 Prod.Z /Upcast
HX213	92	NIC08	8/29/98 21:29	58.589	-168.399	55	54 Prod.Z
HX213	93	NIC08	8/29/98 22:02	58.5889	-168.401	0	26 Prod-R
HX213	94	NIC10	8/30/98 00:05	58.5113	-168.485	61	56
HX213	95	NIC12	8/30/98 00:50	58.4333	-168.572	61	59
HX213	96	NIC13	8/30/98 01:35	58.3512	-168.653	66	62
HX213	97	NIC15	8/30/98 02:47	58.2009	-168.832	69	65
HX213	98	NP1	8/30/98 04:15	58.0138	-169.04	70	68
HX213	99	NP2	8/30/98 05:42	57.8272	-169.246	64	61
HX213	100	NP3	8/30/98 07:14	57.6415	-169.453	71	67

Cruise	Cast No	Sta.ID	Date/Time	Lat	Long	Bottom Depth	Cast Comment Depth
HX213	101	NP4	8/30/98 08:51	57.4519	-169.66	70	69
HX213	102	NP5	8/30/98 10:46	57.2653	-169.867	49	48 New termination/pump stopped due to loss of connection
HX213	103	CNC12	8/31/98 16:07	57.2647	-163.585	61	58
HX213	104	CNC10	8/31/98 17:01	57.342	-163.502	54	51
HX213	105	CNC08	8/31/98 17:56	57.4198	-163.417	50	47
HX213	106	CNC06	8/31/98 18:51	57.4979	-163.334	49	46
HX213	107	CNC04	8/31/98 19:47	57.5749	-163.248	47	44 CTD/Prod-Z
HX213	108	CNC04	8/31/98 20:24	57.5756	-163.252	47	21 Prod-R
HX213	109	CNC02	8/31/98 22:45	57.6521	-163.163	46	45
HX213	110	CNCX2	9/1/98 00:34	57.7674	-163.039	45	27 CTD aborted due to heavy seas
HX213	111	CNCX2	9/1/98 01:59	57.7688	-163.04	45	42
HX213	112	CNCX4	9/1/98 02:58	57.8475	-162.956	42	38
HX213	113	CNCX6	9/1/98 03:53	57.9247	-162.873	43	38
HX213	114	CNCX 10	9/1/98 05:30	58.0791	-162.708	37	35
HX213	115	CNCX 12	9/1/98 07:02	58.2357	-162.541	35	33
HX213	116	CNCX 14	9/1/98 08:32	58.3915	-162.375	36	34
HX213	117	CNCX 16	9/1/98 10:06	58.5472	-162.212	43	41
HX213	118	CNEX 17	9/1/98 21:23	58.5721	-161.946	27	27 CTD/Prod-Z
HX213	119	CNEX17	9/1/98 21:44	58.5717	-161.954	28	28 Prod-R
HX213	120	CNEX 15	9/2/98 00:49	58.4145	-162.114	44	38
HX213	121	CNEX 15	9/2/98 19:51	58.415	-162.12	44	43
HX213	122	CNEX	9/2/98 21:04	58.2588	-162.284	33	31
HX213	123	CNEX11	9/2/98 22:16	58.1043	-162.451	36	34
HX213	124	CNEX9	9/2/98 23:23	57.9868	-162.576	41	40 CTD/Prod.Z
HX213	125	CNEX9	9/2/98 23:40	57.9893	-162.574	41	4 Prod-Z
HX213	126	CNEX9	9/2/98 23:52	57.9884	-162.574	41	29 Prod-R
HX213	127	CNC01	9/3/98 21:00	57.6919	-163.125	45	43 Prod-Z
HX213	128	CNC01	9/3/98 21:28	57.6911	-163.127	45	22 Prod-R
HX213	129	CNC17	9/4/98 21:31	56.8774	-164.003	71	69 Prod-Z
HX213	130	CNC17	9/4/98 21:59	56.8749	-164.003	71	3 Prod-R
HX213	131	CNC20	9/5/98 03:02	56.6446	-164.25	76	71
HX213	132	CNC19	9/5/98 03:47	56.7219	-164.167	74	70
HX213	133	CNC18	9/5/98 04:33	56.7993	-164.083	74	70
HX213	134	CNC17	9/5/98 05:18	56.8762	-164.001	72	68
HX213	135	CNC16	9/5/98 06:05	56.954	-163.918	70	65
HX213	136	CNC15	9/5/98 06:51	57.0314	-163.834	69	63
HX213	137	CNC14	9/5/98 07:38	57.1086	-163.752	66	62

Nutrient and Pigment Studies Terry Whitledge, Keven Neely and Taekeun Rho

The nutrients and plant pigments at the Slime Bank were nearly typical with relatively low nutrients at the surface with increasing concentrations offshore and deeper representing the proximity of deeper basin waters. Inshore depletion of nitrate below 1 uM corresporided to low salinity waters that contained low amounts of chlorophyll. The maximum chlorophyll concentrations were located about $40-50 \mathrm{~km}$ offshore in transects SBA, SBC and SBE as shown by the figures. Stratification was sufficient to allow the rather typical looking diatom bloom to at about the 60 m isobath. Ammonium concentrations were somewhat higher than expected but may be due to larger arnounts of regeneration in the warmer than usual waters.

The coccolithophorid bloom was first observed on the transit from the Slime Bank grid to the Cape Newenham line. The entire CN line was positioned within the Coccolithophorid bloom waters. The stratification on outer end of the Cape Newenham line was strong but the inner end was well mixed. The transition from the stratified to unstratified had the classic structure of the inner front. Nutrients in the upper layer were depleted in the middle shelf but normal concentrations in the bottom layer ($\mathrm{NO} 3=10 \mathrm{uM} ; \mathrm{SiO} 4=25 \mathrm{uM} ; \mathrm{PO} 4=2.5 \mathrm{uM}$ and $\mathrm{NH} 4=6 \mathrm{uM}$). The unstratified inner shelf end of the transect was nearly uniform with nitrates $<1 \mathrm{uM}$ and silicates between 5 and 10uM. The relatively high chlorophyll in the upper stratified layer declined to small values throughout the water column on the inner half of the transect. The transect was terminated at the 40 m isobath due to high wind conditions.

Water stratification was relatively strong on the Nunivak Island transects centered between $30-35 \mathrm{~m}$. Inshore waters were relatively well mixed. Nitrate was about 2-3 uM in the upper layer and the chlorophyll maximum tended to be located at about 20 m on the offshore end. Nitrate was depleted from the entire water column on the inner shelf and the chlorophyll fluorescence showed no significant accumulation. Coccolithophorids were present at all locations of the transect but the relative numbers were possibly lower in the low salinity waters nearest the coast.

The long transect from Nunivak Island to St. Paul Island clearly showed the well mixed waters at either end of the transect while stratification was quite strong in the center probably as a result of the "cold pool". The dramatic change in nitrate, silicate, ammonium and phosphate concentrations about 100 km from Nunivak Island clearly delineated the middle front. There was no apparent change in plant pigment fluorescence across the nutrient gradients.

Five nutrient ammendment experiments were carried out in diatorn (Slime Bank) and coccolithophorid (Nunivak Island) dominated waters. Shipboard fluorescence measurements indicated that nitrate plus phosphate, ammonium plus phosphate, and iron additions gave the largest responses. Filters and HPLC samples will be examined to quantify the changes during the 5-7 day incubations.

${ }^{14} \mathrm{C}$ Primary Production
Stephan I. Zeeman

On HX213 we collected our usual primary productivity samples for ${ }^{14} \mathrm{C}$ incubations. These were in situ incubations, and on-deck incubator experiments to determine P -I curves. We did P-I curves at 14 stations and in situ experiments at 12 of those. Chlorophyll for the productivity samples was analyzed on board by freezing the filters and then cold extracting them for 24 hours prior to measuring fluorescence.

Samples were collected for phytoplankton counts by two methods. Samples were preserved in neutral Lugol's solution or filtered on $0.45 \mu \mathrm{~m}$ membrane filters and air dried. Samples for counts were collected from all productivity samples and also at several depths at stations along one of the transect lines at each grid. Sarnples will be counted later with an inverted microscope.

Similar to the phytoplankton counts, DOM samples were collected at several depths along one of the transect lines on each grid. These were prepared by filtering 50 ml samples through GF/F filters, freezing the water and keeping them irl darkness. These will be analyzed by spectrofluorometry later.

DMS samples were collected for Maureen Keller at Bigelow Laboratory for Ocean Sciences. As with the phytoplankton and DOM samples, these were collected at several depths along one transect on each grid. Samples were put in vials, injected with KOH and capped with serum caps.

At each site for an in situ productivity measurement, we deployed a Tethered Spectroradiometer Buoy (TSRB). This instrument measures incident irradiation at one wavelength and upwelled radiance at 7 wavelengths corresponding to those measured by the SeaWiFS satellite. The TSRB was in the water for about $30-40$ minutes, at least twice during an overpass of the satellite under relatively clear skies.

DOM, Phytoplankton in Lugol's, Phytoplankton dried on filter, DMS
C line at Slime Bank - 49 samples each
SBC1 24, 20, 10, 0 m
SBC2 30, 20, 10, 0 m
SBC3 40, 30, 20, 10, 0 m
SBC4 48, 30, 20, 10, 0 m
SBC5 44, 30, 20, 10, 0 m
SBC6 72, 0 m
SBC7 80, 50, 20, 0 m
SBC8 92, 50, 20, 0 m
SBC9 92, 50, 20, 0 m
SBC10 94, 60, 30, 0 m

```
SBC11 93,40, 20,0 m
SBC12 90,50,20,0 m
C line at Cape Newenham - }16\mathrm{ samples each
CNC16 30,0 m
CNC14 30,0 m
CNC12 30,0m
CNC10 30,0 m
CNC8 30, 0 m
CNC6 30,0 m
CNC4 30,0 m
CNC2 30, 0 m
C line at Nunivak Island - 24 samples each
NIC12 30,0 m
NIC11 30,0 m
NIC10 30,0 m
NIC9 30,0m
NIC8 30,0m
NIC7 30,0 m
NIC6 30,0 m
NIC5 30,0m
NIC4 30,0m
NIC3 30,0 m
NIC2 30,0 m
NIC1 30,0m
Productivity - 14 on-deck prods, 10 in situ prods (200 in situ, 405 P-I samples)
SBE6 - in situ 0, 5, 10,20 m, on-deck 0, 20 m
SBC1 - in situ 0,5,10,15 m, on-deck 0 m
SBC12 - in situ 0, 10, 15, 20 m
CNC12 - on-deck 0m
NIC12 - on-deck 0m
NIA11 - on-deck 12 m
NIC1 - in situ 0, 5, 10, 15 m, on-deck 0 m
NICX8 - in situ 0,5,10,15 m,on-deck 0 m
NIC8 - in situ 0,5,10,15 m, on-deck 15 m
CNC4 - in situ 0,5,10,15 m, on-deck 15 m
CNEX17 - in situ 0,5,10,15 m, on-deck 0 m
CNEX9 - on-deck 0m
CNC1 - in situ 0, 5, 10, 15 m, on-deck 0, 15 m
CNC17 - in situ 0,5,10,15 m, on-deck 15 m
```

The optical properties of ocean waters were investigated at stations SBE6, SBC1, SBC12, CNC12, NIC12, NIA7, NIA11, NIC1, NICX8, NIC8, CNC4, CNEX17, CNEX9, CNC01, CNC17.

PUV-500 submersible spectrophotometer (Biospherical Instruments, Inc.) was used for determination of the intensity of solar fluxes in $305 \mathrm{~nm}, 320 \mathrm{~nm}, 340 \mathrm{nrn}, 380$ nm and PAR spectral regions and natural fluorescence (NF). The spectrophotometer consists of two main parts - one submersible and the other on deck. The two provide simultaneous measurements and allow for correction of incident irradiance fluctuations when measuring the underwater light field.

The measurements were used to calculate the coefficients of absorption of a sea waters at $305 \mathrm{~nm}, 320 \mathrm{~nm}, 340 \mathrm{~nm}, 380 \mathrm{~nm}$ and PAR spectral regions and distribution of Chlorophyll A in the water with a depth at each station. The data on irradiation at different depths allows one to determine the "DNA weighted" doses of UV irradiation of marine microorganisms.

All measurements were conducted simultaneously with sampling for primary productivity.

In the framework of a program of the development of DNA dosimeters four groups of samples containing unshielded DNA were exposed under the Sun for the period of $1,2,3$ and 5 days. The intensities of solar fluxes were recorded continuously during this time. The amount of damaged DNA will be determined at the lab. The DNA results and solar fluxes will be used to determine biologically effective doses.

Dr. Viktor G. Egorov

egorov@ binep.ac.ru

New Productivity Studies

T. Rho and J. Goering

Productivity studies were conducted on the R/V Alpha Helix cruise HX213 in the Bering Sea from 15 August to 6 August. At productivity studies the rates of photosynthesis and nitrogen uptake($\mathrm{NO}_{3}{ }^{-}, \mathrm{NH}_{4}{ }^{+}$and Urea) were measured in the euphotic zone 100%, $50 \%, 30 \%, 12 \%, 5 \%$ and 1% surface light penetration depths.
The photosynthetic and nitrogen uptake rate measurements were estimated by addition of $\mathrm{H}^{13} \mathrm{CO}_{3},{ }^{15} \mathrm{NO}_{3},{ }^{15} \mathrm{NH}_{4}^{+}$and ${ }^{15} \mathrm{~N}$-Urea to euphotic zone water collected at the choosen light depths. Euphotic zone light levels were determined with an underwater PAR sensor. After additon of ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ enriched compound the uptake sample were incubated on deck for about 4 hours in a surface sea water cooled tank exposed to $100 \%, 50 \%, 30 \%, 12 \%, 5 \%$, and 1% surface light intensities (light levels were simulated using neutral density metal screen that attenuated the surface light to the above value. We filtered seawater for the analysis of natural abundance of ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ of phytoplankton at each productivity station. We also measured pH of seawater at each depth productivity is measured for calculation of total CO2. At CNC17 station, we did some addition study of 13 C and 15 NO 3 uptake; Control (${ }^{13} \mathrm{C}+{ }^{15} \mathrm{NO}_{3}$), Treatment \#1 $\left({ }^{13} \mathrm{C}+{ }^{15} \mathrm{NO}_{3}+\mathrm{Fe}\right)$, Treatment \#2($\left.{ }^{13} \mathrm{C}+{ }^{15} \mathrm{NO}_{3}+\mathrm{Fe}+\mathrm{PO} 4\right)$, Treatment \#3(${ }^{13} \mathrm{C}+$ ${ }^{15} \mathrm{NO}_{3}+\mathrm{Fe}+\mathrm{PO}_{4}$)

The following table is summary of the productivity studies conducted on Alpha Helix 213.

These studies will provide us with information needed to estimate photosynthetic carbon uptake and the proportions of new productivity $\left(\mathrm{NO}_{3}{ }^{-}\right.$uptake) and regenerated productivity($\mathrm{NH}_{4}{ }^{+}$and Urea uptake) at Inner Shelf region of Bering Sea.

	Station	${ }^{13} \mathrm{C}$	${ }^{15} \mathrm{NO}_{3}$	${ }^{15} \mathrm{NH}_{4}$	${ }^{15} \mathrm{~N}$-Urea	Nat'l $13 \mathrm{C} \& 15 \mathrm{~N}$	pH
1	SBE06	O	O	O	O	O	O
2	SBC01	O	O	O	O	O	O
3	SBC12	O	O	O	O	O	O
4	CNC12	O	O	O	O	O	O
5	NIA01	O	O	O	O	O	O
6	NIC01	O	O	O	O	O	O
7	NICX08	O	O	O	O	O	
8	NIC08	O	O	O	O	O	O
9	CNC04	O	O	O	O	O	O
10	CNCX17	O	O	O	O	O	O
11	CNCX9	O	O	O	O	O	O
12	CNC01	O	O	O	O	O	O
$* 13$	CNC17	O	O			O	O
					O	O	

At each station we measure primary production at six light depths $, 100,50,30,12,5$, and 1%, for each substrate

* addition study of ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{NO}_{3}$ uptake

Zooplankton
Ken Coyle and Alexey Pinchuk

One of the major goals of the Inner Front project is the determination of the effects of frontal circulation on energy transfer to apex predators. Shorttail shearwaters, which feed primarily on euphausiids, serve as the apex predator in this project. Zooplankton are therefore the critical link between processes influencing production at the inner front and its ultimate transfer to shearwaters. The primary task of the zooplankton component is determination of the species composition, concentration and distribution of the major zooplankton taxa at the four study grids.

Zooplankton species composition, abundance and horizontal distribution were assessed at stations in the mixed, frontal and stratified regimes using a $1-\mathrm{m}$ square MOCNESS systern equipped with 0.5 mm mesh. In addition, the distribution of large zooplankton, micronekton and fish was assessed with an HTI model 244 multifrequency split beam acoustic system. Operating frequencies included 43, 120, 200 and 420 kHz . Transects were run from the near-shore mixed region across the front and into the stratified area to assess target distribution relative to the three hydrographic regimes. Acoustic data were also collected concurrently with each MOCNESS tow to aid in target strength deterrminations for scaling the acoustic data. Microzooplankton were collected with a CaIVET net to assess the density of small copepods and euphausiid larvae. The CaIVET net, equipped with 0.150 mm mesh, was towed vertically from the bottom to the surface at CTD stations along transect C in each sampling grid All samples were preserved in formalin for later analysis. Selected taxa from various trophic levels were sorted from tows taken in the various hydrographic regimes in each grid; the specimens were acidified, dried at $60^{\circ} \mathrm{C}$ and returned to the lab for stable isotope analysis. A summary table of all of the samples collected is provided below.

Generally, zooplankton and nekton at Slime Bank and Cape Newenham were dominated by fish and jelly fish. The fish included zero class pollock, however, target strength measurements from the split beam transducers indicate the presence of larger fish, particularly at Slime Bank. Although juvenile pollock were present at Nunivak Island, the samples were dominated by euphausiids, primarily Thysanoessa rachii adult males, females with spermatophores and juveniles. A scattering layer containing euphausiids was present near the bottom along the entire transect from deep to shallow water at the Nunivak site. Juvenile Thysanoessa inermis were present at Slime Bank and adult Thysanoessa spinifera occurred in the stratified regime at Cape Newenham. The zooplankton during the 1998 sampling season seemed to be dominated by euphausiids, in contrast to 1997 when the dominant zooplankter was Calanus marshallae. Detailed comparisons will be done following sample analysis.

Zooplankton samples collected during Alpha Helix research cruise HX213 (August 15 September 7, 1998).

Type of samples	Slime Bank	Nunivak Island	Cape Newenham
CaIVET	12	11	18
MOCNESS	62 (9 tows)	$73(11$ tows $)$	$71(10$ tows $)$
Isotope	24	56	20

Marine Ornithology (Cheryl Baduini, David Hyrenbach, Heather Revillee and John Carlson).

Marine Ornithology

Cheryl Baduini, John Carlson, K. David Hyrenbach and Heather Revilee

Sarnples collected: Surveys of bird distribution and abundance: 1065 km trackline, 125 hours survey effort, 49, 730 birds encountered Birds collected for prey analysis: 41
Samples collected for stable isotope analyses: 164
Samples collected for lipid analysis: 129

Preliminary results and interpretation:

The objectives of the ornithological portion of this study were to determine the distribution, abundance and foraging patterns of short-tailed shearwaters relative to the structural inner front located within each of the study areas. These observations were recorded to determine if short-tailed shearwaters, the apex predators in this study, focus their foraging efforts in frontal waters. A second objective was to determine the diet composition of foraging shearwaters relative to prey abundance and availability within each of the study areas. Additionally, we collected information on stable isotope ratios and fatty acid composition relative to trophic structure and long-term diet trends of short-tailed shearwaters in the eastern Bering Sea.

Bird observations were made when the ship was underway at speeds of 5 knots or greater. All birds within an arc of 90° from the bow to the side with the best visibility were counted from the bridge, and were recorded on a laptop computer for later analysis. Behaviors of all birds were recorded, with particular attention paid to whether shearwaters were feeding by hydroplaning at the surface or were diving deeply.

Forty-one shearwaters were collected in the study areas to assess stomach contents and foraging patterns. Shearwaters were collected when feeding, if possible, or when resting at the surface, if necessary. Morning collections were made at Slime Bank, Cape Newenham, and Nunivak Island grids. Two evening collections were made in the Cape Newenham grid and just offshore of the CN grid in the middle shelf area $\left(57^{\circ} 15.34 \mathrm{~N} 166^{\circ} 39.74 \mathrm{~W}\right)$. Stomach contents were removed from short-tailed shearwaters immediately after collection and stored in 80% ethyl alcohol/distilled water
for processing in the laboratory.

Slime Bank:

We observed few shearwaters (average density $=76$ birds $/ \mathrm{km}^{2}$) overall, in the Slime Bank grid and found little evidence of shearwaters foraging in the area (Fig). The only indication of foraging that we obsened were small groups (50-100 birds) sitting on the surface with their heads underwater. A total of 10 birds were collected on two consecutive mornings well insthore of the front around Station E3. The biomass of stomach contents was low (1-18 g, and one 42 g sampie) and a wide variety of prey items was observed such as juvenile euphausiids, T. raschii and T. spinifera, as well as crab megalopie, and fish tissue. Preliminary exarnination of MOCNESS tows collected at this site showed an abundance of juvenile T. inermis, T. spinifera, and a few juvenile T. raschii, as well as juvenile walleye pollock (Theragrama chalcograma). There was a lack of mature adult T.raschii, usually the most common prey item of short-tailed shearwaters in the southeastern Bering Sea, collected in the MOCNESS tows at this site.

Cape Newenham:

Our best observation of foraging by short-tailed shearwaters occurred in the Cape Newenham grid, and just offshore of the outer grid over the middle shelf (Fig). Upon transit to the Newenham grid, we observed approximately 2,000 shearwaters engaged in shallow, short (15-30 sec) plunge dives and feeding with black-legged kittiwakes and at least two humpback whales. The nine birds collected in this area contained recognizable juvenile pollock or partially digested fish assumed to be pollock. Whole specimens of the fish were removed to take back to the laboratory for further analysis. We suspect some of the bird specimens collected may belong to the species, sooty shearwater, P. griseus. Because it is difficult to differentiate between sooty and short-tailed shearwaters in the field, a detailed analysis of morphometrics will be conducted in the laboratory to verify their identity.

Within the Cape Newenham grid, loose foraging flocks (up to 100 individuals per
flock) were observed foraging well inshore of the structural front around Station EX17 and 9 individuals were collected during two morning attempts. Collection was difficult due to significant winds and stormy weather, along with the unusually rapid formation and subsequent dispersal of foraging groups. The shearwaters were feeding with black-legged kittiwakes and tufted puffins. Eight of nine birds collected contained sandlance and partially digested fish. Whole specimens of sandlance were removed to take back to the lab for analysis of fatty acid composition. The identity of these shearwaters, also needs to be confirmed. Preliminary examination revealed that the foraging flocks might contain both P. tenuirostris and P. griseus.

A third evening collection was made of shearwaters foraging on juvenile pollock between stations C 10 and C 11 , well offshore of the front in stratified water. Approximately 700 shearwaters were observed hydroplaning with their heads underwater and foraging just behind and after a large group of kittiwakes diving underwater.

No shearwaters were observed foraging in the Cape Newenham grid where there was any extent of coccolithophore bloorn.

Nunivak Island

No short-tailed shearwaters were observed foraging within the entire area comprising the inner and outer grids. Also, few shearwaters were sighted flying or sitting on the water in the area. Our expectation was that we would encounter more birds in this area during fall than in the spring, since this is an area where shearwaters migrate to in late summer/early fall. These observations were similar to last year's observations when we observed a major coccolithophore bloom and subsequent die-off of short-tailed shearwaters. However, this year, we saw no obvious die-off of shearwaters in the area (only 1 dead shearwater observed) though a strong coccolithophore bloom covered the entire Nunivak grid. Although there were no birds in the area, mature adult T. raschii were available in layers both on the bottom and in the water column ($30-\mathrm{m}$) in both the outer and inner grids, as shown by the MOCNESS and acoustic records. The unusual finding of high biornass of adult euphausiids and few foraging shearwaters suggests that shearwaters do not forage in coccolithophore
bloom areas possibly because they cannot detect or "see" prey items. Five birds were collected while flying past the vessel and four contained no prey items. One of five birds contained one adult euphausiid.

Summary:

In fall of 1998, we observed few flocks of foraging shearwaters and few total birds overall in all areas. The densities of birds feeding, sitting on the water, and overall, within each of the study areas were lower than last year during the same time period (Table 1). Because our effort covered a significant portion of the southeastern Bering Sea including not only our study sites but also off St. Paul Island, and during transit along the middle domain in between sites, our conclusion was that there were low numbers of shearwaters in the area during the fall 98 cruise. Moreover, birds collected in Jun and Aug/Sep 1998 had lower body mass than those collected in Jun 97 (Table 2). Shearwaters may have experienced poorer foraging conditions in. In particular, birds collected on this cruise had significantly lower body mass than during any season surveyed thus far (Table 2) and had low body fat. It is possible that under such poor feeding conditions, shearwaters may have migrated out of the southeastern Bering Sea earlier than usual (late Sept./early Oct.) or that a significant portion of the population occupied an area we did not survey.

An additional unusual observation was that shearwaters were foraging almost exclusively on fish, mostly juvenile pollock and sandlance. Because short-tailed shearwaters usually forage on euphausiids in the eastern Bering Sea, it is unusual to observe them foraging on a different prey resource in this area. It is possible that some of the shearwaters collected may belong to the species, P. griseus, which are piscivorous and usually, geographically limited to the Gulf of Alaska. A detailed morphometrics study on the collected specimens will reveal if P. griseus migrated further north into the Bering Sea than their usual range this year.

Table 1. Densities of shearwaters during fall 1997 and 1998.
(Birds / km ${ }^{2}$)

Site	Survey Effort (km trackline)	Mean \pm s.e. (all behaviors)	Mean \pm s.e. (feeding and on water)

Nunivak Island 1997	591	32.61 ± 8.43	3.53 ± 1.19
Nunivak Island 1998	543	19.23 ± 1.37	0.12 ± 0.07

Slime Bank 1997	210	188.86 ± 50.08	36.77 ± 11.59
Slime Bank 1998	210	76.18 ± 12.66	22.98 ± 9.81

Cape Newenham 1998	705	21.71 ± 4.11	5.57 ± 2.11

Table 2. Gross mass, mass of stomach contents, net mass, and sex ratios of shearwaters

Date	Sample	Mean	Mean mass	Mean net mass	\% birds	
	Size	gross Mass (g)	stomachs (g)	(g)	$\begin{aligned} & <500 \mathrm{~g} \\ & \text { net mass } \end{aligned}$	
Jun						
97	39	656	57	598	0	10/25
Sep						
97	55	535	19	517	42	36/17
Jun						
98	51	579	48	532	14	27/22
Sep	41	531	33	498	61	29/12
98						

Aug
89
26
572
14
559
? $\quad 7 / 17$

(w) uldea

(w) 4łdəa

(w) uldea

(w) 4ldea

(山) 47deg
 م

(山) 4łdəa

(w) بlıdeg

(u) uıdəa

(山) पłdəa

(山) 4łdea

(w) чıdəa

Sigma t

Cape Newenham - C Line

Volume Scattering, 200 kHz

APPENDIX A

Nunivak Island Grid Positions

name	Lat.	Long.		Lat.		Long.
A-Line						
NIA-24	57.5546	169.7850	57	33.28	169	47.10
NIA-23	57.6324	169.6988	57	37.95	169	41.93
NiA-22	57.7102	169.6126	57	42.61	169	36.76
NIA-21	57.7880	169.5264	57	47.28	169	31.59
NIA-20	57.8658	169.4402	57	51.95	169	26.41
NIA-19	57.9436	169.3541	57	56.62	169	21.24
NIA-18	58.0214	169.2679	58	01.29	169	16.07
NIA-17	58.0992	169.1817	58	05.95	169	10.90
NIA-16	58.1770	169.0955	58	10.62	169	05.73
NIA-15	58.2548	169.0093	58	15.29	169	00.56
NIA-14	58.3326	168.9232	58	19.96	168	55.39
NIA-13	58.4104	168.8370	58	24.62	168	50.22
NIA-12	58.4882	168.7508	58	29.292	168	45.049
NIA-11	58.5271	168.7077	58	31.626	168	42.460
NIA-10	58.5660	168.6645	58	33.960	168	39.871
NIA-09	58.6049	168.6214	58	36.294	168	37.283
NIA-08	58.6438	168.5782	58	38.628	168	34.695
NIA-07	58.6827	168.5351	58	40.962	168	32.106
NIA-06	58.7216	168.4919	58	43.296	168	29.514
NIA-05	58.7605	168.4488	58	45.630	168	26.928
NIA-04	58.7994	168.4057	58	47.964	168	24.340
NIA-03	58.8383	168.3625	58	50.298	168	21.751
NIA-02	58.8772	168.3194	58	52.632	168	19.162
NIA-01	58.9161	168.2762	58	54.966	168	16.574
NIA-X2	58.9939	168.1900	58	59.63	168	11.40
NIA-X4	59.0717	168.1038	59	04.30	168	06.23
NIA-X6	59.1495	168.0177	59	08.97	168	01.06
NIA-X8	59.2273	167.9315	59	13.64	167	55.89
NIA-X10	59.3051	167.8453	59	18.31	167	50.72
NIA-X11	59.3829	167.7591	59	22.97	167	45.55
NIA-X12	59.4607	167.6729	59	27.64	167	40.38
NIA-X13	59.5385	167.5867	59	32.31	167	35.20
NIA-X14	59.6163	167.5006	59	36.98	167	30.03
NIA-X15	59.6941	167.4144	59	41.64	167	24.86
NIA-X16	59.7719	167.3282	59	46.31	167	19.69
NIA-X17	59.8497	167.2420	59	50.98	167	14.52

B-Line
NIB-12
NIB-11
NIB-10
NIB-09
NIB-08
NIB-07
NIB-06
NIB-05
NIB-04
NIB-03
NIB-02
NIB-01

C-Line
NIC-24
NIC-23
NIC-22
NIC-21
NIC-20
NIC-19
NIC-18
NIC-17
NIC-16
NIC-15
NIC-14
NIC-13
NIC-12
NIC-11
NIC-10
NIC-09
NIC-08
NIC-07
NIC-06
NIC-05
NIC-04
NIC-03
NIC-02
NIC-01
NIC-X2
NIC-X4
NIC-X6
NIC-X8
NIC-X10
NIC-X11
58.4613168 .6612 58.5002168 .6180 58.5391168 .5749 5830.012 5832.346 5834.680
5837.014
5839.348
5841.682
5844.016
5846.350
5848.684
5851.018
5853.352

168
39.670
16837.081
16834.492
16831.902
16829.313
16826.724
16824.132
16821.546
16818.957
16816.368
16813.779
16811.190

NIC-X12	59.4066	167.4920	59	24.39	167	29.52
NIC-X13	59.4844	167.4056	59	29.06	167	24.34
NIC-X14	59.5622	167.3192	59	33.73	167	19.15
NIC-X15	59.6400	167.2328	59	38.40	167	13.97
NIC-X16	59.7178	167.1465	59	43.07	167	08.79
NIC-X17	59.7956	167.0601	59	47.73	167	03.60

D-Line
NID-12
NID-11
NID-10
NID-09
NID-08
NID-07
NID-06
NID-05
NID-04
NID-03
NID-02
NID-01

58.4078	168.4818	58	24.465	168	28.906
58.4466	168.4386	58	26.796	168	26.317
58.4855	168.3955	58	29.127	168	23.728
58.5243	168.3523	58	31.458	168	21.139
58.5632	168.3092	58	33.789	168	18.549
58.6020	168.2660	58	36.120	168	15.960
58.6408	168.2228	58	38.448	168	13.368
58.6797	168.1797	58	40.782	168	10.782
58.7185	168.1366	58	43.113	168	08.193
58.7574	168.0934	58	45.444	168	05.604
58.7962	168.0502	58	47.775	168	03.015
58.8351	168.0071	58	50.106	168	00.426

E-line

NIE-24	57.4469	169.4288	5726.82	16925.73
NIE-23	57.5247	169.3425	5731.48	16920.55
NIE-22	57.6025	169.2561	5736.15	16915.36
NIE-21	57.6803	169.1697	5740.82	16910.18
NIE-20	57.7581	169.0833	5745.49	16905.00
NIE-19	57.8359	168.9969	5750.16	16859.81
NIE-18	57.9137	168.9105	5754.82	16854.63
NIE-17	57.9915	168.8241	5759.49	16849.44
NIE-16	58.0693	168.7377	5804.16	16844.26
NIE-15	58.1471	168.6513	5808.83	16839.08
NIE-14	58.2249	168.5649	5813.49	16833.89
NIE-13	58.3027	168.4785	5818.16	16828.71
NIE-12	58.3805	168.3921	5822.830	16823.524
NIE-11	58.4194	168.3489	5825.164	16820.934
NIE-10	58.4583	168.3058	5827.498	16818.345
NIE-09	58.4972	168.2626	5829.832	16815.756
NIE-08	58.5361	168.2195	5832.166	16813.167
NIE-07	58.5750	168.1763	5834.500	16810.578
NIE-06	58.6139	168.1331	5836.834	16807.986
NIE-05	58.6528	168.0900	5839.168	16805.400
NIE-04	58.6917	168.0468	5841.502	16802.811
NIE-03	58.7306	168.0037	5843.836	16800.222

NIE-02	58.7695	167.9605	58	46.170	167	57.632
NIE-01	58.8084	167.9174	58	48.504	167	55.043
NIE-X2	58.8862	167.8310	58	53.17	167	49.86
NIE-X4	58.9640	167.7446	58	57.84	167	44.68
NIE-X6	59.0418	167.6582	59	02.51	167	39.49
NIE-X8	59.1196	167.5718	59	07.18	167	34.31
NIE-X10	59.1974	167.4854	59	11.84	167	29.13
NIE-X11	59.2752	167.3990	59	16.51	167	23.94
NIE-X12	59.3530	167.3126	59	21.18	167	18.76
NIE-X13	59.4308	167.2262	59	25.85	167	13.57
NIE-X14	59.5086	167.1398	59	30.51	167	08.39
NIE-X15	59.5864	167.0535	59	35.18	167	03.21
NIE-X16	59.6642	166.9671	59	39.85	166	58.02
NIE-X17	59.7420	166.8807	59	44.52	166	52.84

Slime Bank Station Positions

Station Name	Lat	Long		Lat		Long	Comment
SBC-0							
SBC-1	55.0965	163.8570	55	5.79	163	51.42	
SBC-2	55.1371	163.8903	55	8.23	163	53.42	
SBC-3	55.1777	163.9236	55	10.66	163	55.42	
SBC-4	55.2184	163.9568	55	13.10	163	57.41	
SBC-5	55.2591	163.9901	55	15.55	163	59.41	
SBC-6	55.2998	164.0234	55	17.99	164	01.40	
SBC-7	55.3405	164.0567	55	20.43	164	03.40	
SBC-8	55.3811	164.0900	55	22.87	164	05.40	
SBC-9	55.4218	164.1233	55	25.31	164	07.40	
SBC-10	55.4625	164.1566	55	27.75	164	09.40	
SBC-11	55.5032	164.1899	55	30.19	164	11.39	
SBC-12	55.5844	164.2565	55	35.06	164	15.39	
SBC-13	55.6656	164.3231	55	39.94	164	19.38	
SBC-14	55.7468	164.3897	55	44.81	164	23.38	
SBC-15	55.8280	164.4563	55	49.68	164	27.38	
SBC-16	55.9092	164.5228	55	54.55	164	31.37	
SBC-17	55.9904	164.5894	55	59.42	164	35.37	
SBC-18	56.0716	164.6560	56	04.30	164	39.36	
SBC-19	56.1528	164.7226	56	09.17	164	43.36	
SBE-10	55.4170	164.3279	55	25.02	164	19.67	
SBE-8	55.3356	164.2613	55	20.14	164	15.68	
SBE-6	55.2543	164.1947	55	15.26	164	11.68	
SBE-5	55.2136	164.1615	55	12.81	164	09.69	
SBE-4	55.1729	164.1282	55	10.37	164	07.69	
SBE-2	55.0915	164.0616	55	05.49	164	03.70	
SBE-1	55.0508	164.0283	55	03.05	164	01.70	
SBD-1	55.0736	163.9426	55	04.42	163	56.56	
SBD-2	55.1143	163.9759	55	06.86	163	58.56	
SBD-4	55.1957	164.0425	55	11.74	164	02.55	
SBD-5	55.2363	164.0758	55	14.18	164	04.55	
SBD-6	55.2770	164.1091	55	16.62	164	06.55	
SBD-7					519	. 06164	
SBD-8	55.3584	164.1757	55	21.50	164	10.54	
SBD-10	55.4397	164.2422	55	26.38	164	14.53	

SBB-10	55.4853	164.0709	5529.12	16404.26	
SBB-8	55.4039	164.0043	5524.23	16400.26	
SBB-7				$5 . .21 .92163$	58.38
SBB-6	55.3225	163.9378	5519.35	16356.27	
SBB-5	55.2819	163.9045	5516.91	16354.27	
SBB-4	55.2412	163.8712	5514.47	16352.27	
SBB-3				512.03163	50.28
SBB-2	55.1598	163.8046	5509.59	16348.28	
SBB-1	55.1191	163.7713	5507.15	16346.28	
SBA-0			5506.	$3 \quad 163 \quad 39.10$	
SBA-1	55.1419	163.6856	5508.51	16341.14	
SBA-2	55.1826	163.7189	5510.96	16343.14	
SBA-4	55.2640	163.7855	5515.84	16347.13	
SBA-5	55.3046	163.8188	5518.28	16349.13	
SBA-6	55.3453	163.8521	5520.72	16351.13	
SBA-8	55.4267	163.9187	5525.60	16355.12	
SBA-10	55.5080	163.9853	5530.48	16359.12	

