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Abstract

Motion compensation in visual cortex  is modeled using quadrature pairs of receptive fields and a motion signal.  Image 
samples are temporally combined by oscillating filters tuned for the image speed and the receptive field spatial frequency. 
Simulations of a 1-D model with a Gabor pyramid of simulated cortical cells and single-tuned oscillator integrators 
demonstrate its potential.

Introduction

Despite the small rapid motions of the eyes, the perceptual image is sharp.  Kelly (1985) showed that  detection of small 
details is not worsened by motion until it increases beyond the natural occurring level.  Although motion compensation may 
be done at multiple levels, only very early compensation would easily support detection.  MacLeod (2007) has pointed out 
the large disparity between the high following rate of cortical neurons (~100/sec) and the slow nature of visual perception 
(~10/sec).  The fast response may support combining the images over time in a way that helps preserve spatial detail.
 
Motion compensation is similar to stereo disparity evaluation in that a multitude of possible motions or disparities must be 
taken into account.  Freeman and Ohzawa (1990) showed that pairs of Gabor receptive fields in quadrature phase can 
convert the disparity search problem into a phase difference measurement problem.  Qian and Anderson (1997) use this 
representation to compute both stereo disparity and motion energy.  

Here the quadrature pair representation is used to reduce motion blur.  As an input moves across a Gabor receptive field, the 
output oscillates.  Integration of the output with an  oscillator helps deblur the image if the oscillation frequency matches 
that of the Gabor output.  This frequency is the product of the spatial frequency of the receptive field and the component of 
the image velocity in the direction orthogonal to the receptive field bars.  Single tuned oscillators are used because they can 
be implemented by simple second order recursive filters.

The 1-D Model

Input

The contrast stimulus is a space and time image sequence. Figure 1 shows the case where the input is a single pulse moving 
with velocity, V = -1.  Since the system is linear, its response to a single pulse characterizes it.

Figure 1. The 1-D image input sequence.
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Cortical pyramid

Each image is converted to a cortex-like representation (Watson, 1987a,b; Watson and Solomon, 1997) using a Gabor 
transformation with quadrature pairs at each spatial position as indicated in Figure 2. The Gaussian standard deviation 
equals the sine wave period. Each spatial frequency channel has  layers of quadrature pairs sampling the image at 
increasingly dense rates as their spatial frequency increases.  The coefficients shown are sampling at the center position. 
The eight Nyquist frequency coefficients and the DC coefficient (not shown) have no sine phase component. The over-
complete representation has 8+8+4+2+1=23 channels to represent the 16 image values.

Figure 2. Coefficients of the cortex pyramid transform.

Integrating resonators

Figure 3 shows the temporal oscillators for the transform levels of Figure 2.  Their temporal frequency fT is determined by 
the image speed V (perpendicular to the Gabor orientation) and the channel spatial frequency fS, fT = V fS.  Their envelope is 
exponential with a time constant of three time sample. The model output in the cortex transform domain is the convolution 
of the input samples with the oscillators (see last lines in the Appendix).
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Figure 3.Temporal integrating oscillators. Each oscillator has a frequency proportional to the spatial frequency of the Gabor 
receptive field and the velocity of the image.

Figure 4. The solid line shows the output of the integrators at the most recent time, the deblurred image. The dashed line 
shows the original image and the dotted line shows the image exponentially integrated without the oscillators.

Output

Figure 4 shows the model output compared with the original pulse and the pulse temporally smeared with the same 
exponential integration time. The model output is returned to the input domain using a transformation computed by singular 
value decomposition. Ahumada (1992) shows how such a  reconstruction could be “learned.” Although reconstruction 
artifacts appear, the model does achieve significant deblurring. Using a quality ratio similar to the Strehl ratio (last two lines 
of the Appendix) the original pulse has a quality of 1, the deblurred pulse has a quality of 0.89, and the exponentially 
blurred pulse has a quality of .70.

Discussion

Freeman, Adelson, and Heeger  (1991) used quadrature pairs of oriented filters to add motion to stationary images.  Here we 
are trying to invert that process.  Better representations might lead to better performance (Simoncelli, Freeman, Adelson, 
Heeger, 1992). Both the physiological plausibility and the performance might be improved if the representation was 
organized in cortical columns (van Dijk & Martens, 1997).  In such representations, phase may be advanced to make 
perception predictive.  Deblurring might  contribute to meta-contrast-like illusions (Breitmeyer, 1984).
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Appendix: Matlab Code

%  1D Gabor motion compensation using temporal oscillators

% image parameters
Nf = 4; % log2 image length
Nx = pow2(Nf); % image length = 16
Nx2 = Nx/2 ; % 8
Nt = 8 ; % time samples
imseq = [ ... % image sequence, rows are 8 times, columns are 16 positions
        0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
        0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
        0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
        0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
        0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
        0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
        0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
        0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
    ] ;
V = -1 ; % velocity

% Gabor cortex transform coefficients
s = 1 ; % Gabor window standard deviation in periods of sine wave
f = 2.^[0:Nf-1]  ; % sine frequencies in cycles per image
samples = f/s ; % samples per image at non-DC frequencies
Nc = 1 + sum(samples); % Number of complex coefficients 
gabcoef = zeros(Nc,Nx) ;
gabcoef(1,:) = ones(1,Nx)/Nx ; % DC coefficients
w = 2*pi*f/Nx ;% frequency in radians per pixel 
sigma = Nx./samples; % pixels
x = [0:Nx/2] ;
ifilt = 1;
for iband = 1:Nf

env = exp(-0.5*(x./sigma(iband)).^2) ;
filt = env.*exp(i*w(iband)*x) ;

ifilt = ifilt +1 ; 



gabcoef(ifilt,1:Nx2+1) = filt ;
gabcoef(ifilt,2+Nx2:Nx) = conj(filt(Nx2:-1:2)) ;
offset = [sigma(iband)+[1:Nx-sigma(iband)] [1:sigma(iband)]] ;
for ioff = 1:samples(iband) - 1

ifilt = ifilt +1 ; 
gabcoef(ifilt,:) = gabcoef(ifilt-1,offset);

end
end

% Gabor to image transformation
realgabcoef = [real(gabcoef);imag(gabcoef)] ;
[ugabcoef diaggabcoef vgabcoef] = svd(realgabcoef,0) ;
imrestore = ugabcoef*inv(diaggabcoef)*vgabcoef' ;

% make temporal integrators
t0 = 3 ; % exponential blur duration in pixels
tfilt = zeros(Nc,Nt) ;
wt = 2*pi*f*V/Nx; % radians per time sample
t = [0:Nt-1] ;
tfilt0 = exp(-t/t0) ; 
tfilt0 = tfilt0/sum(tfilt0) ;
tfilt(1,:) = tfilt0 ;
ifilt = 2 ;
for iband = 1:Nf
    tfilti = tfilt0.*exp(i*wt(iband)*t) ;
    tfilt(ifilt:ifilt+samples(iband)-1,:) = repmat(tfilti,[samples(iband),1]) ;
    ifilt = ifilt +samples(iband) ; 
end

%  transform, integrate, and restore integrated image
gabim = gabcoef*imseq' ; % Gabor transform of image sequence
gabv = dot(conj(tfilt(:,Nt-[0:Nt-1])),gabim,2) ; % convolve with integrators
imout = [real(gabv);imag(gabv)]'*imrestore ;
figure(1); clf; plot(imout)
qualityratio = sqrt(max(imout).^2/sum(imout.^2)) % 0.8911
blurqualityratio = sqrt(1/sum(exp(-2*[0:7]/t0))) % 0.6992


