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The effects of variations in signal probability and varying degrees of correct feedback on response bias 
were studied in a yes-no auditory signal detection task. The main finding was that the bias towards saying 
yes was an increasing function of the frequency of signal feedback events, but did not depend on the 
correctness of the feedback. Several learning models coupled with a simple psychophysical and decision 
model yielded predictions about overall biases and certain sequential statistics. Only one model, which can 
be described as an "informational" model, gave a good account of both observed overall biases and 
sequential statistics. This model assumes the observer's response bias is strengthened for the feedback-
reinforced response when the observer's sensory information is ambiguous or is contradicted by the 
feedback information.  
 
This report presents an empirical and theoretical analysis of the effects of informational feedback variables 
and signal-presentation probabilities on response bias in a yes-no auditory detection task. The general 
approach is similar to that employed by Atkinson and Kinchla (1965) for forced-choice tasks, though we 
use a broader range of informational variables and theoretical models. Our primary interest is in the effects 
of varying degrees of correct feedback on response bias.  
 
The main theoretical analysis compares a number of learning models for response bias. The learning 
models assume that the feedback and signal probability conditions lead to trial-by-trial bias adjustments 
which at asymptote yield statistically stable response biases. The various models differ as to which 
psychophysical and trial outcome events are presumed to occasion adjustments in the bias.  
 
Because the main interest is response bias, only a very primitive psychophysical model is employed. It is 
assumed that the stimulus event on each trial (signal plus noise or noise alone) can lead to one of three 
possible sensory events, or states, in the subject. The intuitive meaning of the sensory states is that, for 
purposes of deciding whether to respond yes or no on a given trial, the sensory mechanism is set to give 
only one of three outputs: State D, which roughly corresponds to certainty that the signal was presented; 
State U, uncertainty whether signal or noise was presented; or State D, certainty that the signal was not 
presented. The three states, D, U, and D, are a simple way of representing the continuum of sensory events 
which arise from fluctuations in internal and external noise for fixed physical signa1 and noise parameters. 
Exactly which physical aspects of the stimulus might give rise to the continuum of sensory states is still an 
open question and an area of active research (see, for example, Green & Swets (1966) and the recent work 
of Ahumada (1967).)  
 
We relate the psychophysical and the bias models by combining them with a simple "threshold" decision 
model. The model is ubiquitous and has been suggested by a number of workers (e.g., Atkinson, 1963; 
Blackwell, 1963; Parducci & Sandusky, 1965) as a way of representing the effects of bias. It evolved from 
the ordinary "correction for guessing" threshold model. The particular version we use is that given by 
Atkinson and Kinchla (1955) and Atkinson, Bower, and Crothers (1965). Figure 1 outlines the assumptions 
of the model and their relationship to the experimental procedure.  
 

 
Fig. 1. An outline of the simple decision model and how it relates to the experimental procedure.  



 

On each trial, either a signal, a 1000 Hz tone imbedded in band-limited Gaussian noise is presented, or the 
noise alone is presented, with probabilities γ and 1 - γ, respectively. These stimulus events are assumed to 
lead to one of the three sensory states in the subject. If the signal is presented, then State D is elicited with 
probability σ and State U with probability 1 - σ. If noise alone is presented, then Sensory State D is elicited 
with probability η and State U with probability 1 - η.  
 
The judgment is determined by the sensory state according to a very simple response rule. If State D is 
elicited, the subject says "yes"; if State D is elicited, the subject says "no"; and if State U is elicited, the 
subject biases his response and says "yes" or "no" with probabilities P and 1- P. The trial ends with the 
presentation of one of two trial outcomes: (1) the subject is told that a signal was In fact presented, or (2) 
the subject is told that noise alone occurred. The probability of a signal outcome is π1 on signal trials and π2 
on noise trials. The subject thus receives correct feedback on all trials when π1=1 and π2=0. It is assumed 
that the value of the guessing or bias parameter P depends on the outcome and stimulus presentation 
probabilities π and γ but the values of the stimulus parameters σ and η do not.  
 
The theoretical expressions for the "hit rate," the proportion of correct detections of the signal P(H), and the 
"false alarm rate," the proportion of incorrect yes responses on noise alone trials P(F) , are simply:  
 
P(H) = σ + (1- σ)P   (1) 
P(F) = (l- η) P     (2)  
 
The ROC (iso-sensitivity) function relating the hits and false alarms is:  

P(H) = σ + ((1 – σ)/(1 – η)) P(F)  (3)  

Thus the theory predicts a linear ROC function whose slope and intercept depend only on the stimulus 
parameters , σ and η.  

We should point out that there are a variety of other conceptions of the detection process which yield 
curvilinear and segmented linear ROC functions. Some of these are discussed by Luce (1963). Recent 
results (Norman, 1964; Atkinson & Kinchla, 1965; Markowitz & Swets, 1967) make it clear that the shape 
of the ROC function and the relationship of parameters of the ROC function to parameters of the physical 
stimulus is an open question. For our purpose of studying response bias, the simple model outlined here is 
convenient. And, as we shall see, it is reasonably consistent with the data.  

METHOD 

Design  
 
A yes-no auditory signal detection task was employed. The S's task was to report on each trial whether a 
1000 Hz sinusoidal signal was or was not presented against a continuous background of white noise during 
a brief observation interval.  
 
Three variables were manipulated in the experiment: (1) signal intensity , (2) probability of occurrence of 
the signal, and (3) feedback. The levels of the variables were combined to yield a modified three-way, 
independent groups, factorial design.  
 
There were two levels of signal intensity .These will be referred to as the hard (low signal intensity) and 
easy (high signal intensity) conditions. There were three probabilities of occurrence of the signal: .25, .50, 
and .75. Finally, there were five different feedback conditions: No Feedback on any trial; 100% Correct 
Feedback on all trials; and three misinformation conditions. The three misinformation conditions were: (1) 
Random Feedback on all trials; (2) Random Signal-random feedback on all signal trials but correct 
feedback on noise trials; and (3) Random Noise-random feedback on all noise trials but correct feedback on 
signal trials.  
 
When Random Feedback was given on all trials, 50% of the trials were followed by signal outcome events 
and 50% were followed by noise outcome events independent of the stimulus actually presented and the S’s 
response. In the Random Signal condition. 50% of the trials on which the signal was actually presented 
were called signal trials, and the other 50% were called noise trials independent of the S’s response; correct 
feedback was given on all noise trials. The Random Noise condition was similarly defined.  
The conditions of No Feedback. 100% Correct Feedback. and Random Feedback were run under both 
signal intensity levels and all three levels of signal probability. The Random Noise and Random signal 
feedback conditions were run under both signal intensity levels, but only with the .50 signal probability. It 
should be noted that, ignoring the correctness of the feedback in the Random Noise condition, 75% of the 



trials were followed by signal outcomes and the other 25% by noise outcome events; and in the Random 
Signal condition, 25% of the trials were followed by signal outcomes and 75% by noise outcomes. 
Altogether, these combinations of the three variables yielded 22 independent groups. There were 15 Ss in 
each group.  

Apparatus 
 
There were four subject booths at the narrow end of a 15 x 21 ft experimental room. The warning, 
observation-interval, and feedback lamps were located on the wall opposite the booths and 12 ft from the 
Ss. The warning lamp was placed above the observation-interval lamp at about the Ss' eye level. The two 
feedback lamps were located slightly below and symmetrically about the observation-interval lamp. The Ss' 
response switches were on large armrests on the chairs in the booths. The switches were double-pole, 
center-off, spring-return, silent knife switches. Ss indicated their responses by pressing the switch 
momentarily to the left or right. Programming and recording equipment were in an adjoining control room.  
 
The white background noise was band-pass filtered (at a rate of 24 dB per octave) between 100 and 5000 
cps. On signal trials, an electronic switch gated the 1000 cps sinusoid during the entire .5 sec observation 
interval with equal rise and decay times of 25 msec. The calculated E/No values were 4.97 and 6.30 for the 
hard and easy signal intensity conditions, respectively. Ss listened binaurally over PDR-600 earphones.  

Procedure  

Insofar as possible, Ss were run in squads of four. In the instructions, all groups receiving feedback were 
led to believe that the feedback was correct. Equal emphasis was placed on correctly detecting signal and 
noise trials. Ss were given examples of the signal alone, the signal in noise, and 10 practice trials (six signal 
and four noise trials in haphazard order, in which the signal started out 10 dB above its experimental level 
and was gradually decreased over presentations). Then the 350 experimental trials were run without any 
break. Previous research has shown that this is more than enough training to reach stable levels of 
responding when examples of signal and noise trials are explicitly demonstrated to Ss (Carterette & 
Wyman, 1962; Gundy, 1963; Swets & Sewell, 1963). On each trial, the warn1ng light came on for .5 sec 
followed by the .5 sec observation interval. The S was allowed 2.75 sec to respond. Then one of the 
feedback lamps came on for .75 sec in the feedback conditions. The left feedback lamp indicated a signal 
trial, and the right feedback lamp indicated a noise trial. In the No Feedback condition, both lamps came on 
during the feedback interval. The intertrial interval was 1.0 sec. The experimental sessions lasted about 45 
min.  
Different signal and event presentation sequences were used for each squad of Ss in each group. The 350-
trial sequences were random with the restriction that obtained proportions of trials of the various types 
matched the expected proportions.  
 
To increase the homogeneity within the two signal intensity conditions, Ss were eliminated who either did 
not respond on a high proportion of the trials or who showed low sensitivity to the signal. The criteria for 
eliminating Ss were: (1) 10 or more trials on which there were no responses, or (2) a d' sensitivity measure 
of less than .33 in the hard condition or .54 in the easy condition. There were 32 Ss eliminated for these 
reasons in the easy condition and 41 Ss eliminated in the hard condition. The experimental plan called for 
15 Ss in each condition. Because squads of varying sizes were run and because varying numbers of Ss were 
eliminated in each condition, there were actually from 15 to 19 "good" Ss run in each of the 22 conditions. 
To simplify some of the calculations, Ss were eliminated randomly to make equal the sizes of the groups at 
15 Ss per group.  

Subjects  

The 330 Ss were students recruited from introductory psychology courses at the University of California, 
Los Angeles. Participation in a certain number of experiments was a course requirement.  

RESULTS AND DISCUSSION  
This report will discuss only the results for the feedback conditions. A more complete discussion of the 
experiment including an analysis of the No Feedback results is given elsewhere (Friedman, Carterette, 
Nakatani, & Ahumada, 1967).  

Preliminary Analysis  

A rough check on the adequency of the simple threshold decision model may be had by considering the 
ROC functions for the hard and easy signal intensity conditions. Figure 2 shows the ROC functions, plots 
of the hit rates (proportion of yesses on signal trials) versus the false-alarm rates (proportion of yesses on 
noise trials) for all experimental conditions. The left panel contains points for groups run under the hard 



signal intensity condition, and the right panel contains points for groups run under the easy signal intensity 
condition. Each data point represents the mean of the responses of the 15 Ss taken over the final 150 trials 
of the experiment. A preliminary analysis of the data showed that the mean hit and false-alarm rates were 
stable over it least that part of the data for all conditions. The straight lines in Fig. 2 are linear ROC 
functions with slope = 1. They were not fit by the best methods but are shown to illustrate predictions of the 
theory.  

 
Fig. 2. ROC (Receiver Operating Characteristic) plots of the hit rates P(H) (proportion of yeses on Signal trials) versus 
the false alarm rates P(F) (proportion of yeses on Noise trials) for all experimental conditions over the last 150 trials. 
The left panel shows the results for groups run under the Hard condition, and the right panel shows the results for 
groups run under the Easy condition. The conditions are labeled according to their signal probability (25, 50, or 75) and 
feedback condition (C = Correct, N = No Feedback, R = Random, RS = Random Signal, RN = Random Noise). The RS 
and RN conditions were run only with a signal probability of .50. The lines are linear theoretical ROC functions which 
illustrate the special case of Eq. 3 with σ = η.  
 

We shall not argue here that these data support the three-state model over the many other alternatives. 
However, we do say that a linear function is a reasonable approximation for the obtained range of hits and 
false alarms and that the model appears to be a reasonable framework in which to study the effects of our 
experimental variables on response bias, which we now consider.  
 
Analysis of Bias  
 
To simplify our analysis of bias we consider the special case of the model in which σ = η. (This is roughly 
analogous to the "equal variance" assumption of the theory of signal detectability (Green & Swets, 1966).) 
This special case of the theory generates the ROC function with slope = 1 shown in Fig. 2. But more to the 
point, small changes in the slope of the linear functions (or, for that matter, reasonable curvilinear ROC 
functions) will not change the qualitative relationships between the experimental conditions and the relative 
degree of bias, and will make only small quantitative changes.  
 

 
 

Fig. 3. Obtained (open symbols) and predicted (closed symbols) values of the bias parameter P for the Hard condition 
(left panel) and the Easy condition (right panel). C = Correct Feedback, R = Random Feedback, RN = Random Noise, 
RS = Random Signal.  
 

 



For the σ = η case of the theory, Equations (1) and (2) for P(H) and P(F) may be solved for the bias 
parameter P to yield:  

 

 
P = P(F) /(1 - P(H) + P(F))   (4)  

This relationship defines the bias associated with a given point (P(H), P(F)) with respect to the linear ROC 
function with slope of unity through that point. Equation (4) says that the bias associated with a given point 
is equal to the distance of that point from the x-intercept along the ROC function relative to the total length 
of the ROC function.  
 
Using Equation (4), estimates of  P were calculated for each S from his hit and false-alarm rates over trials 
201-350. Figure 3 shows the mean obtained bias scores (open symbols) for all feedback conditions as a 
function of signal probability along with some predicted values (closed symbols) which will be discussed 
shortly. The left panel shows the scores for the hard signal intensity condition, and the right panel shows 
the scores for the easy condition. The main result of note here is that the bias is an increasing function of 
the probability of signal outcomes, independently of the correctness of the information. According to a 
Newman-Keuls analysis run at the .05 level, all conditions in which signal outcome probabilities were 
equal were reliably different from conditions run under other signal outcome probabilities, but did not 
differ among themselves. Thus, the biases obtained in the Random Noise conditions (labeled RN) in which 
the true signal probability was .5 but the overall outcome signal outcome probability was. 75 were not 
significantly different from the correct feedback conditions run with signal probabilities of .75. Similar 
results hold for the Random Signal conditions (in which the signal out- come probabilities were .25) and 
the Correct Feedback conditions run with .25 signal probability. There are two other consistent (though not 
significant by the Newman-Keuls test) relationships in Fig. 3 that we wish to point out: First, for both 
signal intensity conditions, the Random Signal and Random Noise conditions generated the most extreme 
biases. Second, the effects of signal probability on bias in the Random Feedback conditions (in which the 
signal outcome probability was always .5) were small and opposite to the effects of signal probability in the 
Correct Feedback conditions. For both intensity conditions, there was a tendency for the bias to decrease as 
the signal probability increased. 

Learning Models for the Bias Parameter P 

We now consider a class of alternative learning models for the bias parameter P. The learning models may 
be understood in the context of an isomorphism between the probability learning experiment and the simple 
psychophysical judgment experiment. The fundamental notion is that the probability learning experiment 
may be regarded as a limiting case of psychophysical judgment in which there is no stimulus information 
and the S must guess on every trial (Friedman & Carterette, 1964). For the present threshold model, the 
limiting case is one in which the psychophysical parameters σ  and η are both zero and the uncertain state, 
U, is evoked on every trial so that the S must guess. All of the learning models employ simple linear 
operators which assume that the value of the bias parameter P on trial n+1, Pn+1 is a linear function of the 
value of the bias parameter on trial n, P n. Whether the bias increases or decreases on trial n + 1 and the 
amount of change depend on the sensory state and trial outcome on trial n. The only restriction placed on 
the operators when feedback is employed is that the bias can change only in the direction of the response 
specified by the trial outcome. Six of the models which were considered for the feedback conditions are 
outlined in Table 1. All of the models require two learning parameters. 
 

Table I. Some Alternative Models for the Bias Parameter P (α = 1 – θ). 
 

Trial n The Value of the Bias Parameter on Trial n+1, Pn+1 
Sensory 

State 
Trial 

Outcome 
Information 

Models 
Reinforcement 

Models 
Confirmation 

Models 
  A B A B A B 

D S Pn Pn α1Pn+θ1 α1Pn+ θ1 α1Pn+θ1 α1Pn+ θ1 
D N α2Pn Pn α2Pn Pn α2Pn Pn 
U S α1Pn α1Pn+θ1 α1Pn+ θ1 α1Pn+ θ1 Pn Pn 
U N α2Pn α2Pn α2Pn α2Pn Pn Pn 
D S α1Pn+θ1 Pn α1Pn+θ1 Pn α1Pn+θ1 Pn 
D N Pn Pn α2Pn α2Pn α2Pn α2Pn 

The various models arise from three alternative conceptions of bow the events on each trial will change the 
S's biases. The three classes of models are Reinforcement Models. Information Models, and Confirmation 
Models. 



First consider the Information models. The psychological notion behind these models is that the bias 
changes only when: (1) a trial outcome reduces the observer's uncertainty concerning which stimulus 
occurred on a trial, or (2) a trial outcome provides information which conflicts with that of the sensory 
state. 

For the Information Model A, whenever the sensory state of uncertainty U occurs, the bias changes in the 
direction of the trial outcome, because information is provided about the stimulus occurrence on that trial. 
Similarly, it is assumed that the bias changes in the direction of the trial outcome whenever a trial outcome 
conflicts with the certainty states, D and D, and thus provides information to the S. (For the threshold 
model, this can only occur when the feedback is sometimes erroneous.) Whenever certainty states and trial 
outcome agree, it is assumed that the bias is unchanged, that is, P n+1 =P n since there was no uncertainty 
about the stimulus event and both sources of information, the sensory state and the trial outcome, agree. For 
the Information Model A, the learning parameters depend only on the trial outcomes. 

Information Model B differs from Information Model A in assuming that whenever the sensory state and 
trial outcome conflict, the S ignores both sources of information and the bias is unchanged, i.e., P n+1 = P n. 
Information Models A and B are equivalent for correct feedback conditions. 

The basic psychological notion behind the Reinforcement Models is that trial outcomes and not sensory 
states are the crucial events which change the bias. For Reinforcement Model A, the bias changes on every 
trial and it changes in the direction of the trial outcome. The learning parameters depend only on the trial 
outcomes. Reinforcement Model B is like Information Model B in ignoring the trial outcome when it is 
inconsistent with the sensory state. Reinforcement Models A and B are equivalent for the correct feedback 
conditions. 

According to Confirmation Model A, the bias changes only when one of the certain states D or D is 
evoked, and then only when the sensory information is confirmed or disconfirmed by the trial outcome 
information. Confirmation Model B is equivalent to Confirmation Model A for the correct feedback case, 
but assumes that only agreement between the sensory and outcome information can change the bias. 

Evaluation of the Learning Models 

The learning models were evaluated by comparing their predictions with the observed values of the bias 
scores and with the first-order sequential response statistics. A complete account of these comparisons and 
a discussion of several additional models is available elsewhere (Friedman, Carterette, Nakatani, & 
Ahumada, 1967), so we shall only summarize the main results here. 

The goodness of fit of the various models with respect to the bias scores was evaluated by a procedure 
which allowed the treatment effects (signal probabilities, feedback correctness, task difficulty) and the 
parameters of the learning models to be separated out as additive effects. All of the models yield identical 
predictions for the correct feedback conditions, but differed as to their predictions for the partially correct 
and random feedback conditions. The main result of this analysis was that the predictions of the 
Information Model A were quite good. All of the models yielded reasonably good predictions for the 
correct feedback conditions, but only the predictions of Information Model A were consistent with the 
observed scores in the random and partially correct feedback conditions. The predicted values for 
Information Model A are shown in Fig. 3. Only Information Model A correctly predicted the obtained 
inverse relationship between the direction of bias and the signal probability in the random feedback 
condition, and also the large biases which occurred in the partially correct feedback conditions. 

In a second set of analyses the predictions of the learning models were compared with the observed 
estimates of the first-order sequential statistics, i.e., the hits and false-alarm rates on trial n conditional on 
the stimulus, response, and outcome on the preceding trial. The main result of these analyses was that a 
number of models yielded adequate fits to the data when separate learning parameters were estimated for 
each condition, but Information Model A again yielded the best fits when only a single set of learning 
parameters was allowed for all conditions.  

Our results for the feedback conditions are consistent with those of Atkinson and Kinchla (1965) for a 
forced-choice auditory detection experiment. Atkinson and Kinchla compared what we here call 
Information and Reinforcement models, and found that the Information model yielded the best fits for the 
feedback conditions.3 However, there were no conditions in their experiment in which the stimulus 
information could contradict the feedback information, so a comparison of the Information A and B models 
cannot be had from their results. 

All of the models considered here assume that the critical events which can change the bias are sensory 
events and trial outcomes, and that the response made by the observer on each trial is irrelevant. Other 
learning models have been suggested (for example, Sklansky, 1964) which assume that the adjustments in 
the bias depend on the correctness of the response. The "error-correcting" model developed by Sklansky 
assumes that the bias changes only following an error and remains the same following a correct response. 



Models of this sort appear reasonable and deserve to be tested and compared with the class of models 
presented here. However, it should be noted that the error-correction model is really quite similar to the 
present Information models, since response errors are highly correlated with what we are defining as 
Information. In fact, it would appear to be hard to distinguish between the two sorts of models. 

Finally, it should be pointed out that all of the learning models which are used here in discrete sensory 
conceptions can, at the expense of a few more parameters, be applied to continuous sensory models. From 
our explorations with the continuous models, our impression is that comparisons of these models would 
yield a pattern of results close to that obtained here for the discrete models. 
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