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I. Introduction

This document was prepared to describe the ozone air quality modeling
performed by EPA in support of the Mobile Source Air Toxics (MSAT) rule. Included is
information on (1) the air quality modeling and the development of model inputs, (2) the
performance of the models as compared to measured data, and (3) an assessment of the
expected air quality improvements from the VOC emissions reductions that are part of
this rule.

Because of the availability of reductions from different precursor pollutants and
types of sources, applying the model for individual chosen control scenarios may miss
alternative strategies that achieve greater air quality benefits at a lower cost. As a result,
a new approach known as air quality metamodeling has been developed to aggregate
numerous individual air quality modeling simulations into a multi-dimensional air quality
“response surface”. Simply, this metamodeling technique is a “model of the model” and
can be shown to reproduce the results from an individual modeling simulation with little
bias or error. This approach allows for the rapid assessment of air quality impacts of
different combinations of emissions reductions and was used here to project the effects of
the portable fuel container controls within the MSAT rule.

I1. Methodology
A. CAMXx Base Case Modeling Simulations

The foundation for the ozone modeling analyses considering impacts from
portable fuel containers was the CAMx modeling that was done in support of the final
Clean Air Interstate Rule (CAIR). The CAIR modeling is fully described in the CAIR air
quality modeling technical support document (TSD)', but a brief description is provided
below. The modeling procedures used in this analysis (e.g., domain, episodes,
meteorology) have been used for several EPA rulemaking analyses over the past 5 years
and are well-established at this point.

The modeling simulations that comprised the MSAT metamodeling were
conducted using CAMXx version 3.10. CAMX is a non-proprietary computer model that
simulates the formation and fate of photochemical oxidants, including ozone, for given
input sets of meteorological conditions and emissions. The gridded meteorological data
for three historical episodes were developed using the Regional Atmospheric Modeling
System (RAMS), version 3b.> In all, the 30 episode days in 1995 modeled for this

' U.S. Environmental Protection Agency, Technical Support Document for the Final Clean Air Interstate
Rule: Air Quality Modeling, Office of Air Quality Planning and Standards, Research Triangle Park, NC,
March 2005.

2 Pielke, R.A., W.R. Cotton, R.L. Walko, C.J. Tremback, W.A. Lyons, L.D. Grasso, M.E.
Nicholls, M.D. Moran, D.A. Wesley, T.J. Lee, and J.H. Copeland, 1992: A Comprehensive
Meteorological Modeling System - RAMS, Meteor. Atmos. Phys., Vol. 49, pp. 69-91.



analysis were associated with frequently-occurring, ozone-conducive, meteorological
conditions in portions of the Eastern U.S.. Emissions estimates were developed for the
evaluation year (1995) as well as a future base year (2015).

The CAMx model applications were performed for a domain covering all, or
portions of, 37 States (and the District of Columbia) in the Eastern U.S., as shown in
Figure II-1. The domain has nested horizontal grids of 36 km and 12 km, however the
output data from the metamodeling is provided at a 12 km resolution (i.e., cells from the
outer 36 km cells populate the nine finer scale cells, as appropriate). Table II-1 provides
the basic information regarding the simulations.

Table 11-1. Configuration of ozone modeling domain.

CAMx MSAT Eastern U.S. Modeling

Coarse Grid Fine Grid
Map Projection latitude/longitude latitude/longitude
Grid Resolution 1/3°lleft21;l11(:1rz:g(it~u§1§,km) 1/9“11;‘2;111(21[;g(iiu?§’km)
East/West extent -99 W to -67 W -92 W to -69.5 W
North/South extent 26 Nto 47N 32Nto44 N
Dimensions 64x63x9 137x110x 9
Vertical extent 9 Layers: surface to 4 km
Layer structure (m) 0-50, 50-100, 100-300, 300-600, 632(—)})(_)286(1)000-1500, 1500-2000, 2000-2500,

Before one can combine multiple CAMx simulations into a metamodel, one must
ensure that the base simulations show adequate model performance. EPA guidance on
ozone modeling for attainment demonstrations’ notes that the performance of an air
quality model can be evaluated in two ways: (1) how well is the model able to replicate
observed concentrations of ozone and/or precursors, and (2) how accurate is the model in
characterizing sensitivity of ozone to changes in emissions? For the first evaluation
approach, EPA conducted an operational performance evaluation of CAMx for the 1995
episodes as part of the CAIR modeling analysis. The details of that ozone performance
evaluation are provided in the CAIR TSD. In general, the model was determined to be
performing acceptably, with relatively-low levels of bias and error at most space/time
scales. As for the second evaluation approach, there is some initial evidence that past

3 U.S. Environmental Protection Agency, Guidance on the Use of Models and Other Analyses in
Attainment Demonstrations for the 8-hour Ozone NAAQS, EPA-454/R-05-002, Research Triangle Park,
NC, 27711, 128pp, October 2005.




modeling applications with similar configurations have successfully reproduced observed
changes in air quality.*

Figure 11-1. Map of the CAMx domain used for MSAT ozone metamodeling.

B. CAMx Future Case Modeling Simulations

As noted above, emissions estimates were developed for a future year (2015).
The 2015 emissions estimates account for the net effects of economic growth and
emissions reductions expected to result from existing and recently promulgated control
programs, including the reductions resulting from CAIR, the Clean Air NonRoad Diesel
Rule (CAND), the NOx SIP Call, and other rules. For more information on the
development of the 2015 emissions, please see the CAIR Emissions Inventory TSD.’
This 2015 CAIR future-year emissions inventory was the starting point for the ozone
metamodeling done for the MSAT rule.

The CAIR 2015 modeling indicates that substantial improvement is expected in
ambient levels of 8-hour ozone between the present and 2015. Only six Eastern U.S.
ozone nonattainment areas are projected to remain nonattainment of the 8-hour ozone

* U.S. Environmental Protection Agency, Evaluating Ozone Control Programs in the Eastern United
States: Focus on the NOx Budget Trading Program, 2004, Office of Air and Radiation, Washington DC,
August 2005.

> U.S. Environmental Protection Agency, CAIR Emissions Inventory Technical Support Document, Office
of Air Quality Planning and Standards, Research Triangle Park, NC, March 2005.



NAAQS in 2015: Baltimore, Chicago, Houston, Milwaukee, New York City, and
Philadelphia.

C. Development of the Metamodeling Experimental Design

The ozone metamodeling used for assessing the effects of reducing evaporative
VOC emissions was part of a broader effort to determine what additional emissions
controls may be needed to attain the 8-hour ozone NAAQS by 2015. In order to
maximize the information we could obtain for use in comparing relative efficacy of
different emissions control strategies, we established an experimental design consisting
of a carefully selected set of air quality modeling runs. For this analysis, we selected an
experimental design that covered three key areas: type of precursor emission (NOx or
VOC), emission source type (i.e., onroad vehicles, nonroad vehicles, area sources,
electrical generating utility (EGU) sources, and non-utility point sources), and location
within or without a 2015 model-projected residual ozone nonattainment area. This
resulted in a set of 14 emissions factors:

1) Nonroad mobile source VOC emissions in residual O3 nonattainment areas
2) Nonroad mobile source VOC emissions in O3 attainment areas

3) Area source VOC emissions in residual O3 nonattainment areas

4) Area source VOC emissions in O3 attainment areas

5) Nonroad mobile source NOx emissions in residual O3 nonattainment areas
6) Nonroad mobile source NOx emissions in O3 attainment arcas

7) EGU NOx emissions in residual O3 nonattainment areas

8) EGU NOx emissions in O3 attainment areas

9) Non-EGU point source NOx emissions in residual O3 nonattainment areas

10)  Non-EGU point source NOx emissions in O3 attainment areas

11)  Onroad mobile source VOC emissions in residual O3 nonattainment areas
12)  Onroad mobile source VOC emissions in O3 attainment areas

13)  Onroad mobile source NOx emissions in residual O3 nonattainment areas
14)  Onroad mobile source NOx emissions in O3 attainment areas

The experimental design for these 14 factors is described in Battelle(2004)°. That
report lists three potential designs; this analysis used design #1. The particular type of
Latin Hypercube design used is called a Maximin Latin Hypercube design. Based on a
rule of thumb of ten runs per factor, we developed an overall design with 140 runs (a base
case plus 139 control runs). The range of emissions reductions considered within the
metamodel ranged from 0 to 100 percent of the 2015 CAIR emissions. Additionally,
there were runs with emissions increases in these factors by up to 20 percent. This
experimental design resulted in a set of CAMx simulations which serve as the inputs to
the statistical metamodeling.

Because the metamodeling was going to be used to assess the impacts of the
MSAT standards, the experimental design also included “oversampling” (i.e., additional

® Battelle, Final Experimental Designs for Ozone Modeling, WA2-05 Final Technical Report: Task 7,
Columbus OH, September 2004.



runs) in the range of 0 to 10 percent control for the nonroad VOC sector. Additional
CAMXx runs were completed that only included VOC controls, or were heavily weighted
toward nonroad VOC controls. The modeling was done in a four-step process.

Step 1: Construct a 129 run, Maximin Latin Hypercube design modeling the 14 sectors
and consider emissions factors ranging from 0 to 1.2. Figure II-2 shows a sample run
within the Step 1 metamodeling.

Step 2: Augment the 129 run design obtained in Step 1 by adding ten more points in an
optimal fashion using the Maximin design criterion while remaining within the class of
Latin Hypercube design. These runs focused on the 0.9 to 1.0 range of VOC emissions
from the area and nonroad categories. Figure II-3 shows the emissions changes
associated with a sample run.

Step 3: A series of 10 “out-of-sample” evaluation runs were also modeled. These runs
are part of the same overall experimental design as the first 139 simulations and are
intended to provide a representative set of points from the policy space that have yet to be
modeled in Steps 1 and 2. The results of these comparisons are discussed in Section III.

Step 4: Because some of our initial testing indicated small differences between VOC-only
standalone’ CAMx modeling runs and the metamodeling predictions, an additional five
runs were modeled that looked at primarily VOC controls. In the end, all 154 runs were
combined to build the CAMx metamodel.

Figure 11-2. Sample CAMx simulation within the Step 1 ozone metamodeling.

Example Pointin Experimental Design
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1) Non- 2) Non- 3) Area 4) Area 5) Non- 6) Non- 7) EGU 8) EGU 9)Non-  10)Non-  11)On-  12)On-  13)On- 14) On-
road VOC  road VOC voc voc road NOx road NOx NOXx control NOx control EGU NOx EGU NOx road VOC road VOC road NOx road NOx
controlin  controlin  controlin  controlin  controlin  controlin in projected in controlin  controlin  controlin  controlin  controlin  control in
projected attainment projected attainment projected attainment residual  attainment projected attainment projected attainment projected  attainment
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areas

7 Standalone modeling refers to an individual CAMx simulation of a particular set of emission reductions,
as opposed to the metamodeling technique.



Figure 11-3. Display of three (of the 14) metamodeling dimensions (area VOC,
nonroad VOC, and nonroad NOx) showing the oversampling between 0.9 and 1.0.

Example Experimental Design Combination for 3 Factors

Factor Levels Hepresent Proportions of Bazeline Emissions
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D. Building the Response Surfaces within the Metamodeling

To develop a metamodeling approximation to standalone CAMx modeling, we
used a multidimensional kriging approach, as described in Battelle (2004). This
modeling approach is well suited to data generated using a non-stochastic computer
model, and can approximate highly nonlinear surfaces as long as they are locally
continuous. We modeled the predicted changes in ozone in each CAMx grid cell as a
function of the weighted average of the modeled responses in the experimental design.
The weight assigned to a particular modeled output depends on the Euclidean distance
between the factor levels defining the policy to be predicted and the factor levels defining
the CAMx experimental run.

A separate response-surface was fit for each ozone metric. Seven metrics were
identified for the MSAT metamodeling.

1) the mean of all 1-hour daily ozone maxima over the 30 modeling days,

2) the mean of all 8-hour daily average ozone maxima over the 30 modeling days,
3) the mean of all 8-hour daily averages (9am to Spm) over the 30 modeling days,
4) the mean of all 5-hour daily averages (10am to 3pm) over the 30 modeling days,



5) the mean of all 24-hour daily averages over the 30 modeling days,

6) the sum of all hourly O3 concentrations >= to 0.06 ppm occurring between 8am and
8pm over the 30 modeling days, and

7) the projected 2015 8-hour ozone design values for the 525 counties with recent ozone
monitoring data.

I11. Evaluation of Ozone Metamodeling

The metamodeling was validated using three separate techniques. The simplest
approach involved visual inspection of prediction maps and other model output to
confirm overall spatial comparability in the metamodeling predictions versus standalone
CAMx modeled outputs for selected runs within and outside of the metamodeling
experimental design. As a second approach, cross-validation was used to evaluate overall
response-surface performance. In this method, one of the experimental model runs is left
out of the model estimation, and the response-surface model is computed with the
validation run left out. The metamodel is then used to predict the ozone changes for the
factor levels corresponding to the “left out” model run and compared with the actual
CAMx model outputs for that run. A set of standard model performance evaluation
metrics are then computed for that run, including bias, error, normalized bias and error,
and fractional bias and error. This process is then repeated for each experimental design
model run, and the distributions of the performance metrics are then examined over all
155 model runs to gauge the overall performance of the metamodeling across the
experimental design. Finally, out-of-sample validation was also completed, by
comparing predicted values from the metamodeling through steps 1 and 2 with actual
CAMXx outputs for a set of 10 model runs that were not part of the initial 139 simulations.

Various visual comparisons were completed to compare the standalone CAMx
modeling to the CAMx metamodel. All generally showed good agreement between the
two techniques. Figure III-1 shows sample differences between the design values at two
high-ozone sites for a particular simulation.

Cross-validation and out-of-sample performance metrics for the projected 2015
ozone design value metric are presented in Table III-1. For the cross-validation method,
the mean, minimum, and maximum values of the performance metrics across all 140 Step
1 and 2 model runs are presented. For example, for the mean bias performance metric,
the bias is calculated for each of the 525 counties and then the mean of the bias across
counties is calculated for each of the 140 model runs. The mean of the 140 mean bias
estimates is then calculated and reported in the “Mean” column of Table I1I-1. The
minimum of the 140 mean bias estimates is reported in the “Minimum” column, and the
maximum of the 140 mean bias estimates is reported in the “Maximum” column. All
performance measures indicate that the metamodel produces very accurate and generally
non-biased predictions of the CAMx model response for the design value metric. The
mean of the spatially averaged error across all 140 runs is only 0.28 ppb, or less than half
a percent in relative terms. This indicates that the metamodel replicates the CAMx
response to emissions changes very well for most emissions combinations and in most



locations.

For the out-of-sample method, the mean, minimum, and maximum values of the
performance metrics across 10 CAMx validation runs are presented. These results are
very similar to the cross validation results, and as shown in Table III-1 also indicate very
good performance of the metamodel (e.g., based on this approach the mean error was

0.26 ppb).

The metrics with the largest errors and biases were the design value and “sum06”
metrics. Performance statistics were also generated for the other five metrics and were
shown to be near zero bias/error.

Table I11-1. Validation Performance Metrics for the Predicted Ozone Design Value

Performance Metric Cross Validation (n=139) Out of Sample (n=10)
Mean Minim Maximu Mean Minimum | Maximum
um m

Mean Bias (ppb) 0.01 -0.52 0.79 -0.01 -0.35 0.30
Mean Error (ppb) 0.28 0.04 0.83 0.26 0.18 0.39
Mean Normalized Bias (%) 0.02% -0.91% 1.81% -0.02% -0.61% 0.44%
Mean Normalized Error (%) 0.47% 0.05% 1.87% 0.44% 0.29% 0.66%
Normalized Mean Bias (%) 0.01% -1.10% 1.13% -0.02% -0.71% 0.44%
Normalized Mean Error (%) 0.46% 0.08% 1.19% 0.44% 0.36% 0.58%
Mean Fractional Bias (%) 0.02% -0.92% 1.79% -0.02% -0.61% 0.44%
Mean Fractional Error (%) 0.47% 0.05% 1.85% 0.44% 0.29% 0.66%

Figure 111-1. Comparison of Standalone vs. Metamodeling Design Values for two
locations for a specific in-sample CAMx simulation.

a0

Rogrossion Equation
what{county_namo:Kenasha County, Wi) =
yhat{county_name:PRilageiphia County, PA) =

+ 1, 0090290 true
0+ 1,0000788true

S22 pniladeiphia County,

PR




IV. Summary of Ozone Metamodeling Results

A. Adjusting the MSAT Metamodeling Emissions

The inputs for the response surface metamodel (RSM) are percent adjustments in
emissions from the 2015 RSM base case. These adjustments were calculated by taking
the ratio of a future year inventory projection for each factor compared with CAIR 2015
inventories for each factor for a base case and a control case. As described below,
because the CAIR modeling did not include all of the portable fuel container emissions,
the adjustments also had to account for the missing emissions in the 2015 RSM case.

For the MSAT analysis, the years of interest were 2020 and 2030 which allows
sufficient time for use of the new portable fuel containers to become widespread.
Inventory projections for 2020 were taken from modeling work done for the CAIR.
Inventories for 2030 were based on mobile source inventory model projections and
stationary sources were held constant from 2020 to 2030. As noted above, some of the
spillage emissions associated with portable fuel containers are currently included in the
NONROAD 2004 emissions model, however the remaining emissions were not included
in the CAIR inventories. For the purposes of the MSAT analysis, the remaining portable
fuel container emissions were included as part of the nonroad factor. For additional
detail on the portable fuel container emission projections, see the portable fuel container
inventory TSD.?

As discussed in Section II.A, the modeling domain covers 37 States in the Eastern
U.S. In using the metamodel to calculate the change in air quality associated with a
certain change in emissions, the emissions reductions are applied equally, on a percentage
basis across the domain (i.e., in both projected attainment and projected nonattainment
areas). Since some states have already implemented, or are in the process of
implementing, their own portable fuel container emission control programs, the emissions
reductions from the MSAT controls do not affect each state in the same way. For the
MSAT analysis the metamodel was run twice for the base and control scenario for each
year. The emissions inputs for the two runs reflect the varying level of control projected
for: a) those states with their own portable fuel container control programs and b) those
without a local program. Those states without an independent portable fuel container
control program will experience a larger degree of emissions reductions from the MSAT
controls. There are 25 states in the 37 state RSM domain that do not have their own
portable fuel container control programs. There are 12 states plus the District of
Columbia which do or will have their own portable fuel container control program by
2010. A list of the states with and without their own control program is presented in
Table IV-1.

 US EPA (2007) Estimating Emissions Associated with Portable Fuel Containers. EPA Document #
EPA420-R-07-001.

10



Table IV-1. Status of Portable fuel container Control Programs over the 37 States
in the Eastern U.S. Modeling Domain

State | State Portable fuel container State | State Portable fuel container
Control Program? Control Program?
AL No MO No
AR No NE No
CT Planning NH No
DE Yes NJ Planning
DC Planning NY Yes
FL No NC No
GA No ND No
IL No OH No
IN No OK No
1A No PA Yes
KS No RI Planning
KY No SC No
LA No SD No
ME Yes TN No
MD Yes TX Planning
MA Planning VT Planning
Mi No VA Planning
MN No WV No
MS No WI No

The impact of the MSAT controls was then assessed by coupling the results from
two metamodeling runs: 1) states with their own controls and 2) states without existing or
planned State programs. In all, eight RSM simulations were completed:

1) 2020 base / no existing portable fuel container controls,

2) 2020 base / planned or existing portable fuel container control program,

3) 2020 control / no existing portable fuel container controls,

4) 2020 control / planned or existing portable fuel container control program,
5) 2030 base / no existing portable fuel container controls,

6) 2030 base / planned or existing portable fuel container control program,

7) 2030 control / no existing portable fuel container controls,

8) 2030 control / planned or existing portable fuel container control program,

The results from runs 1, 3, 5, and 7 were used for locations within the 25 States
without the MSAT portable fuel container program. The results from runs 2, 4, 6, and 8
were used in the other areas. The coupling approach does not allow for a consideration
of ozone changes resulting from transport. As a result, this modeling is a slightly

11



conservative estimate of the actual air quality change which will result from the MSAT
controls.

An example of calculating the NonRoad VOC input adjustment factor for run 1 is
provided below. In that case the RSM input adjustment factor was calculated as follows:

(CCNRALM 2020*2020 25ratio)+2020 GCB 25
(CCNRALM 2015%2015 25ratio)

where:
CCNRALM 2020 = CAIR control NonRoad VOC inventory for 2020,
CCNRALM 2015 = CAIR control NonRoad VOC inventory for 2015,

2020 25ratio = ratio of 2020 NonRoad VOC:s for 25/37 states,
2015 25ratio = ratio of 2015 NonRoad VOCs for 25/37 states, and

2020 GCB_25 = portable fuel container emissions inventory for a base case for
2020 for the 25 states without their own portable fuel container control programs

The final input adjustments for each of the factors used in the MSAT analysis are
shown in Table IV-2 below.

Table IV-2. Input Adjustment Factors used in the MSAT metamodeling

Adjustment Factor [NRoad [NRoad |[OnRd |OnRd |Area |[EGU |NEGU
Table VOC |NOx [VOC |NOx [VOC |NOx |NOx

2020 base — 25 state 1.12 0.92 0.87 0.79 1.02 1.00 1.08

2020 base —12 state 1.07 0.92 0.87 0.79 1.02 1.00 1.08
2020 control — 25 state | 0.94 0.92 0.87 0.79 1.02 1.00 1.08
2020 control — 12 state | 0.98 0.92 0.87 0.79 1.02 1.00 1.08
2030 base — 25 state 1.16 0.83 0.81 0.64 1.02 1.00 1.08
2030 base —12 state 1.11 0.83 0.81 0.64 1.02 1.00 1.08
2030 control — 25 state | 0.96 0.83 0.81 0.64 1.02 1.00 1.08
2030 control — 12 state | 1.01 0.83 0.81 0.64 1.02 1.00 1.08

B. Modeling Results from the MSAT Strategy

Since the net improvement, when population weighted, in the design value metric
was so small, the remaining ozone metrics were not utilized for the MSAT rule, as they
would likely lead to negligible monetized benefits. As discussed in more detail in EPA
guidance on 8-hour ozone model attainment demonstrations, model predictions are used

12



in a relative rather than absolute sense to project what levels of ozone will exist in the
future in both base and control cases. These projections are anchored to present-day
ambient concentrations. This is done by calculating a relative reduction factor (RRF)
between any future CAMx simulation and the baseline CAMx simulation (i.e., control /
base). The RRF is then multiplied by the representative baseline observed ozone to yield
the projected future value. In the case of the MSAT modeling, the CAMx baseline was a
2001 simulation, and the representative base ambient period was a three-year average of
8-hour ozone design values from 2001° to 2003. Starting with an observed concentration
as the base value reduces problems in interpreting model results.

The projected 8-hour ozone design value results from the metamodeling for 2020
are shown in Appendix A for the 525 counties within the eastern U.S. modeling domain
that had valid ozone monitoring data for the period between 1999 and 2003. Similar
results for 2030 are shown in Appendix B. Both of these tables contain the model
projected design value to one decimal place (ppb), and the design value change from the
MSAT controls to two decimal places (ppb).

The results indicate that the net effect of the portable fuel container controls is a
very small, net improvement in future ozone, after weighting for population. Table IV.3
shows the population-weighted design value projections in 2020 and 2030, for the base
and MSAT control scenarios. As can be seen, the population-weighted design value over
the eastern U.S. is projected to decrease from 72.20 ppb to 72.15 ppb in 2020 as a result
of this rule. It can be noted from this table that the positive impacts from the rule are less
in 2030 than in 2020. This occurs because NOx emissions are projected to be reduced at
a faster pace than VOC emissions between 2020 and 2030 (see Table IV.2). As a result,
the eastern U.S. airshed is projected to become increasingly NOx-limited and less
responsive to VOC controls.

Table 1VV-3. 2020 and 2030 Average Eastern U.S. 8-Hour Ozone Design Values in
the MSAT Base / Control Cases, and the Expected Effect of the MSAT Controls

Base Control Change
2020 Pop Weighted 72.20 72.15 -0.051
2030 Pop Weighted 70.67 70.64 -0.027

In certain urban areas the effects of the rule are even larger. In particular, for
those areas that are strongly VOC limited the reductions can be larger. For example, in
Kenosha Co., WI, which is the controlling county for both the populous Chicago and
Milwaukee nonattainment areas, the 2020 design value is projected to drop from 87.95 to
87.67 ppb. It is also important to note that the RSM results in Appendix A and B indicate
that the counties which are projected to experience the greatest improvement in ozone
design values are generally also those that are projected to have the highest ozone design
values (see Table IV-4). Those counties that are projected to experience an extremely

? Because 8-hour ozone design values are themselves, three-year averages of fourth-highest ozone
concentrations over an ozone season, the net effect here is to average ozone over a five-year period (1999-
2003) with the greatest weighting being applied to the base year (i.e., 2001).
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small increase in ozone design values generally have design values that are lower, below
70 ppb.

Table 1V-4. 2020 and 2030 Population-Weighted Average Change in 8-Hour Ozone
Design Values for counties in which future design value is projected to be equal to
or above 80 ppb

Projected Change due to MSAT Controls (ppb)
2020 -0.145
2030 -0.153

14



United States Office of Air Quality Planning and Publication No. EPA

Environmental Standards 454/R-07-003
Protection Air Quality Assessment Division February 2007
Agency Research Triangle Park, NC
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Appendix A: 2020 MSAT Metamodeling Results

State Name County Name 2001-2003 2015 CAIR 2020 Base| 2020 Control 2020 Effect of MSAT

Baseline Population controls (ppb)
Alabama Baldwin Co 79.0 67.4 66.7 66.7 220,357 0.04
Alabama Clay Co 82.0 59.2 58.3 58.3 15,770 0.03
Alabama Elmore Co 78.3 59.4 58.2 58.2 88,681 0.04
Alabama Jefferson Co 86.7 65.5 63.9 64.0 673,910 0.06
Alabama Lawrence Co 78.7 62.3 61.4 61.4 39,006 0.05
Alabama Madison Co 82.7 62.7 61.1 61.2 343,602 0.04
Alabama Mobile Co 79.0 68.0 67.4 67.5 441,060 0.04
Alabama Montgomery Co 80.0 60.8 59.8 59.8 257,062 0.02
Alabama Morgan Co 83.0 66.7 65.8 65.9 133,114 0.07
Alabama Shelby Co 91.7 68.2 66.5 66.6 262,960 0.04
Alabama Sumter Co 74.0 58.2 58.0 58.0 14,352 0.03
Alabama Tuscaloosa Co 78.0 58.3 57.3 57.3 192,889 0.03
Arkansas Crittenden Co 92.7 78.0 76.7 76.8 54,856 0.06
Arkansas Montgomery Co 68.0 55.9 54.9 55.0 10,484 0.04
Arkansas Pulaski Co 84.7 68.4 67.2 67.2 382,597 0.02
Connecticut Fairfield Co 98.7 90.6 89.9 89.9 900,915 -0.03
Connecticut Hartford Co 89.3 76.8 74.6 74.6 862,512 -0.03
Connecticut Litchfield Co 83.0 70.8 68.9 68.9 199,790 -0.03
Connecticut Middlesex Co 98.0 88.4 86.8 86.7 175,771 -0.03
Connecticut New Haven Co 99.0 89.1 87.6 87.5 837,362 -0.03
Connecticut New London Co 90.7 81.1 79.4 79.4 274,769 0.00
Connecticut Tolland Co 93.0 79.1 76.9 76.9 151,381 0.00
Delaware Kent Co 91.3 75.5 73.4 73.4 153,886 0.00
Delaware New Castle Co 95.3 81.5 79.9 79.8 569,214 -0.03
Delaware Sussex Co 93.3 77.3 75.3 75.3 210,515 0.00
D.C. Washington Co 94.3 82.7 74.2 74.2 535,936 -0.03
Florida Alachua Co 75.3 55.1 53.4 534 266,004 0.06
Florida Baker Co 72.7 53.8 52.3 52.3 29,729 0.02
Florida Bay Co 80.0 68.7 67.9 67.9 199,951 0.07




Florida Brevard Co 75.0 53.9 52.2 52.2 586,754 0.01
Florida Columbia Co 71.0 52.8 51.4 51.4 75,039 0.04
Florida Duval Co 70.3 50.6 48.9 49.0 935,231 0.04
Florida Escambia Co 83.7 70.2 69.4 69.4 342,038 0.04
Florida Highlands Co 64.0 46.3 44.7 44.8 109,389 0.04
Florida Hillsborough Co 80.3 63.4 61.9 61.7 1,263,025 -0.24
Florida Holmes Co 72.3 58.3 57.2 57.2 22,785 0.04
Florida Lake Co 76.0 54.8 53.0 53.0 283,796 0.02
Florida Lee Co 70.7 51.8 49.9 50.0 630,873 0.01
Florida Leon Co 73.3 575 56.2 56.3 317,982 0.05
Florida Manatee Co 79.0 60.9 59.2 59.2 384,419 0.03
Florida Marion Co 75.7 55.1 53.7 53.7 342,271 0.01
Florida Orange Co 78.3 56.8 54.9 54.9 1,221,146 0.01
Florida Osceola Co 73.7 53.2 51.3 51.4 302,483 0.04
Florida Palm Beach Co 69.7 51.3 49.4 495 1,740,927 0.04
Florida Pasco Co 77.7 59.9 58.1 58.2 447,595 0.03
Florida Pinellas Co 77.3 62.3 60.6 60.6 1,027,120 0.05
Florida Polk Co 78.0 55.7 53.7 53.7 596,212 0.04
Florida St Lucie Co 69.3 51.2 70.6 70.3 257,00