

Acquisition of digital chest images for pneumoconiosis classification: Methods, procedures, and hardware

Ehsan Samei, PhD

Duke Advanced Imaging Laboratories Departments of Radiology, Physics, Biomedical Engineering, and Medical Physics Duke University Medical Center

Transition to the digital era

Why digital radiography?

- Four function of film:
 - Image capture
 - Image processing
 - Image display
 - Image storage
- Separation of function enabling optimization of each towards improved image quality

Advantages of digital radiography

- Improved dynamic range
 - Toleration for over-/under-exposure
- Image post-processing
 - Improved visualization
- Digital format
 - Enabling quantification and digital analysis
 - Electronic archival and distribution

Digital radiography in classification of pneumoconiosis?

Notable advantages in potentially providing accessible, standardized image data for visual interpretation or automated classification

Digital radiography

 Radiography in which the image data are sampled into discrete elements in spatial and intensity dimension

Common aspects of DR

- 1. Imaging geometry
- 2. Detrimental effect of x-ray scatter
- 3. Analog x-ray capture followed by digitization
- 4. Digital image
- 5. Required image pre- and postprocessing

Differences between DR systems

- 1. Detector technologies
- 2. Inherent image quality attributes
- 3. Reported exposure indicator
- 4. Required exposure
- 5. Image post-processing and appearance

DR technologies

	X-ray				
		Computed Radiography (CR)	Indirect Flat-panel	Direct Flat-panel	CCD or CMOS-based
	Sensitive layer	PSL phoshor(eg, BaFBr)	Csl or GSO phosphor	a-Se	CsI or GSO phosphor
	Coupling layer	PSL light- guide	Contact Iayer	None	Lens or fiber- optic taper
		PSL signal digitiz.	Photo diode /TFT arrays	TFT arrays	CCD or CMOS
Collection layer					

DR offerings

CR 101

- Invented 1975 by GW Luckey at Kodak
- First commercial unit in 1983 (Fuji FCR 101)
- Most common digital radiographic modality
- Easy retrofit and portable application
- The most economical digital option

How CR Works? Photostimulable luminescence (PSL)

- 1. Phosphor excitation (by x-rays)
- 2. Formation of latent image
- 3. Stimulation by light (scanning laser)
- 4. Emission of light (PSL signal)
- 5. Light collection (PSL signal)

6. Signal digitization and image formation

CR image quality

 Inherent image quality governed by lateral spread of the laser light, and phosphor thickness

Flat-panel 101

- Technology development facilitated with advancements in TFT array fabrications for flat-panel displays
- First detectors introduced in late 90's
- Quality and speed out-performs CR
- Cost is still the prohibitive utilization factor

Two types of flat-panel detectors

Indirect:

X-ray \longrightarrow Detection by a Light collected phosphor \longrightarrow by a a-Si array (eg, structured Csl)

Detector structure

How flat-panel detectors work?

- 1. Pixels are formed by the photodiode/TFT elements coupled with unpixelated capture medium
- 2. X-ray energy conversion to charge (with intermediary light conversion for indirect detectors)
- 3. Charge collected in pixel capacitors
- 4. Pixels read line-by-line after the exposure

Flat-panel image quality

 Inherent image quality governed by lateral spread of light/charge, and phosphor/photo-conductor thickness

CCD/CMOS-based DR 101

- First systems introduced in 90's
- Phosphor-based
- Based on lower-cost Charged Couple Device (CCD) and Complementary metal-oxidesemiconductor (CMOS) light sensors
- Small sensor size requires demagnification
- Quality comparable to CR
- Lower-cost alternative to flat-panel DR

CCD/CMOS-based DR structure

How CCD/CMOS-based DR detectors work?

- 1. X-ray capture by a phosphor
- 2. Recording the emitted light by the CCD/CMOS sensor
- 3. Pixels read line-by-line after the exposure

CCD/CMOS-based DR image quality

 Inherent image quality governed by lateral spread of light, phosphor thickness, and loss of light ("quantum sink")

Effect of scatter

- An ever present attribute of chest radiography (analog AND digital)
 - Scatter Fraction: 60-90%
 - Scatter Fraction: 40-70% with grid
- Reduces image quality

- Reduces SNR²/dose by 2.5-5 times!

Samei et al, Med Phys, Sept 2004; Boyce and Samei, Med Phys, April 2006.

Full-field DR

Slot-scan DR

Effective DQE (eDQE)

Full-Field, 120 kVp No Grid

- Full-Field, 120 kVp
- Full-Field, 140 kVp
 - Slot-Scan, 117 kVp
- Slot-Scan, 140 kVp

Demonstration

Full-field, 120 kVp, 0.02 mSv

Slot-scan, 140 kVp, 0.02 mSv

Conclusions

- Digital radiography offers distinct advantages
- Current commercial offerings represent differing technologies with differing image quality attributes
- An initiative involving diverse systems needs to
 - take their similarities and differences into consideration
 - employ controlled unifying conditions

Recommendations

- Standardized image acquisition and processing protocols
- Robust quality control and preventative maintenance programs
- Facility and equipment accreditation programs

Thank you for your attention

DAILabs.duhs.duke.edu

DVANCED

IMAGING

LABORATORIES