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INTRODUCTION

1. Abnormalities in WGS datasets present assembly problems that are expensive 
and time-consuming to resolve.  Cloning bias, contamination and large 
repeats in genomic DNA are the three biggest obstacles requiring a great deal of 
human involvement and expertise.

2. Shotgun libraries and assemblies exhibit clearly recognizable patterns that have 
been shown to fit certain known statistical models. 

3. Deviations from these models often stem from flaws and abnormalities in the 
input data, which may reflect problems in the protocol, chemistries, or in the DNA 
being sequenced. 

4. Assembly behavior can be better predicted and understood by studying some of 
these trends.  Large-scale facility-wide problems can be revealed early in the 
process, as well as case-specific caveats.

5. We developed several robust methods for detecting cloning bias, DNA 
contamination and presence of long repeats in the early stages of WGS projects.

6. These methods are based on modeling and comparative analyses of depth of 
coverage  distributions,   progressive (iterative) assembly “kinetics“, and
GC composition distributions

7. Ideally, the distribution of the number of alignments of a read to any other read 
should follow a Poisson curve.  By comparing real depth distributions to the fitted 
Poisson function and observing the associated Asymptotic Standard Error (ASE)
values, we can routinely reveal cloning bias and contamination in genomic 
libraries.

8. Progressively assembling a steadily growing dataset and looking for deviations 
from a pre-determined model, a process we termed Progressive Assembly 
Plotting (PAP), can reveal high levels of repeats.

9. Differences in GC composition between different genomes, libraries and even 
plates allows to identify cases of contamination by  identifying bimodal patterns in 
the GC content distribution  among the sequences.

METHODS

To look for manifestations of cloning bias in depth distributions we randomly selected  
datasets from a large pool of  prokaryotic genomic libraries, all subcloned and 
sequenced using common shotgun methods. We knew from prior experience that a 
portion of these libraries contained strong cloning biases, contamination or both. 
Libraries that didn't display such features were known to be ideal for fast and smooth 
gap closure and final polishing.  In total, 310 libraries were included, consisting of 3 kb 
pUC18 and 6-8kb pMCL200 plasmid libraries, and 28-40kb pFos libraries.

Using an in-house program (estDepthFromAce) that parses and extracts per-base 
depth information from .ace files (Phrap assembly format) , we generated a high-
resolution depth vector  for each individual library. The resulting distributions were then 
plotted against the fitted Poisson function using Gnuplot. The goodness of fit was 
reflected by the value of Asymptotic Standard Error.

As an alternative to .ace file-derived coverage,  we used Blastn  to produce all possible 
read vs. read  alignments.  The frequency distribution of the hits could then be also 
quantitatively compared to the fitted Poisson distribution.

To model the Reads vs. Contigs dynamics for a typical single chromosome genome 
we used the following approximated equation:

f(x) = x*exp((-n/L)*x) (n = mean read length,  L = genome size).

To generate reads vs. contigs  Progressive Assembly Plots,  in-silico shotgun datasets  
were simulated from real finished genomes.  Then, a series of progressive Phrap 
assemblies was performed, where a set number of reads would be added before each  
iteration.  The lengths of the in-silico reads and clones followed normal distributions, 
with mean and std. deviations approximating real life cases.  Real reads were not used 
in order to avoid any possible effects of case-specific differences in read length or 
quality.

GC content was plotted from the average GC% values calculated for all trimmed and 
vector-screened production reads. This procedure is currently a part of the standard 
QC protocol for JGI's Sanger-type sequences.

For assessing the effects of contamination we selected a notorious case of host 
contamination in Ehrlichia canis.  Several datasets were available, starting from the 
initial, heavily contaminated set, and ending with just the reads that make it into the 
finished genome submission.    An artificial contamination case was also made by 
combining reads from two distinct finished genomes.

Repeat analysis was done on Frankia Sp. (JGI) and Shewanella oneidensis (TIGR) 
genomes with average to high repeat content relative to other microbes. Using the  
Vmatch software, we identified and masked all continuous non-unique sequence 
fragments over 500 bp in length. After this, shotgun simulations and iterative 
assemblies were performed on the masked and non-masked data, as described 
above, and the resulting PAP curves were compared to each other and to the model.

RESULTS AND DISCUSSION

Bias Detection

Observed deviations of depth curves from Poisson distribution agree with general 
expectations:

♣ Libraries with relatively large observed Asymptotic Standard Error (ASE) 
are known to have failed at some point of the QC process, or have seriously 
confounded finishing, mainly by virtue of uncaptured (uncloned) gaps or insufficient 
clone depth.   The noticeable broadening and flattening of the curve is the result of 
under-representation of some regions and over-sampling of others  (Fig.1).  It is worth 
noting that a normal bell-shaped distribution is still apparent in most biased cases.

♣ GC-content correlation is observed in plasmid libraries.  Reads derived 
from large-insert fosmid libraries display a significantly better fit, but may be under-
represented for purposes of this study. 

This depth distribution-based method could allow us to check libraries for bias 
routinely and reliably, with proper steps taken to either eliminate or compensate for the 
bias.   The observed behavior should be noticeable even with only a fraction of the 
dataset available.  This makes it possible to detect bias as soon as the reads begin 
coming off the sequencers. 

Contamination Detection

GC composition analysis provides a reliable way to identify possible extra-
chromosomal contamination, vector contamination,  mixed source DNA, and even 
large scale plate mix-ups in the lab. In a typical dataset of genomic shotgun reads, the 
GC content of the sequences should follow a normal distribution. Any considerable 
amount of contamination from a foreign source with the mean GC content distinct from 
the genome of interest may reveal itself as an additional peak or a “shoulder” in the 
GC distribution (fig.3). 

♦ GC plotting of shotgun datasets that have been screened (by Blastn and 
Cross_match ) for known common contaminants  and had them removed shows the 
effectiveness of the screening procedure used (fig.3).

♦ Library-level contamination is distinguished from the genome-wide kind by 
plotting each library's GC composition separately.  Fig. 4A shows a case of DNA-level 
contamination of a genome with a foreign source – all libraries have the secondary 
peak.  In fig. 4B, wrong DNA samples were used during preparation of libraries AIGA 
and AIGB, while the rest was done with the correct DNA.  This latter case specifically 
illustrates a situation when an entire library contains only the foreign reads.

When both the target and the contaminant have similar GC content and can’t be 
visualized with GC plotting,  analyses of PAPs and depth distributions provides clues 
to potential contamination problems.  

♦ In Fig 5, the initial PAP curve differs grossly from the model. This is 
caused by many additional contigs forming from the contaminant reads during 
assembly.  After database screening (automatic QC), the deviation is still strong, 
indicating that contamination still remains in the dataset.   After a long and tedious 
process of cleanup and Finishing, the reads that make it into the final submission are 
contamination-free and the PAP curve fits the model very well.

By using PAP analysis alone, however, it is difficult to distinguish contamination from 
library bias,  since both result in the early leveling of the curve. The distinction is more 
clear in the depth distribution plot where the contaminant produces a secondary peak  
(reflecting different abundance levels), while cloning bias would likely cause an overall 
broadening of the curve.

♦ Fig 6 shows the same E.canis contamination case revealed in a series of depth 
plots (here in the form of  frequency vs. nr.of Blast hits ), each taken at a different project 
stage. The over-represented low-depth outlier (i.e., contamination) is detectable even with just
¼ of the reads present.

Repeat Content Analysis

Long repeats affect the behavior of assembly software* in a number of complex (and not so 
complex)  ways, and thus result in definite changes in the shape of the PAP curve.

♠ Removal of long repeats (>500bp) and replacing them with random basecalls 
resulted in a 5% increase in the number of contigs around the peak of the PAP curve and a 
better fit to the model function* (Fig 7).

* A  likely explanation of this phenomenon is that in the early assembly stages,  repeat copies act as depth boosters, 
causing small contigs to join into fewer larger ones, and do so at a faster rate than in a repeat-free dataset.    As the 
assembly progresses with higher and higher avg. coverage, these repeats may or may not affect the number of contigs as 
much, depending on the repeat type and on the software design.

♠ Removal of long repeats (>500bp) from the same dataset caused a 25% increase 
of the mean value in the Blast-based depth distribution plot, and a clearly better Poisson fit*. 

* This happens due to  sequences from different repeat copies having strong pairwise hits with each other.  In 
assemblies, this results in "over-collapsed repeats" where several repeat copies assemble together into one highly 
covered region.  We've been able to confirm this behavior on many of our repeat-rich genomes.  

Both of these distribution “fitness” approaches prove to be useful in revealing high repeat 
content.  By running the analysis early using this method  we are able to foresee potential 
repeat-linked assembly troubles that lie ahead.  Better classification of the troublesome 
repeats is now needed in order to start designing better assembly strategies.
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Fig.1 Two distributions of read depths in assembled pUC18 libraries  Dotted lines represent the datasets, solid lines are 
fitted Poisson curves.  A.  An unbiased library; ASE  = +/- 0.03331;  B. A library with confirmed excessive cloning 
bias; ASE = +/- 0.1924

Fig.2 Correlation of ASE scores with GC composition.   In pUC18 and pMCL200 plasmid libraries, low GC datasets 
display higher ASE. 
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Fig. 3 Two GC plots of Ehrlichia chaffensis shotgun reads.  A. Contamination is present, as suggested by a long high 
GC outlier. B. Host contamination removed after database screening.  Small amounts of high-GC reads are still present, 
meaning that not all of the contaminants were removed.
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Fig. 4 Library-specific GC plots. A. DNA-level contamination;  secondary peak present in all libraries. B. Library mix-
up;  two of the libraries exhibit a completely distinct GC signature.

Fig. 5  Progressive Assembly Plots  of  Ehrlichia canis shotgun reads - initial dataset (green),  database-screened (pink),
contaminant-free assembly (blue),  compared to the model curve.   

A. 1/4 initial dataset B. 1/2 of initial dataset

C. Full initial dataset D. Final contamination-free dataset

Fig. 6 Frequency plots of Ehrlichia canis shotgun reads.   

Fig. 7. Progressive Assembly Plots of simulated shotgun 
datasets generated from the published S.oneidens AEO14299 
chromosome.  Repeats cause the peak suppression of the of the 
non-masked dataset (blue), while the masked dataset (green) fits 
the model more closely.

Fig. 8  Frequency plots of simulated shotgun of S.oneidens AEO14299.  A. Repeats present. B. Repeats masked 
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