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Since the initiation of the Department of Energy’s Joint Genome Institute, 
and as part of the DOE’s Microbial Genome Program, the LLNL microbial genomics 
group has, as part of the JGI, been involved in various aspects of delivering finished 
genomes and performing detailed analyses, including comparative genomics, for 
publication purposes. Though we have only published 18 of our ~50 finished 
bacterial genomes, we are currently in the final phases of analysis for an additional 
10 and are in various stages of working on annotation and comparative analyses for 
another 16 microbial genomes. Here, we outline our data management and finishing 
processes, and also present a few of the recently completed microbial genomes, 
including Pseudomonas putida F1, Psychrobacter sp. PRwf-1 and Sinorhizobium
medicae WSM419.
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JG-LLNL Finishing Process

The JGI-LLNL finishing process starts with an automated round of repeat 
resolution using in-house designed software to resolve mis-assemblies caused by short 
repetitive elements (<3.5kb in length).  This is followed by two rounds of automated primer 
design using Consed’s Autofinish program which designs experiments for gap closure and 
ambiguity resolution.  Next, we manually tackle large, complex repetitive elements (>5 kb in 
length), and are also employing PCR and primer walking to close the remaining captured 
and/or un-captured gaps.  Additionally, we go through a “polishing” phase to resolve any low 
quality and/or single subclone regions to ensure the final error rate for each replicon is <1 
error per 50 kb with a minimum of 2X coverage across the genome. The integration of 
pyrosequencing data into our pipeline has been another area of active research.

Once a genome is “completed”, the genome is sent for final QA/QC by the 
independent Stanford group.  After passing QA/QC, the complete set of replicons is sent for 
final Annotation at ORNL and then to the PGF for final incorporation into the IMG Database.

We coordinate directly with our genome collaborators in all cases, and have played 
an integral role in the analysis, annotation and comparative analysis of completed genomes 
and strive for a descriptive publication and sometimes, further functional studies.

JGI-LLNL Miicrobial Genome Projects

P. putida sp. KT2440

P. putida sp. F1

Pseudomonas putida is a metabolically versatile saprophytic soil bacterium that is known for its diverse 
metabolism and potential for development of biopesticides and plant growth promoters because of  its ability 
to colonize rhizosphere of crop plants. P. putida F1 is one of the most well-studied aromatic hydrocarbon 
degrading bacterial strains. We have performed preliminary comparisons between P. putida strains F1 and 
KT2440, which is a strain incapable of aromatic hydrocarbon degradation.  The major inversion (blue) is 
flanked by two ISPpu9 insertion sequences within the KT2440 strain.  The KT2440 genome has 3 large 
phage insertions and 1 bacteriocin, which looks to be unique to this strain as they are not found in the F1 
strain and may explain its smaller size (by about 220 Kb). Of interest will be to look for gene regions that are 
unique to the F1 strain, which may contribute to its exceptional biodegrading versatility.

Comparative Genome Analysis

Sinorhizobium medicae

Psychrobacter sp.  PRwf-1

S.Meliloti 1021

P. arcticus 273-4

Psychrobacter
sp. PRwf-1

P. cryohalolentis K5

Taxa Organism GC
% Size Status

Betaproteobacteria Burkholderia ambifaria AMMD 67% 7.53 Man. In Prep

Betaproteobacteria Burkholderia ambifaria MC40-6 66% 7.7 Active

Betaproteobacteria Burkholderia cenocepacia AU1054 Rg2/BSL2 64% 7.28 Man. In Prep

Betaproteobacteria Burkholderia cenocepacia hi2424 66% 7.76 Man. In Prep

Betaproteobacteria Burkholderia cenocepacia MC0-3 66% 7.9 Active

Betaproteobacteria Burkholderia vietnamiensis G4 66% 8.4 Man. In Prep

Betaproteobacteria Burkholderia sp. 383 61% 8.8 Man. In Prep

Betaproteobacteria Burkholderia multivorans ATT17616 66% 7.0 Active

Betaproteobacteria Burkholderia phymatum STM 815 62% 8.6 Active

Betaproteobacteria Burkholderia phytofirmans PsJN 62% 8.1 Active

Betaproteobacteria Burkholderia xenovorans LB400 62% 9.77 Published

Firmicutes Clostridium sp. OhiLAs 36% 3.0 Active

Deltaproteobacteria Desulfovibrio vulgaris DePue 63% 3.6 Finished

Alphaproteobacteria Ehrlichia canis 29% 1.32 Published

Alphaproteobacteria Ehrlichia chaffeensis 29% 1.8 Finished

Euryarchaeota Methanosaeta thermophila PT 53% 1.9 Finished

Betaproteobacteria Methylibium petroleiphilum PM1 69% 4.6 Published

Actinobacteria Mycobacterium gilvum PYR-GCK 68% 5.9 Finished

Actinobacteria Mycobacterium sp.JLS 68% 6.0 Finished

Alphaproteobacteria Nitrobacter hamburgensis 62% 5.01 Man. In Prep

Alphaproteobacteria Nitrobacter winogradskyi Nb-255 (ATCC 25391) 62% 3.4 Published

Betaproteobacteria Nitrosomonas europaea 51% 2.8 Published

Betaproteobacteria Nitrosomonas eutropha C91 49% 2.82 Man. In Prep

Gammaproteobacteria Nitrosomonas oceani C-107 50% 3.5 Published

Betaproteobacteria Nitrosospira multiformis Surinam 54% 3.23 Man. In Prep

Cyanobacteria Nostoc punctiforme 41% 9.2 Published

Cyanobacteria Prochlorococcus marinus MED4 31% 1.66 Published

Cyanobacteria Prochlorococcus marinus MIT9313 51% 2.4 Published

Gammaproteobacteria Pseudomonas putida F1 59% 5.9 Finished

Gammaproteobacteria Pseudomonas putida W619 61% 5.7 Active

Gammaproteobacteria Psychrobacter sp. PRwf-1 44% 2.9 Finished

Crenarchaeota Pyrobaculum arsenatuicum DSM 13514 55% 2.1 Finished

Crenarchaeota Pyrobaculum calidifontis JCM 11548 57% 2.0 Finished

Alphaproteobacteria Rhodopseudomonas palustris CGA009 65% 5.47 Published

Alphaproteobacteria Rhodopseudomonas palustris BisA53 64% 5.5 Man. In Prep

Alphaproteobacteria Rhodopseudomonas palustris BisB18 65% 5.51 Man. In Prep

Alphaproteobacteria Rhodopseudomonas palustris BisB5 65% 4.89 Man. In Prep

Alphaproteobacteria Rhodopseudomonas palustris HaA2 66% 5.33 Man. In Prep

Gammaproteobacteria Shewanella baltica OS195 46% 5.3 Active

Gammaproteobacteria Shewanella putrefaciens 200 45% 4.7 Active

Gammaproteobacteria Shewanella putrefaciens CN-32 44% 4.5 Finished

Gammaproteobacteria Shewanella sp. PV-4 54% 4.6 Finished

Gammaproteobacteria Shewanella sp. W3-18-1 45% 4.7 Finished

Alphaproteobacteria Sinorhizobium medicae 61% 6.7 Finished

Firmicutes Staphylococcus aureus JH1 34% 2.9 Finished

Firmicutes Staphylococcus aureus JH9 34% 2.9 Finished

Cyanobacteria Synechococcus WH8102 59% 2.4 Published

Betaproteobacteria Thiobacillus denitrificans, ATCC 23644 66% 2.91 Published

Gammaproteobacteria Thiomicrospira crunogena 43% 2.4 Published

Epsilonproteobacteria Thiomicrospira denitrificans 35% 2.2 Man. In Prep

Verrucomicrobia Verrucomicrobium TAV2 59% 5.7 Active

Verrucomicrobia Victivallis vadensis 59% 4.6 Active

Size
G+C

%

Chromosome 3.65 Mb 62.7%

pSymA 1.35 Mb 60.4%

pSymB 1.68 Mb 62.4%

Size
G+C

%
Chromosome 3.78 Mb 62%

Plasmid1 1.57 Mb 61%

Plasmid 2 1.23 Mb 60%

Plasmid 3 0.219 Mb 60%

Size G+C%
Chromosome 2.98 Mb 45.0%

Plasmid1 13.9 kb 38.0%

Plasmid 2 2.1 Kb 40.0%

Size G+C%
Chromosome 2.65 Mb 43%

Size G+C%
Chromosome 3.06 Mb 42.3%

Plasmid1 41.2 Kb 38.3%

P.putida KT2440 P.putida F1
Chromosome Chromosome

Size 6.18 Mb 5.96 Mb

G+C% 61.5% 62%

Genes 5350 5251
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S. meliloti 1021 S. medicae WSM419
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We compared the genomes of two gram negative Alphaproteobacterial nitrogen-fixing facultative legume symbionts S. 
medicae strain WSM419 and the published S. meliloti 1021. Sinorhizobium medicae can be distinguished from S. meliloti by 
its unique capacity to fix nitrogen in association with annual and perennial Medicago hosts of world-wide agronomic value. S. 
medicae is also superior in its nitrogen fixation and acid tolerance characteristics. Preliminary whole genome alignments 
reveal the colinear nature of the chromosome and a largely colinear (one large rearrangement) pSymB (pExo) megaplasmid, 
while the main replicon responsible for nitrogen fixation and nodulation, pSymA, has undergone numerous changes since 
the two species diverged. It will be interesting to see if the various phenotypic differences can be explained solely on the 
basis of pSymA divergence or if smaller differences in the chromosome or other megaplasmid are responsible.

Psychrobacter species are capable of reproducing at temperatures ranging from -10 to 40 degrees Celsius and have been isolated 
primarily from low temperature marine environments including Antarctic sea ice, ornithogenic soil, and sediments, the stomach 
contents of the Antarctic krill Euphausia, sea water (NW pacific ocean, 300 m depth), the deep sea, and the internal tissues of a 
marine ascidian. Yet, Psychrobacter species have also been isolated from a pigeon feces bioaerosol, a poultry carcass, fermented 
sea food, human blood and tissues, and the lungs of an infected lamb.  The sequenced psychrophilic species, P. arcticus 273-4 and 
P. cryohalolentis K5 were isolated from 20-40 thousand-year-old Siberian permafrost core/cryopeg, where the in situ temperature is 
-9 to -11 degrees Celsius, while Psychrobacter sp. PRwf-1 was isolated from Puerto Rican waters where the temperature is
significantly higher. These comparisons show a great deal of genome shuffling but little horizontal acquisition, thus it is likely that 
specific adaptations throughout the genome permit growth at different temperature ranges.

Table:  Comparison of the proteins assigned to functional
COGS categories.
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