September 6, 2001

Mr. L. W. Myers
Senior Vice President
FirstEnergy Nuclear Operating Company
Beaver Valley Power Station
Post Office Box 4
Shippingport, Pennsylvania 15077

SUBJECT: BEAVER VALLEY POWER STATION - NRC INSPECTION REPORTS

50-334/01-011; 50-412/01-011

Dear Mr. Myers:

On July 27, 2001, the NRC completed a team inspection at the Beaver Valley Power Station, Units 1 & 2. The enclosed report presents the results of that inspection. The results of the inspection were discussed with Mr. L. Pearce and other members of your staff on July 27, 2001.

This inspection was an examination of activities conducted under your license as they relate to the identification and resolution of problems, and compliance with the Commission's rules and regulations and with the conditions of your operating license. Within these areas, the inspection consisted of a selected examination of procedures and representative records, observations of activities, and interviews with personnel.

The team concluded that in general, problems were properly identified, evaluated and corrected. However, the team identified one finding of very low safety significance (Green) associated with an inadequate evaluation involving molded case circuit breakers in safety related applications. This issue was determined to involve violation of NRC requirements. However, because of the very low safety significance, and because the issue was entered into your corrective action program, the NRC is treating this issue as a Non-Cited Violation, consistent with Section VI.A.1 of the NRC Enforcement Policy. If you deny this Non-Cited Violation, you should provide a response with the basis for your denial, within 30 days of the date of this inspection report, to the Nuclear Regulatory Commission, ATTN: Document Control Desk, Washington, D.C. 20555-0001; with copies to the Regional Administrator, Region I; the Director, Office of Enforcement, United States Nuclear Regulatory Commission, Washington, D.C. 20555-0001; and the NRC Resident Inspector at the Beaver Valley Station.

In accordance with 10 CFR 2.790 of the NRC's "Rules of Practice," a copy of this letter and its enclosure will be available electronically for public inspection in the NRC Public Document Room or from the Public Available Records (PARS) component of the NRC's document system (ADAMS). ADAMS is accessible from the NRC Web site at http://www.nrc.gov/NRC/ADAMS/index.html (the Public Electronic Reading Room).

Sincerely,

/RA/

Wayne D. Lanning, Director Division of Reactor Safety

Docket Nos.: 50-334; 50-412 License Nos: DPR-66, NPF-73

Enclosure:

Inspection Report 50-334/01-011; 50-412/01-011

cc w/encl:

L. W. Pearce, Plant General Manager

R. Fast, Director, Plant Maintenance

F. von Ahn, Director, Plant Engineering

R. Donnellon, Director, Projects and Scheduling

M. Pearson, Director, Nuclear Services

T. Cosgrove, Manager, Nuclear Regulatory Affairs

J. A. Hultz, Manager, Projects and Support Services, FirstEnergy

M. Clancy, Mayor, Shippingport, PA

Commonwealth of Pennsylvania

State of Ohio

State of West Virginia

Distribution w/encl:

Region I Docket Room (with concurrences)

- D. Kern, SRI NRC Resident Inspector
- H. Miller, RA
- J. Wiggins, DRA
- J. Rogge, DRP
- N. Perry, DRP
- T. Haverkamp, DRP
- P. Hiland, OEDO
- E. Adensam, NRR
- L. Burkhart, PM, NRR
- R. Schaff, PM, NRR

DOCUMENT NAME: C:\ADAMS\Cache\ML0124905590.WPD

After declaring this document "An Official Agency Record" it <u>will</u> be released to the Public.

To receive a copy of this document, indicate in the box: "C" = Copy without attachment/enclosure "E" = Copy with attachment/enclosure "N" = No copy

OFFICE	RI/DRS	RI/DRS	RI/DRP	RI/DRS	RI/DRS
NAME	A DellaGreca	D Lew	J Rogge	J Trapp/ JTS for	W Lanning/RVC for
DATE	9/05/01	09/06/01	09/05/01	09/05/01	09/06/01

OFFICIAL RECORD COPY

U. S. NUCLEAR REGULATORY COMMISSION

REGION I

Docket Nos.: 50-334, 50-412 License Nos.: DPR-66, NPF-73

Report Nos.: 50-334/01-011, 50-412/01-011

Licensee: First Energy Nuclear Operating Company

Facility: Beaver Valley Power Station, Units 1 and 2

Location: Post Office Box 4

Shippingport, PA 15077

Dates: July 9, 2001 through July 27, 2001

Inspectors: A. Della Greca, Senior Reactor Inspector, DRS

M. Buckley, Susquehanna Resident Inspector, DRP

T. Burns, Reactor Inspector, DRS F. Jaxheimer, Reactor Inspector, DRS

Approved by: David C. Lew, Chief

Performance Evaluation Branch

Division of Reactor Safety

SUMMARY OF FINDINGS

IR 05000334/01-011 and 05000412/01-011, on 7/9-7/27/2001; Beaver Valley Power Station, Units 1 & 2; annual baseline inspection of the identification and resolution of problems.

The inspection was conducted by two regional inspectors and a resident inspector. The inspection identified one finding which was determined to be of very low safety significance (Green) and categorized as a Non-Cited Violation. The significance of most findings is indicated by their color (Green, White, Yellow, Red) using IMC 0609, "Significance Determination Process" (SDP). Findings for which the SDP does not apply are indicated by "No Color" or by the severity level of the applicable violation. The NRC's program for overseeing the safe operation of commercial nuclear power reactors is described at its Reactor Oversight Process website at http://www.nrc.gov/NRR/OVERSIGHT/index.html.

Identification and Resolution of Problems

The licensee's performance in the area of problem identification and resolution was acceptable. The licensee was appropriately identifying problems and entering them into their corrective action process. Condition reports (CRs) received an adequate level of review, and when a root cause analysis was performed, the evaluations were generally thorough and adequate. Notwithstanding, the team identified that the licensee did not evaluate molded case circuit breaker test failures in sufficient detail to identify the causes of the problem and, therefore, did not provide for corrective actions to prevent recurrence. The team also identified an instance where an evaluation of a recirculation spray system flow sensing line refill interval was not technically well supported. The licensee's corrective actions were adequate to correct the identified problem and prevent recurrence. Current trends indicate a large increase in the backlog of open condition reports and corresponding corrective actions. This increase is primarily the result of the licensee's lowering of the threshold for initiating CRs.

Cornerstone: Mitigating Systems

GREEN. A Non-Cited Violation of 10 CFR 50 Appendix B, Criterion XVI was identified for failure to assure the cause of safety related molded-case circuit breaker (MCCB) test failures was identified and corrective actions taken to preclude recurrence. Two safety-related MCCBs, which had been removed from service several years ago, failed during recent testing. However, the licensee did not initiate a condition report to assure the cause would be identified and appropriate corrective actions would be taken. The MCCB test failures are significant because many MCCBs in safety-related applications were installed during initial plant construction and have not been subject to a periodic testing program.

The issue affects the mitigating systems cornerstone because the problem could affect the operability and availability of mitigating systems. However, because the two breakers that failed the test acceptance criteria had already been removed from safety-related applications and were currently spares, there was no actual loss of safety function. For the MCCBs that were in service, the licensee's evaluation determined them to be operable. Consequently the finding is considered to be of very low safety significance (Green). Because the finding is of very low safety significance and is being addressed with the licensee's corrective action process, this finding is being treated as a Non-Cited Violation, consistent with Section VI.A.1 of the NRC Enforcement Policy. (Section O4A2.2)

Report Details

4. OTHER ACTIVITIES [OA]

4OA2 Identification and Resolution of Problems

.1 <u>Effectiveness of Problem Identification</u>

a. Inspection Scope

The team evaluated selected maintenance work orders, operator work-around items, temporary modifications, maintenance and engineering backlogs, security logs and radiation event logs to determine whether the licensee was appropriately considering problems identified in these processes for entry into their corrective action, or condition report process (CRP). These documents are listed in Attachment 1. The team also reviewed selected operating experience reports and event notifications and conducted plant walkdowns to ensure problems were being identified. The team also interviewed the plant staff and management to assess the scope and effectiveness of the licensee's use of the CRP to identify plant and human performance issues.

The team further reviewed Quality Assurance (QA) audit and surveillance reports, departmental self-assessments, and third-party reviews of licensee performance to determine whether problems identified from these activities were considered for entry into the CRP.

b. Issues and Findings

The team determined that the licensee, with minor exceptions, was properly identifying problems and entering them into their CRP. The team observed the program was widely accepted among the plant staff to document problems. The team further observed that the program was being properly used to identify problems and issues resulting from operating experience reviews, QA audits, surveillance reports, self assessments, and ongoing system reviews. The team also observed that the licensee appropriately used the CRP to identify and correct negative trends.

.2 Prioritization and Evaluation of Issues

a. Inspection Scope

The team reviewed the condition reports (CRs) listed in Attachment 1 to assess the appropriateness of the licensee's classification of the significance level, cause determination, and the extent of condition review. The team further assessed the licensee's review of the CRs for operability, reportability, and Maintenance Rule reliability and unavailability. The licensee's corrective action, maintenance and engineering backlogs were also reviewed to determine if corrective actions, individually or collectively, represented an increased risk due to the delay of implementation. The team further observed the Corrective Action Review Board (CARB) proceedings during the inspection to evaluate the adequacy of management reviews with respect to the root cause evaluation and the proposed corrective actions.

The team observed the licensee's CRP provided for three CR levels based on the significance of the problem being evaluated. Within these levels the CRP allowed for different types of evaluations, ranging from a simple apparent cause determination to an extensive root cause evaluation performed by a multi-disciplinary team. For problems classified as significant conditions adverse to quality (SQAC), one of the three most detailed types of evaluation were required. For less significant problems classified as either conditions adverse to quality (CAQ) or conditions not adverse to quality (NCAQ), as many as six types of evaluations were permitted based on the risk impact.

b. <u>Issues and Findings</u>

Based on the CR sample selected, the team determined CRs generally received an adequate level of review. When a root cause analysis was performed, the licensee's evaluation was normally thorough and adequate. The team further concluded the licensee's CARB review of significant CR problem evaluations was thorough. Notwithstanding, the team identified one instance regarding molded-case circuit breaker test failures where the licensee did not evaluate the failures in sufficient detail to identify the causes of the problem and, therefore, did not provide for corrective actions to prevent recurrence. The team also identified an instance where the evaluation of a recirculation spray system flow sensing line refill interval was not technically well supported.

The team concluded the licensee staff adequately considered operability and reportability requirements associated with problems; however, the team identified occasional examples where the bases for operability were not fully developed.

With regard to classification of problems, the team determined that CRs were generally classified at the correct significance level. One instance was identified where the work-around status of a demineralizer automatic bypass valve was not factored into the CR categorization. Specifically, the demineralizer automatic bypass valve TCV-CH-143 was inoperable and it was not possible to bypass the letdown demineralizers either automatically on high temperature or manually from the control room. This condition required an operator to be dispatched to isolate the demineralizer line locally; however, it was not identified as an operator workaround condition and processed according to the licensee's procedure for workaround conditions. For this example, the team concluded the evaluation of the problem in the CR was adequate.

Molded-Case Circuit Breakers

Green. A non-cited violation of 10 CFR 50, Appendix B, Criterion XVI for failure to assure the cause of MCCB test failures was identified and corrective actions taken to preclude recurrence. The licensee did not evaluate molded-case circuit breaker (MCCB) test failure results in April 2001 to determine the cause of the problem and take prompt corrective actions to preclude repetition. Also the licensee's response to several years of industry experience indicating problems with MCCBs was not timely, and the postponement of testing of Beaver Valley (BV) Unit 1 MCCBs until January 2002 was not technically well supported. The MCCB test failures were significant because many MCCBs installed during plant construction in safety-related applications have not been subject to a periodic

testing program, and industry experience has previously shown age related problems with MCCBs. MCCB aging could result in safety-related equipment not functioning when called upon.

The licensee initiated CR 00-2262 on August 8, 2000, to test MCCBs of both BV Units. These MCCBs had not undergone surveillance, periodic operational exercising, or preventive maintenance testing, since they were installed in the plant, most of them prior to the plant commercial operation. Industry operating experience, as described in NRC Information Notices 93-26 and 93-64, and 99-13, has shown that MCCBs can degrade over time and periodic testing is prudent. CR 00-2262 had been issued to develop a testing program for the MCCBs. Because the CR was intended to develop a test program, a lower evaluation category was assigned to the CR as allowed by the licensee's CRP procedure.

The licensee planned to test ten MCCBs from each BV Unit. The results of these tests would then be used to develop the scope and frequency of the MCCB preventive maintenance program. After several postponements, the licensee tested ten Unit 2 breakers in April and May 2001. The breakers included two safety-related MCCBs that had been removed from service several years ago and eight additional nonsafety-related MCCBs. The team determined, through discussions with the cognizant system engineer, that the eight non safety-related MCCBs had met the test acceptance criteria, but both safety-related MCCBs had failed to meet the test criteria. Specifically, on April 26, 2001, when Phase A of the first breaker was subjected to 300 percent of its current rating the breaker tripped open and would not reset. On May 3, 2001, when the second breaker was subjected to rated current, it tripped open after less than nine of the sixty minutes required by the licensees test procedure, 1/2CMP-75-MCB-2E.

As a result of the test failures, the two safety-related breakers were not available as spare parts. The licensee subsequently postponed testing of the BV Unit 1 MCCBs until January 31, 2002, due to MCCB spare parts issues. The team determined that the licensee did not initiate a CR to evaluate the test results or evaluate the results under CR 00-2262, which tracked development of a MCCB testing program. Following the inspection, the licensee evaluated the issue and provided their bases for reasonable assurance that the approximately 500 safety-related circuit breakers affected by the issue were operable and capable of performing their safety function. The licensee also initiated plans to conduct further tests and replace the more critical MCCBs. The team concluded the licensee did not fully evaluate the two safety-related MCCB test results to assure the cause of the MCCB test failures was identified and corrective actions taken to preclude recurrence.

The finding was reviewed through the Significant Determination Process (SDP) Phase 1 screening and found to be more than minor since the test results could reasonably be viewed as precursor to a significant event. Specifically, the test results indicated the potential for degradation of the MCCBs installed in safety-related applications in the plant. Degradation of the MCCBs affects the mitigating system cornerstone because the problem could affect the operability and availability of mitigating systems. However, because the two breakers that failed the test acceptance criteria had already been removed from their safety-related application for several years and were currently spares, there was no actual

loss of safety function. Consequently the finding is considered to be of very low safety significance (green). 10 CFR 50, Appendix B, requires, in part, that for significant conditions adverse to quality, measures shall assure the cause of the condition is determined and corrective actions are taken to preclude recurrence. Contrary to this requirement, the licensee did not evaluate molded-case circuit breaker test failure results in April 2001 to determine the cause of the problem and take corrective actions to preclude repetition. However, because of the very low safety significance of the issue and because the licensee included this item in their Corrective Action Program (CR 01-4653), this issue is being treated as a Non-Cited Violation. (NCV 50-334; 412/01-011-01)

Recirculation Spray System Flow Instrumentation

The team determined the licensee's evaluation of a recirculation spray system (RSS) indicated flow accuracy problem did not provide a well supported justification for increasing the refill interval of flow sensing lines. However, during the inspection the licensee provided additional information to show that the resulting maximum flow error would be minimal.

The licensee initiated CR 00-2938 to evaluate possible modifications of the sensing line to eliminate an operator workaround condition. The RSS is a four-loop post-accident mitigating system used for containment spray and to recirculate water from the sump into the reactor through the safety injection system. During normal operation the system piping is dry. However, the flow transmitters at the pump discharge use liquid-filled sensing lines that are open to the atmosphere. The licensee concluded the heat and sub-atmospheric conditions in the reactor building during normal plant operation cause the liquid in the sensing line to evaporate partially and the flow instrument to provide flow indication during no flow conditions. CR 00-2938 specifically addressed the RSS loop D flow transmitters, which indicated a flow of 700 gpm with no flow in the system. Other RSS instruments indicated negative flow at no flow conditions. All four instrument loops were affected by the condition.

The issue had been evaluated previously, with a corrective action to refill the sensing lines on a monthly basis. Recently the refilling period was extended to three months based on a previous analysis which concluded that, during pump operation, the sensing lines would fill and read correctly. The team concluded that during pump operation air would be remain trapped in the sensing lines and that the instruments would continue to read incorrectly. This was corroborated by flow measurements taken during previous system testing. Therefore, the team considered the increase of the sensing line refill interval to be unjustified. During the inspection, the licensee provided a preliminary analysis that indicated that during post-accident system performance requirements (approximately 3500 gpm flow), the differential pressure that caused an erroneous indication of 700 gpm at no flow conditions would result in an indicated flow error of approximately 2 percent and, hence, within typical instrument loop accuracies. Based on these results, the team concluded the flow error resulting from the increased sensing line refill interval would not affect RSS operation and, therefore, did not meet the Group 1 screening criteria for evaluation with the SDP. However, the licensee's initial evaluation of this condition was not well justified.

3. Effectiveness of Corrective Actions

a. Inspection Scope

The team reviewed the corrective actions associated with the Beaver Valley cause evaluations to determine the status of the actions and the effectiveness of the actions to preclude recurrence.

b. <u>Issues and Findings</u>

The team determined that the actions identified on the CRs were generally adequate to correct the identified problem and, as appropriate, to prevent recurrence. Corrective action prioritization and timeliness were reasonable, although the team identified occasional examples where a corrective action was deferred by developing new corrective actions or new CRs.

The team also reviewed the corrective actions associated with the backlog of maintenance and engineering issues, and determined that the backlogs were properly prioritized. The team observed that current trends indicate a large increase in the backlog of open CRs with a corresponding increase in the backlog of scheduled or in-progress corrective actions. This increase was primarily the result of the licensee's lowering of the threshold for initiating CRs.

.4 Assessment of Safety-Conscious Work Environment

a. <u>Inspection Scope</u>

The team interviewed plant personnel to determine if personnel were hesitant to identify safety issues.

b. Issues and Findings

There were no findings identified during this inspection.

4OA6 Meetings, Including Exit

Exit Meeting Summary

The team presented the inspection results to Mr. L. Pearce and other members of licensee management, at the conclusion of the inspections on July 27, 2001. The team asked the licensee whether any materials examined during the inspection should be considered proprietary. No proprietary information was identified.

Attachments:

Partial List of Personnel Contacted Items Opened, Closed, and Discussed List of Acronyms List of Documents Reviewed

PARTIAL LIST OF PERSONNEL CONTACTED

Beaver Valley

R. Bisbee Administrator, Corrective Action Program
R. Brosi Manager, Work Management System

T. Cosgrove Manager, Regulatory Affairs

R. Ferrie System Engineer

L. Freeland Manager, Nuclear Services

J. Freels Manager, Engineering Technical Support

M. Gilloory

Nuclear Tech. Corrective Actions

K. Grada

Manager, Outage Management

Manager, Outage Management

K. Halliday Manager, Configuration Management

R. Hansen Manager, Quality AssuranceL. Meyers Vice President, NuclearR. Miller Lead, Nuclear Engineering

G. Oakley Manager, Planning and Scheduling

S. Oberlitner Intern, Corrective Action
L. Pearce Plant General Manager
M. Pearson Director, Nuclear Services

D. Reeves Supervisor, Maintenance Engineering R. Rossomme Supervisor, Nuclear Quality Assurance

L. Ryan DEP/BRP

B. Sepelak Supervisor, Regulatory Affairs

S. Vicinie Manager, Emergency Preparedness

NRC

D. Kern Senior Resident Inspector

D. Lew Chief, Performance Evaluation Branch, DRS

G. Wertz Resident Inspector

ITEMS OPENED, CLOSED, AND DISCUSSED

Opened & Closed

50-334,412/01-011-01 NCV Failure to evaluate test failure:

Failure to evaluate test failures associated with two molded case circuit breakers to prevent recurrence.

LIST OF ACRONYMS

BV Beaver Valley

CAQ Condition Adverse to Quality
CARB Corrective Action Review Board
CFR Code of Federal Regulations

CR Condition Report

CRP Condition Report Process

gpm Gallons per Minute IR Inspection Report

MCCB Molded Case Circuit Breaker

NCV Non-Cited Violation

NQAC Condition Not Averse to Quality NRC Nuclear Regulatory Commission

QA Quality Assurance

RSS Recirculation Spray System

SCAQ Significant Condition Adverse to Quality SDP Significance Determination Process

LIST OF DOCUMENTS REVIEWED

Р	R	0	\mathbf{C}	F	n	H	R	F	S
	•	_	•	_	u	u	\mathbf{r}	_	

1/2CMP-01RDS-MG-01E Generator Bearing Replacement Testing of ITE 480 Volts Molded Case Circuit Breakers 1/2CMP-75-MCB-2E 1/2PMP-E-36-001 4KV Bus Switchgear Inspection 1/2PMP-E-36-015 ITE Medium Voltage Circuit Breaker Inspection and Test ITE Low Voltage Circuit Breaker Inspection and Test 1/2PMP-E-37-010 1/2PMP-E-37-011 480 Volt Linestarter Inspection 10ST-24.9 Turbine-Driven AFW Pump Operability Test 1OST-36.1 & 1OST-36.2 **Diesel Generator Monthly Tests** Accident Monitoring Instrumentation Channel Checks 2OST-6.7 1PMP-E-37-011 GE Model AK-3A & 7A-25 Ckt Breaker Inspection and Test 1PMP-E-37-012 GE Model AK-3A-50S & AKS-7A-50 Ckt Breaker Inspection & Test 1PMP-37-SS-Linestarter-2E **Linestarter Inspection** 1PMP-39DC-BKR-1E Battery Air Circuit Breaker Inspection GE AK-2A-25 2PMP-E-39-013 ITE Low Voltage DC Circuit Breaker Inspection and Test Filling & Venting of Train A RSS Pump Flow Transmitter 2PMP-13-RSS-FILL-1A-I NOP-LP-2001 Condition Report Process and Reference Guide NPDAP 5.7 **Basis for Continued Operation** NPDAP 7.5 Processing a Work Request Non-Outage Planning, Scheduling, and Risk Assessment NADAP7.12 Control And Coordination of Technical Specification Surveillances **NPDAP 8.12** Operations Work Arounds / Control Room Deficiencies OMDG-002 **SPEAP 1.11** System And Performance Engineering Administrative Manual Maintenance Rule (a)(1) Disposition Review (Various) SPEAP 3.2

Root Cause Analysis Reference Guide

CONDITION REPORTS

98-1553	00-2622	00-3033	00-3263	00-3644
00-0228	00-2628	00-3131	00-3266	00-3669
00-1453	00-2648	00-3135	00-3335	00-3682
00-1995	00-0657	00-3139	00-3361	00-3706
00-2262	00-2680	00-3153	00-3302	00-3723
00-2333	00-2683	00-3158	00-3390	00-3741
00-2340	00-2693	00-3160	00-3392	00-3791
00-2360	00-2719	00-3166	00-3431	00-3835
00-2383	00-2751	00-3185	00-3465	00-3856
00-2460	00-2752	00-3193	00-3483	00-3827
00-2462	00-2753	00-3195	00-3512	00-3858
00-2470	00-2765	00-3203	00-3519	00-3870
00-2476	00-2808	00-3236	00-3524	00-3878
00-2540	00-2817	00-3238	00-3534	00-3903
00-2541	00-2881	00-3243	00-3540	00-3931
00-2560	00-2885	00-3260	00-3567	00-3951
00-2563	00-2938	00-3261	00-3601	00 3955

00-3956	01-0641	01-1406	01-2368
00-3969	01-0675	01-1427	01-2377
00-3975	01-0681	01-1475	01-2419
00-4001	01-0692	01-1498	01-2435
00-4009	01-0698	01-1522	01-2445
00-4038	01-0743	01-1542	01-2446
00-4076	01-0746	01-1550	01-2549
00-4077	01-0754	01-1594	01-2553
00-4097	01-0773	01-1605	01-2572
00-4099	01-0792	01-1611	01-2588
00-4125	01-0798	01-1614	01-2597
00-4141	01-0799	01-1665	01-2618
00-4164	01-0803	01-1696	01-2657
00-4187	01-0817	01-1708	01-2678
00-4211	01-0855	01-1714	01-2711
00-4216	01-0858	01-1718	01-2769
00-4235	01-0862	01-1727	01-2818
00-4285	01-0896	01-1728	01-2841
00-4309	01-0930	01-1744	01-2846
00-4325	01-0932	01-1765	01-3018
00-4327	01-0933	01-1803	01-3059
00-4349	01-0984	01-1831	01-3121
00-4397	01-1032	01-1860	01-3122
00-4405	01-1049	01-1869	01-3131
01-0019	01-1051	01-1871	01-3354
01-0122	01-1059	01-1878	01-3405
01-0131	01-1061	01-1884	01-3461
01-0180	01-1066	01-1914	01-3887
01-0212	01-1101	01-1920	01-4134
01-0218	01-1148	01-1939	01-4235
01-0240	01-1169	01-1941	01-4312
01-0354	01-1172	01-1948	01-4549
01-0380	01-1192	01-1953	01-4571
01-0394	01-1193	01-1975	01 407 1
01-0406	01-1196	01-2028	
01-0433	01-1198	01-2041	
01-0451	01-1220	01-2044	
01-0456	01-1223	01-2060	
01-0457	01-1226	01-2094	
01-0458	01-1220	01-2094	
01-0459	01-1323	01-2194	
01-0439	01-1325	01-2194	
01-0489	01-1323	01-2210	
01-0469	01-1340	01-2210	
01-0503	01-1340	01-2304	
01-0525	01-1385	01-2309	
01-0593	01-1389	01-2336	

Work Orders

96-053027	Incore Thermocouple
98-068942	Emergency Diesel Engine Oil Leak
99-078251	Temperature Element 2RCS-TE04E
99-078317	Temperature Element 2RCS-TE32E
99-221370	Neutron Flux Recorder
00-008322	PRZR PORV Relief VLV
00-013179	Pressurizer Level Channel Recorder Selector
00-019212	Corrosion on Quench Spray Pump 2QSS-P21B
00-020161	Temperature Element 2RCS-TE26E
00-025722	Temperature Element 2RCS-TE19E
00-025724	Temperature Element 2RCS-TE15E
00-027529	Audio Monitor Signal Amplifier/Condition
01-007923	Turbine Driven Aux Feed Pump 2FWE-P22
01-010215	Quench Spray Pump 21A Seals

NON-CITED VIOLATIONS

2000-009-01	Failure to Implement Timely and Effective Corrective Actions
2000-010-01	Operators Failed to Implement Technical Specifications Actions
2000-012-01	Corrective Maintenance 2RCS-557B
2000-014-01	Inadequate Emergency Procedure Guidance
2001-002-03	Failure to Follow Plant Shutdown Procedures

SELF-ASSESSMENTS & THIRD PARTY EVALUATIONS

SA-00-08	Security Officer Training
SA-00-26	Operations Department Pre-Job Briefings
SA-01-33	NDE Compliance
SA-00-38	Operator Training Records
SA-01-63	PM Program Effectiveness of Improvements From CR 99-3202
SA-01-65	Corrective Action Effectiveness

QUALITY ASSURANCE AUDITS & SURVEILLANCES

BV-C-00-08 Audit of Nonconformance Control and Corrective Action Program

ROOT CAUSE ANALYSES

CR 00-3956	TERs Not Full	y Incorporated

CR 00-3975 Technical Evaluation Report - Closeout Process Weaknesses

OTHER DOCUMENTS

1/2OM-48.6.A.102	ESF Mimic Print
10080-RM-413-1	Recirculation Spray System Flow Diagram
12241-LSK-27-1C	Logic Diagram Recirculation Spray System
2BVT 1.13.5	Recirculation Spray Pump Test
B-241821	Universal Venturi Tube
EM 102497	2RSS-FT157A, B, C, & D Sensing Lines
EM 200714	Frequency Change Request for Performing 1/2PMP-13-RSS-FILL-1A-I
RSS-10-3-C	Setpoint of 2RSS*FSL157C & D Low Flow

SP-2RSS-10 Setpoint for 2RSS*FSL157 C & D
--- River Water Latent Issues Report
--- Latent Issues System Project Plan