In Vitro Characterization of Skin Constructs with a Structural Role

Nancy L. Parenteau, Ph.D.

Parenteau BioConsultants, LLC

FDA/NIST - Sponsored Workshop on "In Vitro Analyses of Cell/Scaffold Medical Products" December 6, 2007, Washington, DC

Goals of In Vitro Analysis

- Insight
 - "Breakthrough" is defined as productive insight
- Definition
 - What the product should be
- Mechanism
 - The "how" and "why"
- Safety
- Scientific Validation
- Reduction of Risk

Structure/Function

- Structure isn't just man-made
- Biological processes modify and give rise to structure
- Structure
 - Imparts function
 - Influences other functions

Cells and Function

Biological character

- Cell type
 - Identification
 - Purity of cell type (FACS)
- Character of the population
 - Growth-related parameters
 - Biosynthesis
- Behavior in process
 - Cell response and interaction
 - Proliferation/Differentiation (range that defines component/product)
 - Character (apoptotic, proliferative, differentiating, biosynthetic)

Biochemistry and Function

- Biological character
- Biochemical character
 - Composition
 - Biosynthesis
 - Changes to matrix (over time)
 - Production of factors

Mechanics and Function

- Biological character
- Biochemical character
- Physical character
 - Burst strength, Membrane Inflation
 - Degree of Contraction (collagen gels)

Answers from mechanical testing

Change over time

Configuration comparisons

Growth factor influence

Cellular contribution

Integrated Function

- Biological character
- Biochemical character
- Physical character
- How they come together

Morphology

- Morphology of the epidermis reveals:
 - Character of the cell population
 - Indicator of normalcy
 - Verification of process
- Stratification is assessed against time

For quality of the tissue development

- Representation of differentiated strata
- Presence of stratum corneum
- Validated with immunohistochemistry and biochemistry

Barrier Function

- Measured by
 - Percutaneous absorption (Kp (cm/h)x10³)
 - Trans-epidermal water loss (TEWL)
 - In vitro
 - In vivo
- Functional measure of differentiation with time
- Supports morphological findings

Cornification adds a structural/functional component

- Protects underlying living layers
- Allows clinical meshing
- Provides physiological feedback
- Impacts ability to survive on animals

Structure/Function

Percutaneous Absorption

30 days post graft

Nolte et al., Arch Dermatol Res, 1993. 285: 466; Parenteau et al., 1996 Biotech. Bioeng. 52:3.

Bioequivalence

The concept in practical terms

- Consistent biological elements
- Consistent behavior in process
 - proliferation
 - differentiation
- Consistent biological character

Bioequivalence of the Skin Construct

- Keratinocyte and fibroblast strains are tested for performance in skin equivalents
- Skin equivalents made from test strains are tested for:
 - Ability to meet morphological criteria
 - Time to maturation
 - Barrier function
 - Basic cytokine profile
 - In vivo performance in athymic mice

Practical Benefits

- Sets product parameters
- Helps achieve reproducibility
- Targets mechanism of action
 - Further functional assessment
 - For safety assessment

Biological Response and Interaction

- Response to wounding
- Immunology

Response to Injury In Vitro

Falanga et al. J Invest Dermatol, 2002. 119: 653.

Biological Response and Interaction

- Response to wounding
- Immunology

Immunology In Vitro

- T cell proliferation assay
- Used to:
 - Determine T cell reactivity to alloantigen on target cells (<u>K</u>eratinocytes and <u>F</u>ibroblasts)
 - Monitor patient response
 - Illuminate mechanism of poor costimulation
 - Determine likelihood and impact of sensitization to alloantigens
 - Determine impact of cytokines on immune response

Understanding Poor Immuno-reactivity

- T cell proliferation assay
- Used to:
 - Determine T cell reactivity to alloantigen on target cells
 - Monitor patient response
 - Illuminate mechanism of poor immuno-reactivity
 - Cytokines
 - Co-stimulation
 - Determine likelihood and impact of sensitization to alloantigens
 - Determine impact of cytokines on immune response

Possibility of Sensitization

- Reaction of primed and unprimed T cells
- Used to:
 - Determine T cell reactivity to alloantigen on <u>Keratinocytes and</u> Fibroblasts
 - Monitor patient response
 - Illuminate mechanism of poor immunoreactivity
 - Determine likelihood and impact of sensitization to alloantigens
 - Determine impact of cytokines on immune response

Antigen Presenting Cell Type in Primary Cultur

Take Home Message...

- Acquire enabling knowledge, skills, and expertise early
- Develop a logical plan based on fundamental questions
- Use in vitro data to
 - gain insight for informed decisions
 - build a firm scientific rationale
- It doesn't have to be fancy to be informative – quality trumps quantity

The Ideal Preclinical Plan

- Generates insight every step of the way
- Provides the information that:
 - Determines Components
 - Defines the Product
 - Sets Process Parameters
- Determines the "how" and "why"
- Creates the foundation for safety
- Lends support for probable efficacy
- Reduces strategic risk
- Continues to contribute

In vitro and in vivo analyses work best in partnership.

Each increases the value of the other.

The Path to Success Begins Day 1

- Plan for success
- Prioritize efforts without ignoring the issues
- Develop a sense of what you need as early as possible
 - Earlier is less costly than later
 - Earlier is less risky than later
 - Weaknesses in strategy can escalate
- Second chances are rare

Want to Learn More?

Special White Papers:

- Positioned for Success: Building a Biological Product Using a High-Value Preclinical Plan
- Reducing Risk in Bioscience Development: Closing the Information to Knowledge Gap

Additional White Papers online...

Educational resources:

- The Best of Bioscience Letter (open access)
 www.bestofbioscience.com
- Podcasts in Applied Bioscience:

