In vitro characterization of cardiovascular constructs: vascular grafts as a model system

Keith J. Gooch
Department of Biomedical Engineering
& Davis Heart Lung Research Institute
The Ohio State University

Engineered Cardiovascular Tissues

- Cardio
 - Heart valves
 - Heart patches
- Vascular
 - Microvascular
 - Conduit vessels
 - CABG
 - Peripheral Circulation
 - Pulmonary Circulation
 - A/V Fistulas for hemadialysis

http://www.niaaa.nih.gov/Resources/GraphicsGallery/CardiovascularSystem/269f1.htm

Approaches for Engineering Conduit Vessels

- Cells + synthetic scaffold
- Cells + processed ECM
- Cells + cell-derived ECM
- Ex vivo remodeling of intact vessels
- Implant template and allow formation in vivo.

A tube

Is a given tube a "good" TE blood vessel?

- Good enough to publish and merit animal studies?
- Good enough to merit clinical studies?
 - What questions should be asked when evaluating cell/scaffold products in preparation for the first human studies.

Is a given tube a "good" TE blood vessel?

- What properties are required for good in vivo performance?
- How can these properties be assessed?
 - What test methods are available / should be developed to assess the products.

Two main goals of the workshop:

- What questions should be asked when evaluating cell/scaffold products in preparation for the first human studies; and
- What test methods are available / should be developed to assess the products.

What properties are required for good in vivo performance?

Essential functions:

- Contain blood
- Carry blood

Non-essential functions:

- Vasoregulation
- Ability to remodel

Standard Functions

- Immunocompatible
- Biocompatable
- Not prone to infection

Essential functions

Contain blood → adequate mechanical strength

Acute evaluation
Burst strength
Suture strength

Caveat →

http://www.cytograft.com/pic_ePTFE_pu.html

Vessel type	Burst pressure (mmHg)	Suture retention (gf) 162 ± 15 (n = 9)
TEBV (4.5 mm internal diameter)	3,468 ± 500 (n = 5)	
TEBV (1.5 mm internal diameter)	$3,688 \pm 1865 (n = 9)$	ND
Human saphenous vein	1,680-2,273 refs. 6,18	196 ± 2 ($n = 7$)
Human artery	2,031-4,225 (n = 13)	$200 \pm 119 (n = 9)$

Essential functions

Carry blood → nonthrombogenic

In vitro platelet adhesion

L'Heureux et at. FASEB J. 1998 Jan;12(1):47-56.

Secretion of antithrombogenic agents

Nature Medicine 7, 1035 - 1040 (2001)

Non-essential functions

Vasoactivity

Function ↔ Structure

- Biochemical assays
 - Collagen
 - Elastin
 - DNA
- Histology
- Immunohistochemistry
 - Cell phenotype
 - Markers of function

Frontiers in Bioscience 9, 1422-1432, May 1, 2004

Is a given tube a "good" TE blood vessel?

- ✓ Good enough to publish and merit animal studies?
- Good enough to merit clinical studies?
 - Shin'oka T et al. (pulmonary circulation)
 - N Engl J Med 2001 344:532-533
 - J Thorac Cardiovasc Surg. 2005 129(6):1330-8.
 - L'Heureux N et al. (A/V fistulas for hemadialysis access)
 - N Engl J Med 2007 357:1451-3

Good enough to merit clinical studies?

- Safety
- Efficacy
- Consistency

(Safety, efficacy, and consistency)

- Animal studies absolutely essential.
 - Allografts
 - The engineered tissue is in their native environment
 - Not the species of interests
 - Engineered vessels
 - Restenosis
 - Human vessels in animals
 - The engineered tissue is in a foreign environment
 - The species of interest

In vitro characterization of safety

- Essential functions:
- Contain blood → Burst strength, suture strength, chronic?
- Carry blood
- Non-essential functions:
- Vasoregulation
- Ability to remodel
- Standard Functions
- Immunocompatible
- Biocompatable
- Not prone to infection
- "Sterility" / free from contamination

Essential functions

Contain blood → adequate mechanical strength

Acute evaluation
Chronic evaluation

J. Nichol and K. Gooch (unpublished)

Ex vivo perfusion system

Porcine Carotid Artery

In vitro characterization of efficacy

Essential functions:

- Contain blood
- Carry blood (thrombosis and stenosis)
- Probably can detect poor potential (good enough to publish or merit animal studies)
- Probably cannot discriminate various levels of good
 - 5 yr saphenous vein patency ~50-70%
 - 5 yr internal mammary artery patency ~90%
 Why? IEL, NO production, ROS, compliance...

In vitro models of stenosis

Cultured saphenous veins

+Eutrophic

R Gusic et al. J Biomech. 2005 Sep;38(9):1770-9.

Cultured carotid artery

In vitro characterization of consistency

Biochemical composition
Cellular viability, proliferation, or phenotype
Dimensions, organization, structure
Mechanical properties

Mechanical Testing: Non-essential functions

Mechanical Testing: Non-essential functions

R Gusic et al. J Biomech. 2005 Sep;38(9):1770-9.

Active and Passive Mechanical Properties

R Gusic et al. J Biomech. 2005 Sep;38(9):1770-9.

4.83

2.19

16.37

6.98

8.91

3.49

Standard Error

Elastin

Consistency is easy to assess but potentially difficult to correlate with utility.

A consistent product is not necessary functional.

Consistency of an engineered tissue from autologous cells.

- Variation in native human saphenous vein grafts
- Expected variation in engineered tissue
 - Due to variation in cells
 - Due to variation in processing
- Should tissue engineered grafts be more, less, or as consistent as native graft material?

Consistency of an engineered tissue from non-autologous cells.

- Potential for single or a small number of cell donors (e.g., ATS TE-skin).
- Expected variation in engineered tissue
 - Due to variation in cells ↓
 - Due to variation in processing

In vitro characterization of engineered blood vessels

Essential functions:

- Contain blood
- Carry blood

Non-essential functions:

- Vasoregulation
- Ability to remodel

Standard Functions

- Immunocompatible
- Biocompatable
- Not prone to infection

Ultrastrutural analysis

