

Considerations for Quality Control of In Vitro Cell Cultures

<u>John T. Elliott (NIST)</u>, Alex Tona (NIST), Michael Halter (NIST), Steve Bauer (CBER/FDA), Abeba Tesfaye (CBER/FDA), and Anne L. Plant (NIST) NIST, Cell and Tissue Measurements Group, Gaithersburg, MD 20899

Cell Measurements from the NIST Point of View

- **NIST's mission:** To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology **Non-regulatory.**
- Facilitate Measurements
 - Consensus standards, standard reference materials
- New measurement techniques
 - Application of advanced physical and chemical measurement to biology
- Extracting new information from existing data
 - Application of modeling and statistical theory to biological data
- We focus on the measurement infrastructure
 - How robust is this measurement?
 - Is this high quality data?
 - What is the best way to represent the data?
 - Does every laboratories get the same answer?
 - What is the best statistical technique for detecting differences?

<u>Using Cells as Measurement De</u>vices

How do we know the meter is functioning correctly?

Quality Control in Cell Culture

Validation Question: Are the cells behaving as expected before we use them?

Cell culture is the process of keeping cells alive under *ex-vivo/in vitro* conditions:

- -Expanding cell number
- -Cellular assays

Ex-vivo/In vitro conditions (i.e. artificial environment):

-Incubators, CO₂, pH, extracellular matrix, TCPS, nutrients, hormones, passaging/trypsinization, freezing/thawing

Do we have specifications to ensure the nominal behavior of cells in culture?

I dentifying General Quality Control Metrics for Cell Culture

NIST POV: Which cell measurements are good candidates for quality control metrics?

- -Robust and Routine -Measurement linked to cell processes
- -Calibrated/Traceable -Generates high quality data

Two candidates of interest:

- -Cell Volume Measurements
- -Cell Spreading/Morphology Measurements

Origin of a cellular response

Extracellular signals include:

Mek1/2 Gene Activation Response

(biomarkers)

Extracellular

Signals

× (1)

Measurement

Signaling Pathways

Cell volume
Cell spreading

cell cycle, cell growth cell cycle, cell growth, cell adhesion

Expect a distribution of cell responses

Cell Shape

Gene Activation (TN1-GFP)

Single cell clone of NIH3T3-TN1-GFP-fibroblast on TCPS

- •Information can be obtained from the distribution of the data.
- Obtaining distribution data requires single cell measurement techniques

Cell Volume Measurements

- -Electronic cell volume measurements have been around for 50 years.
- -Provides data describing the distribution of cell volumes.
- -This distribution appears to be stable in expanding cells
- -Demonstrates differences between cell lines.

Multiple passages of a vSMC and fibroblasts

Origin of the Cell Volume Distribution

- Assume the density (mass/volume) of a cell is constant through cycle.
- •Cell mass is regulated by total expression of house keeping genes
- Assume cell divides exactly in half during division
- •Assume cell cycle time and cell growth rate are picked from a normal distribution.
- Simulate growth and division of a cell population

Predictions using the Cell Volume Distribution Model

Shift Right

increase growth rate increase cell cycle time

Shift Left

decrease growth rate decrease cell cycle time

Changes in noise will influence shape parameters

By using this model we can understand the measured cell response

Testing the model

	<i>G</i> 1	S	G2/M
-apł	1 <i>G</i> 1	5	G2/M
+apl	n Aphidicolon	Mean Gei Tin	
	0 nm 50 nm 100 nm	29 k 36 k 50 k	1

We can define the distribution in terms of mean cell cycle time, mean growth rate and variance in these parameters.

Table 1. Parameter values estimated from Coulter counter data

Cell type ^a	<i>t</i> ° (h)	σ _t ° (h)	r ^d (μm³/h)	σ _r e (μm³/h)	$\left(\frac{\sigma_t}{t}\right)^2 + \left(\frac{\sigma_r}{r}\right)^{2f}$	μ _N g (μm³)	σ _N ^h (μm³)	$\left(\frac{\sigma_N}{\mu_N}\right)^{2i}$
NIH 3T3	19.5	3.9	79 ± 0.3	28.2 ± 0.6	0.17	2,272	651	0.08
A10 (0 nM)	29	5.8	133 ± 1	58.9 ± 1.6	0.24	6,053	2,105	0.12
A10 (50 nM)	36	7.2	126 ± 1	55.9 ± 1.3	0.24	6,909	2,274	0.11
A10 (100 nM)	50	10	108 ± 1	52.1 ± 1.3	0.27	8,191	2,837	0.12

^a A10 SMC's were continuously cultured with three different concentrations of aphidicolin, 0nM, 50nM, and 100nM.

$$f(V) = \frac{1}{t} \cdot \int_{t}^{\infty} \left[\frac{1}{\sqrt{\frac{1}{3} (r \cdot \sigma_{t})^{2} + \frac{1}{3} (r \cdot \sigma_{r})^{2} \cdot \sqrt{2\pi}}} \cdot e^{\frac{-(V - r \cdot t)^{2}}{2 \left(\frac{\tau}{3} (r \cdot \sigma_{t})^{2} + \frac{1}{3} (r \cdot \sigma_{t})^{2} \right)}} \right] \cdot \left(\frac{1}{2} - \frac{1}{2} erf \left(\frac{\tau - 2 \cdot t}{\sqrt{2} \cdot \sigma_{t}} \right) \right) dt$$

b Cell cycle times (mean generation times) estimated by counting cells over f passages.

^c Cell cycle time variability estimates were 0.20×t.

Example: Effect of Passage/Serum

Volume Distribution of NIH 3T3 cells over 96 h after replating

- •Data suggests that after 96h, cell cycle time and growth rates are independent of serum.
- Serum type does appear to influence lag time after plating.

Example: Varying Serum Concentration

- -A10 cells exhibit a stable volume distribution in significantly reduced serum:
- -MGT goes up, but volume stays the same. This indicates the growth rate decreased.

-Use of the cell volume distribution model provides additional information about the cell culture.

Example: Male and Female MSCs in culture-volume measurements 1

- •This result indicates that in this experiment, the male MSCs were stable for several passages before shifting in cell size begins.
- •Volume measurements can provide information on a population of cells with increasing heterogeneity.
- Using a model allows us to understand what is happening.

Mesenchymal Stem Cells Morphology

Seeded at 50 cells/cm², passage 3

Seeded at 3000 cells/cm², passage 8

- •In collaboration with FDA (Steve Bauer, CBER), we are using morphology to measure stability of MSC cultures
- •Cell volume is proportional to its spreading area.

Thinking about Cell Morphology Measurements

- Quantitative and traceable measurement
 - -Standards for spatial calibration of microscope available
 - -Facilitates intra-laboratory comparisons

- Cell-by-cell measurement technique
 - -Measure the distribution of cell morphologies
 - -Cell morphology is linked to cell adhesion cell cycle, cell growth and cytoskeletal pathways.

Automated Quantitative Microscopy

Multi-fluorophore imaging

Advantages:

- -Unbiased data collection
- -Sample large number of cells
- -Multi-fluorophore imaging
- -Live cell imaging
- -Evaluate cells in real culture conditions

Measuring Cell Morphology

Elliott, et al. Cytometry 2003, Langmuir 2003

Morphology depends on Substrate

- ·Serum proteins
 - -vitronectin
 - -albumin
 - -others
- Specific pro-adhesive proteins

Protein presentation

- -specificity of adsorption
- -conformation/structure
- -surface chemistry

Variations in NIH-3T3 cell morphology on TCPS from different manufacturers is likely due to differences in adsorbed protein.

Collagen Gels in Experiments

- No standard methods for preparing extracellular matrix.
- Difficult substrates for microscopy.
- Native collagen gels are very fragile (big problem!).
- Very difficult to systematically control the physiochemical properties of collagen fibrils

National Institute of Standards and Technolog

Preparation of Collagen Thin Films on Alkanethiol Monolayers

·Alkanethiol (C₁₆SH) self-assembled monolayer on translucent Au

- Incubate with native collagen, 37°C, neutral pH
- 2. Rinse well
- 3. Blow dry
- 4. Rehydrate

Advantages of thin protein films on alkanethiol monolayers:

- Highly reproducible and homogeneous starting surface.
- Can be characterized and verified with surface analysis techniques.
- 3. Very robust and easy to use.
- 4. Excellent microscopy properties.

Native Fibrillar Collagen Thin Films

Morphology Metrics from Cells on Reference Materials

- -Integrin engagement pathways, cell volume, etc appear to be nominal.
- -We can think about quality control metrics for cell culture

ASTM Standard For Measuring Cell Morphology

- •In 2007, we initiated a Standard Test Method document for ASTM F04 Medical and Surgical Materials and Devices (F04.46- Cell Signaling Subsection)
- Provides a SOP for cell morphology measurements
- Think about standards you need!!!

National Institute of Standards and Technology

ASTM Std for Morphology Details:

- Selection of substrate/material
- Adhesion time
- Volume measurement
- 2-color image collection
- 2-color image analysis
- Uncertainty I ssues
- Not answered is how to make it a specification

Conclusions

- -Important to think about cell morphology measurements in terms of cell processes/signaling pathways
- -Single cell measurement techniques provide information about the population of cells
- -Cell volume and cell morphology measurements are interesting metrics because standards to facilitate intra-laboratory comparisons of data exist.
- -Cell volume distributions provide insight on the cell cycle and cell growth properties of a culture.
- -Cell morphology can provide insight on the status of adhesion signaling pathways in a cell culture.
- -These measurements can be used as quality control measurements, but it is important to understand what influences the measurement.