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Tissue Engineered Bone
3D Porous Silk Scaffolds
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Bone Formation on 3D Protein Scaffolds

collagen Silk-RGDcollagen Silk-RGD

•hMSCs
•2 & 4 wks
•Static
•In vitro

Histology

Meinel et al., JMBR, 2004
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Empty Scaffold Scaffold+MSC TE bone
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Bone RepairBone Repair
in vitro in vitro & in vivo& in vivo

• Calvarial defect (4 mm)
• Nude mice
• 4 weeks
• silk scaffolds

Meinel et al. Bone, 2005



Micro-CT
--------------------------------
•rat critical size femoral 
defects (5 mm)
•8 weeks 
•silk scaffolds

Hofmann et al., Bone, 2006; Kirker-Head 
et al., Bone, 2007
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Stem cells

Wire ropesSilk cocoons
Silk yarn

Bioreactor

Fibrous Protein Matrix Engineering
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Ligament
Complex Outcomes
Mechanical
Signaling

Mechanical Forces & Functional Ligament Tissue Wang et al., Matls
Today, 2007



Outcomes Outcomes –– In VitroIn Vitro
• Biochemistry and Structure - immunohistochemistry and 
staining - ECM composition, organization, distribution…….

• Genetics - markers for tissue type………….

• Cell Biology - density, types, distribution……….

• Mechanical Properties – tension, compression………..

• Biochemistry and Structure - immunohistochemistry and 
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• Mechanical Properties – tension, compression………..

Challenges (many!)
• Scaffold source material – impact cell signaling, outcomes
• Scaffold features (morphology, structure, chemistry) – different outcomes
• Matching degn rate to tissue remodeling (in vitro vs. in vivo, tissue sp.)
• Cells – immume cells, co-cultures w/ECs……….
• Markers – time-dependent outcomes, when to measure, how often…..
• Cultivation conditions – serum, growth factors (conc., time…………)
• Mechanics – complex forces, shear……………
• Tissue size – transport issues, vascularization in vitro………….
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Gene Expression (temporal patterns) During 
Osteogenic Differentiation

Proliferation Matrix 
Deposition

Mineralization

Col-I
OP
BSP
OC
Alp
Cbfa-1
ON
osterix

Early -
Mid -
Late -
Stage 
Markers

Col-1=collagen type I; OP=osteopontin; BSP=bone sialoprotein; OC=osteocalcin; Alp=alkaline phosphatase; 
Cbfa-1=core binding factor a1 



Comparing Commerical Collagen Sources – SDS PAGE

1 - Mark 12 Standards
2 - Sigma Bovine Collagen
3 - Roche Rat Tail Collagen
4 - Calbiochem Human Placental Collagen
5 - Mark 12 Standard
6 - Collagenase Digested Sigma Bovine Collagen
7 - Collagenase Digested Sigma Bovine Collagen
8 - Collagenase Digested Roche Rat Tail Collagen
9 - Collagenase Digested Calbiochem Human 
Placental Collagen
10 - Collagenase

Abraham et al., JBMR, 2007

•Sigma and Roche relatively pure and non-degraded 
•Calbiochem digested

chain locations



3D Porous Silk Fibroin Matrices - Processing Phase Diagrams
[control of structure & morphology via processing]
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Aqueous HFIP 
system system

I O O

II O Δ

III X O

IV Δ O

V Δ Δ

VI X X

O : homogeneous
Δ : mixed
X : no scaffold

Control Points

Kim et al., Aust. J. Chemistry, 2005

:
•Pore size
•Porosity
•Chemical decoration
•Monolithic/gradient
•Degradability

Control Points:
•Pore size
•Porosity
•Chemical decoration
•Monolithic/gradient
•Degradability
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Soft Tissue Soft Tissue 
EngineeringEngineering

In vitro - Oil Red-O - ASC-seeded 
scaffolds. 
(A) aqueous silk, (B) HFIP silk, 
(C) collagen, (D) PLA, 21 days. 
Scale bar = 50 μm

hMSCs vs hASCs

Scaffold type

InIn Vivo Responses    Vivo Responses   silk water-based (AB), silk-HFIP 
(HF), collagen (COL), poly-lactic acid 
(PLA), cultivated 21 days before 
implantation - 4 weeks in mice

COL scaffolds and PLA scaffolds 
were irretrievable

A= A= hASCshASCs, B= , B= hMSCshMSCs

--------no cno ceelllls s ----------

A B

Scale = 50 umMauney et al., Biomaterials, 2007



Hard Tissue Constructs with Structural Role
Distinguishing Feature - tissues that transmit mechanical loads during ‘normal’ activity

Hard Tissue Constructs with Structural RoleHard Tissue Constructs with Structural Role
Distinguishing Feature - tissues that transmit mechanical loads during ‘normal’ activity

General Goal for Treatment Strategies via Tissue Engineering
• Improve existing treatments (equal/better than current standard of care):

•Faster recovery time
•Better short-term/long-term function (e.g., pain, mechanical support)
•Improved delay in disease progression
•Delay future need for more aggressive options
•Little/no morbidity or side effects
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Additional Criteria
•Implantable and retained under appropriate mechanical loading conditions
•Meet/exceed current ‘best’ treatment for that tissue (in appropriate animal model)
•Viability (cellular) after implantation
•Safe
•Functionally integrated into/replaced by host tissue

Additional Criteria
•Implantable and retained under appropriate mechanical loading conditions
•Meet/exceed current ‘best’ treatment for that tissue (in appropriate animal model)
•Viability (cellular) after implantation
•Safe
•Functionally integrated into/replaced by host tissue

Butler et al., Evaluation criteria for musculoskeletal and craniofacial tissue engineering constructs: Conference Rpt.  in 
review Tissue Engineering, 2008.



Bone
• Needs - large segmental defects, bone-soft tissue interfaces, spine fusion, 

fracture nonunions
• Control - autograft or allograft, BMP2/collagen sponge, normal bone
• Outcomes

(a) restoration of full mechanical function
(b) integration – morphology (CT, micro-CT), biology (revascularization –

histology, osteoclast/osteoblast remodeling)
(c) physiological (Ca/P by XPS/FTIR), mechanics (torsion, correlation of 3D bone 

volume/distribution with integration strength)

Intervertebral Disc
• Needs - disc degeneration
• Control – PT, anesthetics, fusion
• Outcomes

(a) pain free motion
(b) restoration of physical/biochemical properties – comparison to normal disc 

and fusion
(c) structural integrity (MRI, at least 90% of disc ht)
(d) biochemistry (ECM ratios, cytokine levels), inhibition of innervation and 

vascularization into the NP)
(e) biomechanics (initial fixation under functional load, in vitro strength, 

concentric range of motion, restoration of normal pressure-volume)
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Butler et al., Evaluation criteria for musculoskeletal and craniofacial tissue engineering constructs: Conference Rpt.  in 
review, Tissue Engineering, 2008.



Meniscus
Needs - repair in avascular zone, partial meniscectomy, premature OA
Control - ?
Outcomes

(a) structure/morphology (imaging, integration, histology)
(b) biochemistry
(c) mechanics (contact pressure, extrusion under compression)
(d) articular surface (histology, biochemical, mechanical)

ACL
Needs - traumatic rupture
Control - autologous patelar tendon/hamstring tendon, allograft tissues
Outcomes

(a) Mechanical (limp, activity monitoring, joint motion, joint laxity vs. 
time, stiffness and failure from load-displacement tests) 

(b) biological (gross inspection of cartilage, synovium, effusion), 
microscopic examination of bone-ligament interface, 
inflammatory cells, vascularization, 3,6,12 mo post surgery
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review, Tissue Engineering, 2008.



Specific Research Needs to Support Clinical GoalsSpecific Research Needs to Support Clinical GoalsSpecific Research Needs to Support Clinical Goals

• validated animal models (normal, disease, repair, maturity/dev’t)
• in vitro indicators of long-term in vivo outcomes
• quantitative behavior measures of pain in large animals
• non-invasive assessments (imaging)
• functional assessment measures
• rehabilitation programs
• biomimetic systems as predictors of in vivo (pre-clinical) outcomes 
(acute and chronic), disease, nutrition, development/regeneration

Butler et al., Evaluation criteria for musculoskeletal and craniofacial tissue engineering constructs: Conference Rpt.  in 
review, Tissue Engineering, 2008.



Imaging – Silk Biomaterials (w/ I. Georgakoudi)
Two Photon Excited Fluorescence & Second Harmonic Generation
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•800 nm excitation, 20x (0.7NA) objective
•Fluorescence collected through 525 nm filter with a 25nm band pass
•SHG collected in forward direction through 410 nm filter with a 20nm band pass.       

Fibers                     Film                 Stretched Film  Hydrogel Porous Scaffold

Rice et al., 2007



Cell-seeded Vascular-like 
hydrogel perfusion

collagen I silk microtube

hMSCs endothelial 
cellsgrowth factors

controllable 
porosity

Three bioreactors –
1 cm x 1.5 cm x 0.5 cm

Perfused by needles 
spanned by silk microtubes
(500 µm ID)

cover glass bottom allows for real-time imaging

Control of specific 
parameters

Ability to measure and 
model oxygen diffusion

100% silk 80% silk/20% PEO

SingleSingle--Channel Vascular Diffusion SystemChannel Vascular Diffusion System

Lovett et al., Biomaterials 2007
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Eqn 1. mass balance around the cell

dCinternal dC
= i = flux1− flux2− flux3− flux4 + flux5

dt dt

dCorganelle dC
= o = flux2

dt dt

dCAmino Acids dC
= AA = flux5+ flux6− flux4− flux7

dt dt

Eqn 1. mass balance around the cell

Eqn 2. mass balance around the organelles

Eqn 3. mass balance around the internal pool of amino acids

Eqn 4. kinetics of new ECM production
dCif i ≠ 0, flux3 = rate of  Cin to CnewECM = kC n

dt in
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Eqn 3. mass balance around the internal pool of amino acids

Eqn 4. kinetics of new ECM production
dCif i ≠ 0, flux3 = rate of  Cin to C CM = kC n

dt newE in

Biomaterial 
Matrix 
Remodeling
Quantitative 

Abraham et al., Biomaterials, 
Flux analysis

2007 & Expt. Cell Res, 2007

cell

ND = native collagen

D = denatured collagen

GAA = control
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