Chandra X-ray Observatory - HomeAbout The ChandraEducational MaterialsField GuidePhoto AlbumPress RoomResources
Chandra X-ray Observatory - HomeChandra Photo Album - You are here
ObservatoryImages by DateImages by CategorySky MapConstellationsSpecial FeaturesChandra Zoom-insImage HandoutsScale Bar ImagesTutorial Chandra Images & False Color Note on Cosmic DistanceCosmic Look Back TimeScale & DistanceScale & Angular MeasurementImage Use
Web Site ToolsVisit the Chandra ChroniclesEmail NewsletterSite MapNew & NoteworthyImage Use PolicyQuestions & AnswersGlossaryDownload Guide

MACS J0025.4-1222:
A Clash of Clusters Provides Another Clue to Dark Matter

MACS J0025.4-1222
Credit: X-ray(NASA/CXC/Stanford/S.Allen); Optical/Lensing(NASA/STScI/UC Santa Barbara/M.Bradac)
JPEG (385.8 kb) Tiff (12.7 MB) PS (7.9 MB)

Another powerful collision of galaxy clusters has been captured with NASA's Chandra X-ray Observatory and Hubble Space Telescope. Like its famous cousin, the so-called Bullet Cluster, this clash of clusters provides striking evidence for dark matter and insight into its properties.

Like the Bullet Cluster, this newly studied cluster, officially known as MACS J0025.4-1222, shows a clear separation between dark and ordinary matter. This helps answer a crucial question about whether dark matter interacts with itself in ways other than via gravitational forces.

This finding is important because it independently verifies the results found for the Bullet Cluster in 2006. The new results show the Bullet Cluster is not an exception and that the earlier results were not the product of some unknown error.

Just like the original Bullet Cluster, MACS J0025 formed after an incredibly energetic collision between two large clusters in almost the plane of the sky. In some ways, MACS J0025 can be thought of as a prequel to the Bullet Cluster. At its much larger distance of 5.7 billion light years, astronomers are witnessing a collision that occurred long before the Bullet Cluster's.

Using optical images from Hubble, the team was able to infer the distribution of the total mass (colored in blue) -- dark and ordinary matter -- using a technique known as gravitational lensing. The Chandra data enabled the astronomers to accurately map the position of the ordinary matter, mostly in the form of hot gas, which glows brightly in X-rays (pink.)

An important difference between the Bullet Cluster and the new system is that MACS J0025 does not actually contain a "bullet". This feature is a dense, X-ray bright core of gas that can be seen moving through the Bullet Cluster. Nonetheless, the amount of energy involved in this mammoth collision is nearly as extreme as that found in the Bullet Cluster.

As the two clusters that formed MACS J0025 (each almost a whopping million billion times the mass of the Sun) merged at speeds of millions of miles per hour, the hot gas in each cluster collided with the hot gas in the other and slowed down, but the dark matter did not. The separation between the material shown in pink and blue therefore provides direct evidence for dark matter and supports the view that dark matter particles interact with each other only very weakly or not at all, apart from the pull of gravity.

One of the great accomplishments of modern astronomy has been to establish a complete inventory of the matter and energy content of the Universe. The so-called dark matter makes up approximately 23% of this content, five times more than the ordinary matter that can be detected by telescopes. The latest results with MACS J0025 once again confirms these findings.

The international team of astronomers in this study was led by Marusa Bradac of the University of California Santa Barbara (UCSB), and Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford and SLAC. Their results will appear in an upcoming issue of The Astrophysical Journal. Other collaborators included Tommaso Treu (UCSB), Harald Ebeling (University of Hawaii), Richard Massey (Royal Observatory Edinburgh), and R. Glenn Morris, Anja von der Linden, and Douglas Applegate (Stanford).


Fast Facts for MACS J0025.4-1222:
Credit  X-ray(NASA/CXC/Stanford/S.Allen); Optical/Lensing(NASA/STScI/UC Santa Barbara/M.Bradac)
Scale  Image is 3.2 arcmin across.
Category  Groups & Clusters of Galaxies
Coordinates (J2000)  RA 00h 25m 29.80s | Dec -12° 22' 47.00"
Constellation  Cetus
Observation Dates  11/11/2002, 08/09/2004
Observation Time  10 hours
Obs. IDs  3251, 5010
Color Code  X-ray (Purple); Lensing (Blue); Optical (Yellow & Cyan)
Instrument  ACIS
References Bradac, M. et al, 2008, ApJ, Accepted
Distance Estimate  About 5.6 billion light years
Release Date  August 27, 2008

More Information on MACS J0025.4-1222:
More Images of MACS J0025.4-1222
MACS J0025.4-1222 Animations
Chandra Blog: How Far Away Are They?
MACS J0025.4-1222 Handout: html | pdf
Zoom in on MACS J0025.4-1222 (flash)
Powerpoint and PDF
Download image for your desktop
Print Gallery image of MACS J0025.4-1222
Related Chandra Images:
Photo Album: Abell 520 (16 Aug 07)
Photo Album: 3C438 (30 May 07)
Photo Album: 1E 0657-56 (21 Aug 06)
More Information on Groups & Clusters of Galaxies:
X-ray Astronomy Field Guide: Groups & Clusters of Galaxies
Questions and Answers: Groups & Clusters of Galaxies
Chandra Images: Groups & Clusters of Galaxies


Chandra Images: '08 | ' 07 | ' 06 | ' 05 | ' 04 | ' 03 | ' 02 | ' 01 | ' 00 | ' 99 | Images by Category


separator line
CXC Home | Search | Help | Site Map | Image Use Policy | Privacy & Accessibility | Downloads & Plugins
Latest Images | New & Noteworthy | Multimedia | Flash Ecards | Glossary | Q&A | Guestbook


RSS Feed RSS Feed | Podcast Podcast | Blog Blog

[News by email: Chandra Digest]
[Contact us: cxcpub@cfa.harvard.edu]
NASA's Home Page Smithsonian's Home Page CXC Home Page Image Map for NASA's, Smithsonian and Chandra's Home Pages
Harvard-Smithsonian Center for Astrophysics
60 Garden Street, Cambridge, MA 02138 USA
Phone: 617.496.7941 Fax: 617.495.7356


Text Size:
normal font large font larger font
Chandra X-ray Center, Operated for NASA by the Smithsonian Astrophysical Observatory
This site was developed with funding from NASA under Contract NAS8-03060.
Revised: August 27, 2008