# A Presentation to the National Academy of Sciences January 8, 2008

# **Area Completion Project**

Soil & Groundwater Remediation and Facilities Deactivation and Decommissioning









Wade Whitaker
ACP Federal Project Director
Office of the Assistant Manager for
Closure Project







# **Commitment to Safety**

- Demonstrated commitment to safety
  - Have worked 10 million hours and 8.5 years without a lost time injury on soil and groundwater work

### **SAFETY IS OUR TOP PRIORITY**







# **Program Scope**

- Area Completion Projects (ACP) is responsible for waste unit remediation (including soil, groundwater, and surface water) and facilities deactivation and decommissioning
  - 515 total waste units
  - 985 total excess facilities





# **Regulatory Drivers**







# **Project Performance**

- All FFA regulatory milestones met since 1993
  - (1,990 of 1,990 milestones)
- Maintaining a strong relationship with regulators
- Stakeholders providing meaningful opportunities for input to decision-making
- Project Status
  - 14 groundwater remediation systems operating
  - 246 of 985 excess facilities decommissioned
  - 352 of 515 waste units completed
- Area Completion Strategy (started FY 05) significantly reduced project cost and schedule
- Use of technologies is critical to project success
  - Tailoring technologies for specific needs







# **Area Completion Strategy**

- A systematic approach to completing cleanup work integrating D&D and SGP scope
- Historical process:
  - Did not focus on any single area
  - Evaluated each waste unit individually with much paperwork
  - Did not address D&D facilities
- Today's process:
  - Addresses large groupings of waste units and facilities in a geographic area
  - Integrates D&D / SGP cleanup
  - Area end states can be determined
  - Economies of scale in sampling, remediation, and documentation



## **SRS Completion Areas**







# **T-Area Completion**



- 1st Area Completion September 2006
  - Remediated 8 waste units
  - Completed D&D of 28 facilities
  - Installed a 10-acre geosynthetic cover
- Accelerated project 48 months ahead of original schedule
- Groundwater remediation underway with SRNL support
  - Remediating volatile organic compounds (VOCs) in vadose zone using 5 microblowers
  - Edible oil study underway to enhance and microbially accelerate VOC remediation





## M Area Operable Unit



- 2nd Area Completion scheduled for 2011
- D&D completed in 2006
  - 22 facilities removed
  - Early cleanup actions implemented to accelerate schedule to 2010
  - In 2008 will remove selected contaminated media (radioactive and VOC contamination in soil and concrete)







# P Area Operable Unit

- 1st scheduled reactor Area Completion
  - Encompasses 100 acres
  - Includes 5 waste units, and facility remnants from D&D
  - Record of Decision (ROD) is in Fiscal Year 2010
- Early characterization complete (tritium, solvents, cesium)
- Taking early actions to address contamination sources
- Public Workshops in progress to solicit public input







### **Groundwater Plumes**





### South Carolina

### 14 Groundwater Contamination Plumes

A/M, F/H, B,TNX, E, P,L (2), K (2), C, N, R, and D Areas

### 14 Active Remediation Systems

- 2 Airstrippers, 2 Recirculation, Dynamic Underground Stripping, 4 Soil Vapor Extraction Units (A/M Areas)
- Airstripper (TNX)
- Base Injection (F Waste Management Facility)
- Electrical Resistance Heating (Chemical, Metals, & Pesticides Pits)
- Phytoremediation (Mixed Waste Management Facility and H Waste Management Facility)

### 7 Enhanced Systems

- Baroballs (A/M, Miscellaneous Chemical Basin, P Burning Rubble Pit)
- Microblowers (A and C Burning Rubble Pits)
- Barrier walls (F&H Waste Management Facility)

### 6 Passive Systems

Monitored Natural Attenuation (Chemical, Metals, & Pesticides Pits, D Oil Seepage Basin; R Reactor Seepage Basins, K and L Burning Rubble Pits, and Sanitary Landfill)

### 3 Systems In Shutdown

- Biosparge (Sanitary Landfill)
- Groundwater Waste Treatment Units (F&H)

### 11 Systems Pending

# Remediating a **Contaminated Site**



Hot Spot: Thorough characterization reduces cleanup volume

Highly Aggressive Technologies:

Excavation

**Heating (Dynamic Underground** Stripping or Electrical Resistance Heating)

In situ chemical oxidation

**Active Soil Vapor Extraction** 

**Primary Groundwater Plume** 

Zone of Capture: Characterization required and groundwater extraction is optimized to reduce treatment volume

Less Aggressive Active Technologies:

Air stripping

Recirculation wells

Hydraulic barrier / Phyto-irrigation

**Base injection** 

Dilute Plume

Leading Edge:

Characterization needed to predict mass transfer and flux

Low Energy Technologies:

**Phytoremediation** 

**Passive Soil Vapor** Extraction (baroballs)

Monitored Natural Attenuation

Enhanced Attenuation alternatives can apply to all zones to supplement Monitored Natural Attenuation (MNA):

Capping, Oil Partitioning

Permeable Biotreatment Wall

Constructed Wetland







# Groundwater Management Vision Active to Passive



# **SGP Significant Activities**

## **Dynamic Underground Stripping (DUS)**

- M-Area steam injection/contaminant removal system with SRNL support
  - Complete steam injection in 2008
  - Accelerates A/M Area groundwater cleanup (5 years vs. 200+ yrs. using conventional technologies)
  - Targets remediation at 3-acre contaminated area regarded as primary source of A/M Area subsurface contamination
- Largest application of an oil-field technology for environmental remediation
- Removed 380,000 lbs. of solvents to date
- Completed construction at a cost of \$17M with a project cost avoidance of \$20M,



## Ш

# **Electrical Resistance Heating**

Sunnort





Environmental Management
safety + performance + cleanup + closure

- Completed removal of 710 pounds of solvents at C Reactor in 2006
  - 99 % efficiency based on soil samples
  - Achieved cleanup two years faster than Soil Vapor Extraction
- Above-ground equipment relocated to Chemical, Metal and Pesticide Pits in 2007 to remediate solvents with SRNL (SR

# **Phytoremediation**



- Controlling E-Area tritiated groundwater discharge to stream with sheet pile dam and irrigating pine forest for evapotranspiration
- 70% reduction of tritium to stream
- 2-acre pond and irrigating 22 acres of pine trees (under expansion)







# General Separations Area Consolidation Unit



- Consolidated waste from 3 basins into the Old Radioactive Waste Burial Ground (ORWBG)
- Constructed a geosynthetic cover over the 76-acre ORWBG
- Eliminated offsite disposal of 45,000 cubic yards of contaminated soil
- In-situ closure resulted in the street of the street of high hazards associated with burial ground waste removal
- Completed project in November 2007







# **D&D Significant Activities**

- Completed decommissioning of Naval Fuels Complex 6 months ahead of schedule
  - 110,000 square feet manufacturing facility with 5 smaller auxiliary facilities
  - Manufactured reactor fuel
  - Operations halted in 1989









## Ш

# **Technology Challenges**

- ACP technology challenges (with SRNL support) included in the EM Roadmap (listed in priority):
  - "Tight Zones" and Mass Transfer Limitations
  - Abandoned sewer lines \*
  - Monitored Natural Attenuation (MNA) and Enhanced
     Attenuation (EA) for chlorinated solvents \*
  - Institutional Control technologies
  - MNA and EA for metals and radionuclides \*
- Continued development and deployment of new technologies are critical to project success
- \* Selected by EM in 2007 for development





# "Tight Zones" and Mass Transfer Limitations

Measuring and overcoming long and slow contaminant releases



# "Tight Zones" and Mass Transfer Limitations

### Primary Objectives

 Need -- tools to measure and overcome the primary barrier to completing treatment in variably layered geology at SRS

### Sites and Studies

- Target plumes include organics, metals, and radionuclides in groundwater and soil across the entire SRS
- Example technologies include fracturing clay to create openings, vadose heating to increase mass transfer rates, long-term deployment of sustainable-passive barriers







## **Abandoned Sewer Lines**



## Ш

## **Abandoned Sewer Lines**

## Primary Objectives

- Provide innovative or improved tools for characterization and remediation (up to 10 miles of underground lines associated with each industrial area)
- Without adequate characterization, is entire source considered contaminated and require equivalent remediation?

### Sites and Studies

- Target sites include all major SRS facilities
- Example technologies include geophysics, gas tracers, robotics, in situ removal and /or stabilization systems
- Project Team formed, Program Plan in development, and identifying waste units for application





# MNA / EA for Chlorinated Solvents and for Metals and Radionuclides



# MNA / EA for Chlorinated Solvents

## Primary Objectives

- Prove Natural Attenuation (NA) is occurring or implement EA to avoid / eliminate active remediation
- Provide improved tools that ensure attenuation is occurring for transition of sites into long term stewardship
- Encourage "combined remedies" (e.g., active at source, passive at distal portion of plume)

### Sites and Studies

- Need to demonstrate EA examples include barometric pumping, long-lived e-donor (e.g., vegetable oil) injection, and post-thermal treatments
- Target sites and plumes include groundwater and soil in C
   Area, P Area, L Area, D Area, and A Area
- Project Team formed, Program Plan in development, and identifying waste units for application







# MNA / EA for Metals and Radionuclides

## Primary Objectives

- Prove NA is occurring or implement EA to avoid / eliminate active remediation
- Provide improved tools that ensure attenuation is occurring for transition of sites into long term stewardship

### Sites and Studies

- F Area Field Demonstration Site
- D Area, Coal Piles, and large-complex sites (such as burial grounds and reactor buildings) that will be transitioning in to closure and long term monitoring in the future
- In situ geochemical stabilization rather than destruction to demonstrate plume stability and mass balance, use of plants, and sustainable infiltration control
- Project Team formed, Program Plan in development, and identifying waste units for application







## **Institutional Control Technologies**



# **Institutional Control Technologies**

## Primary Objectives

- Develop improved tools and strategies (do we look at individual plumes or collectively at an entire watershed) for long term monitoring
- Alternatives to current practice (frequent measurements in large numbers of monitoring wells)
- Innovative systems for performance monitoring of capping and isolation remediations
- Program to address major performance monitoring concerns documented in NAS / NRC reports

### Sites and Studies

- All sites leaving waste in place
- Long term remedial actions





