Beryllium and the Advanced Test Reactor (ATR) Background and Research Presentation to National Academy of Sciences August 29, 2007

Ron Gill US Dept. of Energy

Summary

- Advanced Test Reactor
- Beryllium Background
- Current Status
 - Supply
 - Waste Disposition
 - To Date Research Efforts
- Research Needs
 - Pre Irradiation
 - Post Irradiation

Advanced Test Reactor (ATR)

- Started Operations in 1967
- High Thermal Neutron Flux makes the ATR desirable for testing materials
 - Larger number of neutrons seen by test materials than under normal reactor operations
- Primary mission was to research and test Materials and Fuels for the Nuclear Navy
 - Research into reactor core components have significantly extended the life of Navy reactors
- Additional mission for Materials and Fuels research and Isotope Production for other uses added later

Beryllium Background

- Used in Nuclear Weapons, Defense Needs, Optics, Non Sparking Tools, breeding blankets for fusion reactors, and Fission Reactor components
- Used in ATR as a reflector material that allows the reactor Thermal Neutron Flux to be concentrated
- ATR has 8 reflector blocks and 16 outer shim control cylinders (OSCC) made from Beryllium
- Contains trace amounts of other elements that includes:
 - Lithium
 - Uranium (10 70 PPM)
 - Iron
 - Cobalt
 - Nitrogen

Beryllium Background (Cont.)

Beryllium Background (Cont.)

- Upon irradiation, material produces
 - Entrapped Tritium gas that causes reflectors and outer shim control cylinders to swell and crack
 - Every 8 to 10 years, reflectors and OSCC are replaced in a Core Internals Changeout (CIC) due to swelling / cracking
 - Transuranic Waste (>100 Nanocurries per Gram)
 - Other radioisotopes make disposal a significant problem (Carbon 14, Cobalt 60, Tritium)

Beryllium Background (Cont.)

- Beryllium was disposed at Radioactive Waste Management Complex (RWMC) in Idaho
- Beryllium components stored in ATR canal due to high radiation field from Cobalt 60
- Prior to 2001 was disposed as metal
 - Beryllium is soluble in groundwater
 - Released entrapped Tritium and caused plume
 - Have tried to encapsulate older disposed Beryllium with little success
- In 2001, discovered the trace Transuranic elements

Current Status

- Beryllium declared as Waste with "No Path to Disposition" in 2004 and required path prior to next CIC
- Added to Greater Than Class C (GTCC) Environmental Impact Statement (EIS) Notice of Intent inventory to provide path
- Supplier (Brush Wellman) shutdown Ore Concentration (Pebble) Plant and building new facility
- Limited research on Beryllium supply, waste disposal and recycling
 - Working with International Consortium that includes Japan and Russia

Supply

- All US Beryllium contains enough uranium to create transuranics
- Brush Wellman is building new facility as cost share with DOD as a Title 3 Defense Production Act project
- Drawing down from Defense National Stockpile until new facility built
- DOE has coordinating committee for supplying DOE needs
- Lower Uranium content Beryllium being procured from Kazakhstan
 - High iron content makes it hard to machine and being with current US supplies
 - Still not low enough uranium content to not produce transuranics

Waste Disposition

- Upon irradiation the Beryllium reflectors and OSCC generate
 - Transuranics from uranium
 - Tritium from Lithium and Beryllium
 - Carbon 14 from Nitrogen
 - Cobalt 60 from Cobalt and Iron
- Can be classified as Transuranic Waste (DOE) or Greater Than Class C (NRC)
 - Requires Geological Depository for Disposal
- Waste must be Remote Handled due to radiation field from Cobalt 60, 30 years wait time for lower field
- Developing a Disposition Steering Committee with DOE-EM

Waste Disposition (Cont.)

- RWMC
 - Can not dispose transuranics
- WIPP
 - Consumes WIPP Radiological Inventory with Tritium and Carbon 14
- Yucca Mountain Complex (YMC)
 - Currently only authorized for Commercial Spent Nuclear Fuel
- Greater Than Class C EIS Notice of Intent
 - Evaluate options for disposal includes WIPP, YMC or other locations

To Date Research Efforts

- Separations / Dissolution of Transuranics
 - Limited research in Idaho and Russia
 - Waste generated still problematic
- Heat Treatment to remove Tritium
- Low Uranium Beryllium
 - Need 1 to 2 PPM Uranium to not generate transuranics
 - Brush Wellman developed potential process, cost is prohibitive
- Low Nitrogen (Carbon 14 generation)
 - Brush Wellman developed process

Research Needs

- Working with Russia and Japan on Beryllium issues through the International Science and Technology Center (ISTC) (US State Dept.)
- Pre Irradiation to not generate problematic waste
 - Low Uranium content
 - Low cobalt and iron content
 - Strengthening/Stiffening
- Post Irradiation for recycle and disposal
 - Separations / Dissolution
 - Recycling
 - Waste stabilization
 - Waste encapsulation

Pre Irradiation

- Low Uranium
 - Low volume makes capital improvements costly
 - Still have to deal with historical waste issues
- Strengthening/Stiffening
 - Improve the strength and stiffness to prevent or slow down swelling / cracking
 - Potential life extension of Be components in reactor
 - Potential research in Japan and Russia under ISTC

Post Irradiation

- Separations / Dissolution
 - Chlorine Gas (Cl₂) process development by ISTC
 - Heated Cl₂ below Be melting point reacts with Be to form BeCl gas
 - Gas leaves behind salts and radioisotopes
 - Gas then heated to 1450 C and Cl disassociates
 - Be drops from gas potential for recycle
 - No ongoing research on Dissolution process
 - Waste generated by both Cl₂ gas and Dissolution needs research

Post Irradiation (Cont.)

- Recycling
 - Be from Cl₂ gas or dissolution could be reused
 - Potential for use in breeder blankets for Fusion reactors
 - No ongoing research for recycling
- Waste Stabilization
 - Create Be silicates or phosphates like natural ores to stabilize for disposal (metal reactive in groundwater)
 - Potential to use vitrification process to create Be silicates and drive off Tritium
 - Waste form potentially less than TRU and GTCC limits

Post Irradiation (Cont.)

- Waste Stabilization (Cont.)
 - Different waste streams from all processes need research on stabilization (Cl2 gas, dissolution)
 - Thermal treatment to remove/capture Tritium
- Waste Encapsulation
 - Current buried waste needs better waste encapsulation to prevent Tritium plume
 - Stabilized waste forms may need encapsulation for entrapped radioisotopes

Review

- Current Status
 - Supply
 - No Ore Concentration facility and drawing down Defense National Stockpile
 - Waste Disposition
 - Classified as TRU and GTCC
 - GTCC EIS Notice of Intent
 - Developing Disposition Steering Committee with DOE-EM
 - To Date Research Efforts
 - Low Uranium and Nitrogen Beryllium
 - Heat Treatment for Tritium removal
 - Dissolution

Review

- Research Needs
 - Pre Irradiation
 - Low Uranium capital costs
 - Strengthening / Stiffening for life extension
 - Post Irradiation
 - Separations / Dissolution (Cl₂ gas, dissolution)
 - Recycling
 - Waste Stabilization (silicates, phosphates)
 - Waste Encapsulation