skip navigation links 
 
 Search Options 
Index | Site Map | FAQ | Facility Info | Reading Rm | New | Help | Glossary | Contact Us blue spacer  
secondary page banner Return to NRC Home Page

Vulnerability of Nuclear Power Plant Structures to Large External Fires (NUREG/CR-3330)

On this page:

Download complete document

The following links on this page are to documents in Adobe Portable Document Format (PDF). See our Plugins, Viewers, and Other Tools page for more information. For successful viewing of PDF documents on our site please be sure to use the latest version of Adobe.


Publication Information

Date Published: August 1983

Sandia National Laboratories
Albuquerque, New Mexico 87185
operated by Sandia Corporation
for the US Department of Energy

Prepared for Division of Risk Analysis
Office of Nuclear Regulatory Research
US Nuclear Regulatory Commission
Washington, DC 20555

Under Memorandum of Understanding DOE 40-550-75
NRC FIN No. A1214

Availability Notice


Abstract

This report examines the inherent vulnerability of nuclear power plant structures to the thermal environments arising from large, external fires. The inherent vulnerability is the capacity of the concrete safety-related structures to absorb thermal loads without exceeding the appropriate thermal and structural design criteria. The potential sources of these thermal environments are large, offsite fires arising from accidents involving the transportation or storage of large quantities of flammable gases or liquids.

A realistic thermal response analysis of a concrete panel was performed using three limiting criteria: temperature at the first rebar location, erosion and ablation of the front (exterior) surface due to high heat fluxes, and temperature at the back (interior) surface. The results of this analysis yield a relationship between incident heat flux and the maximum allowable exposure duration.

A simple fire analysis method was developed to predict the thermal flux incident upon a target as a function of range. A key feature is the use of an experimentally observed specific power emitted from the surface of large fires.

Example calculations for the break of a 0.91 m (3') diameter high-pressure natural gas pipeline and a 1 mZ hole in a 2-1/2 million gallon gasoline tank show that the resulting fires do not pose a significant hazard for ranges of 500 m or greater.



Privacy Policy | Site Disclaimer
Wednesday, August 27, 2008