

Cloud Climatology For Land Stations Worldwide, 1971–1996

Carole J. Hahn Department of Atmospheric Sciences University of Arizona Stephen G. Warren Department of Atmospheric Sciences University of Washington

CLOUD CLIMATOLOGY FOR LAND STATIONS WORLDWIDE, 1971–1996

Carole J. Hahn Department of Atmospheric Sciences University of Arizona Tucson, Arizona 85721-0081 hahn@atmo.arizona.edu

and

Stephen G. Warren Department of Atmospheric Sciences University of Washington Seattle, Washington 98195-1640 sgw@atmos.washington.edu

November 2003

Prepared for the Climate Change Research Division Office of Biological and Environmental Research U.S. Department of Energy Budget Activity Numbers KP 12 04 01 0 and KP 12 02 03 0

> Printed by the Carbon Dioxide Information Analysis Center OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6335 managed by University of Tennessee-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725

CONTENTS

LIST OF TABLES		4
LIST OF APPENDICES		5
ABSTRACT		7
1. INTRODUCTION		9
2. DATA SOURCE AND STA	TIONS INCLUDED	9
2.1. Data Source		9
2.2. Cloud Type Definitions		10
2.3. Selection of Stations		10
3. DATA SET CONTENTS A	ND DATA FORMATS	11
3.1. General		11
3.2. Details of Organization		11
3.3. Data Formats		12
3.4. Averaging methods		12
4. SPECIFIC COMMENTS OF	N THE DATA FILE CATEGORIES	14
4.1. File Category 1	Station Identification	14
4.2. File Category 2	Mean Annual Cloud Amount	14
4.3. File Categories 3–5	Mean Seasonal Amount, Frequency, and Amount-When-Present	15
4.4. File Category 6	Mean Seasonal Non-overlapped Amount for Upper Clouds	15
4.5. File Category 7	Mean Seasonal Low Cloud Base Height	15
4.6. File Categories 8 and 9	Mean Monthly Cloud Amount and Frequency	16
4.7. File Categories 10–13	Mean Seasonal Averages by Synoptic Hour	16
4.8. File Category 14	Annual and Diurnal Cycles	16
4.9. File Categories 15–30	Seasonal Averages by Year	17
4.10. File Categories 31–42	Monthly Daytime Averages by Year	17
5. IMPORTANT NOTES ON	USE OF THIS DATA SET	18
5.1. Stations with Bogus Amo	ount-When-Present	18
5.2. Minimum Observations,	the Missing-Value Code, and the A-code	18
6. HOW TO OBTAIN THE D	ATA	19
ACKNOWLEDGMENTS		19
REFERENCES		19
TABLES		20-28
APPENDICES		29-35

LIST OF TABLES

Table	Page
1. Cloud Information Contained in Synoptic Weather Reports	20
2. Cloud Type and Weather Type Definitions Used	20
3. Data File Categories for Land Station Cloud Archive, 1971–1996	21
4. Data Organization for Land Station Cloud Archive, 1971–1996	22–23
5. Header Record Format and Codes Used	24
6. Data Formats for Reading Land Station Cloud Climatology	24
7. Glossary of Terms and Abbreviations Used	25–26
8. Examples of Contents of Data Files	27–28

LIST OF APPENDICES

	Page
APPENDIX A. NUMBERS OF STATIONS AND OBSERVATIONS USED	29
A1. Number of Stations from EECRA with 20 or More Reports Containing Cloud Type Data for Specified Number of Years for January or July	29
A2. Regional Distribution of Contributing Stations	29
A3a. Number of Stations with 20 or More Observations per Month for Julys	30
A3b. Number of Observations per Month Obtained from 5388 Stations for Januarys and for Julys	30
A4. Number of Stations with Specified Station Data Code (SDC)	31
APPENDIX B. 155 STATIONS FOR WHICH BOGUS AMOUNT-WHEN-PRESENT WAS USED FOR MIDDLE AND HIGH CLOUDS	32
APPENDIX C. LAND-STATION CLOUD ARCHIVE FILE NAMES, NDP-026D	33–35

ABSTRACT

Hahn, C.J., and S.G. Warren, 2003: *Cloud Climatology for Land Stations Worldwide*, 1971–1996. NDP-026D, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN.

Surface synoptic weather reports for 26 years were processed to provide a climatology of clouds for each of over 5000 land-based weather stations with long periods of record both day and night. For each station, this digital archive includes: multi-year annual, seasonal and monthly averages for day and night separately; seasonal and monthly averages by year; averages for eight times per day; and analyses of the first harmonic for the annual and diurnal cycles. Averages are given for total cloud cover, clear-sky frequency, and 9 cloud types: 5 in the low level [fog, stratus (St), stratocumulus (Sc), cumulus (Cu), cumulonimbus (Cb)], 3 in the middle level [nimbostratus (Ns), altostratus (As), altocumulus (Ac)], and one in the high level (all cirriform clouds combined). Cloud amounts and frequencies of occurrence are given for all types. In addition, non-overlapped amounts are given for middle and high cloud types, and average base heights are given for low cloud types. Nighttime averages were obtained by using only those reports that met an "illuminance criterion" (i.e., made under adequate moonlight or twilight), thus making possible the determination of diurnal cycles and nighttime trends for cloud types.

1. INTRODUCTION

This report describes an archive of cloud climatological data for 5388 land stations around the globe. The climatology was constructed using surface synoptic weather reports for the 26-year period 1971 through 1996. For each station, this digital archive includes: multi-year annual, seasonal and monthly averages for day and night separately; seasonal and monthly averages by year; averages for eight times per day; and analyses of the first harmonic for the annual and diurnal cycles. Averages are given for total cloud cover, clear-sky frequency, and 9 cloud types [5 in the low level: fog, stratus (St), stratocumulus (Sc), cumulus (Cu), and cumulonimbus (Cb); 3 in the middle level: nimbostratus (Ns), altostratus (As), and altocumulus (Ac); and one in the high level: Ci (all cirriform clouds combined)]. Mean base heights are given for the low cloud types. Cloud amounts and frequencies of occurrence are given for all types. The frequency given is the "actual" frequency of occurrence (not the "frequency of sighting") and amounts given are the "actual" amounts, using the random-overlap assumption where necessary for Ci, Ac and As, and the maximum-overlap assumption where necessary for Ns. In addition, non-overlapped amounts are given for middle and high cloud types. These concepts are discussed in detail by Warren et al. (1986) and by Hahn and Warren (1999).

This archive updates and improves on previous cloud climatologies in this series (NDP-026 and NDP-026A; Hahn et al. 1988, 1994). It uses the illuminance criterion of Hahn et al. (1995) in order to minimize the night-detection bias, making it possible to prepare a climatology of cloud types for both day and night and to meaningfully evaluate diurnal cycles of the cloud types. It covers a greater span of time (26 years) so that interannual variations and trends may be better evaluated. Some cloud types that were grouped together in the earlier climatology are reported separately here: we now distinguish between As and Ac and between Sc, St and fog. Finally, this is a climatology for individual land stations, not grid boxes, so that trends and diurnal cycles can be evaluated without biases that may arise when using data from more than one station within a box.

CAUTION: It is important to note the cautions described in the various sections below so as to avoid erroneous use of the data. For example, not checking the number of observations when required could lead to using unrepresentative values (as has happened in the past in publications by some users of our climatologies), and not checking for the "missing-value code" (a negative number) could lead to erroneous analyses.

Numerous abbreviations will be employed throughout this text. Most will be defined in context or in associated tables. For convenience, **Table 7** defines many of the terms used. **Tables 1–8**, which are required for understanding and use of the data, are grouped in the "TABLES" section, while supplementary tables and figures are put in the APPENDIX.

2. DATA SOURCE AND STATIONS INCLUDED

2.1. Data Source

The data source for this analysis was the "Extended Edited Cloud Reports Archive" (EECRA, Hahn and Warren, 1999), also available from CDIAC as NDP-026C. Land station reports included in the EECRA were originally taken from the "SPOT" archive of the Fleet Numerical Oceanography Center (FNOC) for the years 1971–76 and from an archive of the National Centers for Environmental Prediction (NCEP, formerly NMC) for the years 1977–96. These archives are maintained at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. Because of changes in procedures at NCEP (Gregg Walters, NCAR, personal communication, 2002), the NCEP data do not contain cloud-type information after March 1997. Thus this climatology terminates with 1996 data. Other problems with these data sets have been discussed by Hahn and Warren (1999).

Several features designed into the EECRA simplified the present cloud analysis. Synoptic weather reports were included in the EECRA only if they contained cloud information and they were put through extensive quality control procedures. These screened reports were then re-written to include additional information that was not directly recorded in, though implicit in, the original report. For example, reports in the EECRA contain both the overlapped and non-overlapped amounts for middle and high clouds. Each report also contains a flag indicating whether the report satisfies the illuminance criterion of Hahn et al. (1995). For the present climatology we used only those reports that satisfied the illuminance criterion

("light obs") and that contained cloud type information (thus the number of reports used for low cloud types is the same as the number used for total cloud).

2.2. Cloud Type Definitions

Table 1 lists the cloud information contained in a synoptic weather report. These quantities, along with the station identification and the time of the report, are the basic data used to create this climatology. Synoptic reports are made every three hours beginning with 00 GMT, though some stations report less frequently. Some stations report only every 6 hours or only during daytime.

Table 2 lists the cloud types analyzed for this climatology and provides their definitions in terms of the synoptic code as defined by the World Meteorological Organization (WMO, 1988) and as modified in the EECRA. Precipitation codes are also given because they are used in our definitions of nimbostratus and cumulonimbus cloud types. The synoptic code is the only system of reporting weather data that is used worldwide, thus providing a degree of uniformity for a global climatology.

As noted above, in contrast to our previous climatology (NDP-026), we now distinguish between St, Sc and Fo in the low level, and between As and Ac in the middle level. In preparation for the present climatology, we tried to distinguish between cirrostratus, cirrocumulus and dense cirrus in the high level but, after mapping the frequencies of occurrence of these individual types, we saw discontinuities at some international boundaries, indicating that reporting procedures were not uniform worldwide. Therefore we group all high clouds together in this dataset.

2.3. Selection of Stations

Hahn and Warren (1999) listed 11,586 stations (by their 5-digit station-identification numbers) for which cloud type information was reported at least once in the EECRA. [Names and further information about each station are given by WMO (1988).] For the present climatology we wanted stations that have sufficiently long periods of record for trend analyses and sufficient numbers of observations (obs) at night for diurnal analyses. **Appendix A1** shows the number of stations that had 20 or more obs for specified numbers of years of January or July. For example, 1680 stations had no years with at least 20 obs in either January or July, of which 961 stations had only one year of any obs (not shown). On the other end of the scale, 2639 stations had 26 years of at least 20 obs in either January or July, of which 2020 stations had at least 20 obs in both months. [The criterion of 20 observations in a month allows a station that routinely reports only once per day to contribute to some analyses but excludes station numbers that appear only spuriously.] Hahn and Warren (1999) also listed 939 stations that did not normally report cloud types; these stations were excluded from this analysis.

For use in this climatology, we initially selected stations if they met three criteria:

1) they normally report cloud types,

2) they had at least 20 obs in at least 15 years (during the 26-yr period) for either January or July, and

3) the number of "night" obs [defined here to be 18 to 06 local time (LT)] was at least about 15% of the total number of obs. (Night obs average about 30% of the total because of screening by the illuminance criterion.)

The number of stations meeting these criteria was 5158 (5838 stations met criteria 1 and 2). However, this group of stations left vast land areas south of 30N underrepresented (in Africa, South America, Australia and Antarctica). We therefore also included 230 stations south of 30N that did not meet criterion 2 or 3. (Many island stations in the Indonesian region were included in the group of added stations.) File 1 of the archive (discussed below) lists the resulting 5388 stations selected and contains a code that distinguishes these two groups. The regional distribution of the land stations used for this climatology is given in **Appendix A2**. The number of these stations that had 20 or more obs per month (shown for July but similar for all months) for each year is plotted in **Appendix A3a**. The number of such stations was rising in the 1970s but has been declining since 1990. The number of observations associated with the 5388 land stations is plotted in **Appendix A3b** for Januarys and Julys. More light obs are available for July because more stations are located in the Northern Hemisphere. The total number of observations used in this climatology is 185 million. Of these, 70% are for "daytime" (defined here as 06 to 18 LT).

It is notable that very few stations in the United States (USA) have 26 years of synoptic cloud reports. With the installation of the Automatic Surface Observing System (ASOS) in the mid 1990s, most USA stations stopped reporting cloud observations in the synoptic code format, despite objections from the climate community (Warren et al., 1991). In addition, many of the synoptic reports still being made are not appearing in the NCEP data set. It is also unfortunate that stations from some major cities in Australia (e.g. Sydney, Melbourne, and Hobart) are not included in this climatology because most of their nighttime reports did not appear in the NCEP data set.

3. DATA SET CONTENTS AND DATA FORMATS

3.1. General

The cloud data provided in this archive are divided into 42 numbered "File Categories" as outlined in **Table 3**. The category divisions are based on the content of the data. The categories are named and given abbreviations intended to be suggestive of the content. Thus Category 1 contains data relating to station identification (STID) and Category 2 contains mean annual cloud amounts (MACA) for 13 cloud types (identified and discussed below). Categories 3–7 give mean seasonal averages for five different cloud parameters (amount, frequency, amount-when-present, non-overlapped amount, and base height), and so on. Categories 2–14 contain the multi-year averages, while Categories 15–42 contain averages for individual years, either seasonally (Categories 15–30) or monthly (Categories 31–42), which can be used for analyses of trends. Numbered categories listed with the same category name, such as Categories 15–18 or Categories 31–42, might logically be listed under a single category number, but the seasonal mean and monthly mean files are so large that these categories are split further by season or month. The organization of the data is described in more detail in the following section.

3.2. Details of Organization

The details of the organization of the archive are displayed in **Table 4**. The data for any particular cloud quantity, such as "multi-year average amount of cumulus cloud for July" (or any other cloud type or parameter or season), are given for all stations, listed consecutively by station ID number, before going on to some other cloud quantity. This grouping is referred to as a "station cloud data group" (SCDG; or "data group" for short). Each file contains a series of one or more SCDGs. A data group consists of 5388 data records (one for each of 5388 stations) and a header record that identifies the group:

| Header record identifying data group | Data record for first station | Data record for second station | etc. for 5388 stations

The header record specifies the season, cloud type, cloud parameter and data format for the data records in the group. (Formats for the header and data records are discussed in Section 3.3.)

The order in which data groups appear within a multi-group file is:

first season, first type, averages for all stations;

first season, second type, averages for all stations;

etc.

This order is indicated by the order of listing in Table 4.

The order in which the data groups appear for the various cloud types is as shown for Category 2 in Table 4. This same sequence (also given in Table 5) is used for all the files. However, some quantities are not applicable to all types. For example, there is no "amount" for clear-sky frequency, so Cr does not appear in Category 3. Thus for most files only a subset of the 13 types is given; these subsets are listed in a footnote to Table 4.

Each data group is assigned a unique sequence number (the SCDG number) which is indicated in Table 4 and contained in the header record. There are 862 SCDGs in this archive. These sequence numbers are included as a redundant convenience for identifying a desired data group although the group header record contains other information which uniquely defines the group contents. The header record is described in the next section.

Physical files. The size of the entire archive is about 1.6 gigabytes. The File Categories 2–42 each contain a fairly large amount of data (Table 3) so, in practice, they are physically divided into smaller files for ease of handling. The resulting files are given names that indicate their contents. The names contain the File Category number, the category name abbreviation, and several name extensions to indicate the season and/or cloud type(s) whose station cloud data group(s) (SCDGs) is (are) contained in the file. The 862 SCDGs in the 42 File Categories are contained in 433 physical files. A complete *list of the physical file names* is given in **Appendix C**. The means for obtaining the files are available from CDIAC (Section 6). Examples of the contents of the files are given in Table 8; these will be discussed in Section 4.

3.3. Data Formats

The header record is described in **Table 5**. It defines the content of a data group by specifying the parameters: TYPE, PCODE, YEAR, SN and FMT. (Here all data are for land stations, so LO=1 and SIZE=0 in all headers.) Only numerical values are included in the header record so the various cloud types, seasons, etc. are given numerical codes. These codes and their equivalencies are listed as values under the respective parameter name. (Definitions of the cloud types are given in Table 2, and other terms are defined in Table 7.) Each header also has a unique SCDG number which indicates the File Category number and the sequence of the group within the file category. The format number (FMT) given in the header record indicates the format (defined in Table 6) to be used for reading the data records. The header formats (110 and 120) are also listed in Table 6. Format 110 differs from 120 only in that the parameters TYPE, PCODE and SN are not applicable for Category 1 and so a value of "-9" is located in those positions in the header to Category 1.

The data formats used are defined in **Table 6**. The format of a data record depends on the category of data given. Categories 2–9 and 15–30 (formats 121, 122, 126, 127) all have similar content. The station ID number (StaID, which is the first variable in every data record) is followed by three pairs of numbers. Each pair is made up of a number of obs (or the number of seasons for Category 2) and an average (which may be for amount, frequency, or height). The first pair gives daytime values (NobD, AvgDy), the second pair gives nighttime values (NobN, AvgNt), and the third pair gives the total number of obs and the average over both day and night (NobDN, AvgDN). Finally, the ACODE is a coded message providing information regarding NobD and NobN used in obtaining AvgDN (described in Section 3.4 below). Format 122 differs from format 121 only in that the variable formatted is height (in meters, f6.0) rather than amount or frequency (in percent, f6.2). Format 126 is similar to format 121 except that averages are given for each of 26 years for each station. Again, format 127 gives height rather than amount or frequency. Data lines in Categories 10-13 (formats 138, 139) contain only a single data pair (Nobs and Avg for an individual synoptic hour) but 8 such pairs are given consecutively for each station. The synoptic hour is included in these data records. Format 162 is unique in that it contains amount, frequency and amount-when-present in the same data record. It is used for Categories 31-42, the daytime averages for 26 years (monthly). It contains the year (last 2 digits) for each data line and NC, the number of obs used in computing AWP. Formats 140 and 148 (used in Category 14) give the parameters of the first harmonic of either the annual or diurnal cycles. Details for the format contents are given in Section 4 for the particular files.

All data appear as integers (the "I" format) in the data files. To indicate the number of decimal places to which some values are given, the "F" format is shown above the relevant variables in Table 6. For example, the integer "1234" should be read as "12.34" if read under format 121 (F6.2) or as "1234." if read under format 122 (F6.0). If read in this way, amounts and frequencies are given in percent and base heights are given in whole meters. This principle applies to other variables in other formats.

3.4. Averaging Methods.

Except for amounts of middle and high clouds, which will be discussed below, averages for the various cloud variables (amt, fq, awp, nol and hgt) for day, night, and the individual synoptic hours were computed as the simple average of the available obs. The averages were computed even if only one observation was available. The number of obs contributing to each average is included in the data record. If no obs were available for a particular average (Nobs=0), the missing-value code (MCODE; usually –90000, see Table 7) was inserted for that average. One must check for the missing-value code and/or the Nobs when using the data. Note that, because the sky may be overcast with lower clouds, the Nobs for middle clouds (MOBS) and high clouds (HOBS) will generally be less than the Nobs for low (or total) clouds (LOBS \geq MOBS \geq HOBS).

To reduce the "partial-undercast bias" (Warren et al. 1986), frequencies for upper-level clouds (As, Ac, Hi) were computed only from reports in which the coverage of a lower cloud layer was less than 7/8. This is simpler than the method used by Warren et al. (1986) to reduce this bias, but we found no significant difference between the two methods.

Amounts of middle and high clouds. Because the synoptic code allows reporting of only two amounts even if clouds are present at all three levels (Table 1), it is possible for the amount of a middle or high cloud to be indeterminate even if the cloud is visible. Therefore we compute an amount-when-present (awp) from the obs for which the amount can be determined ("number of computable obs", NC) and obtain the cloud amount as:

$$amt = fq x awp. \tag{1}$$

Again, to reduce the partial-undercast bias, reports in which the coverage of a lower cloud layer was 7/8 were not used in computing awp for upper level clouds, further reducing NC. Thus there may be obs from which to compute fq but no obs from which to compute awp or amt (unless fq=0, in which case amt=0). The Nobs for awp is NC. The Nobs given in the data records for amt is the number of obs used in computing the frequency. To avoid reporting unrepresentative amounts, we imposed a minimum (mina) on NC for reporting amt: mina = min x fq x 0.6, where min has a value that is specified for each File Category (Section 4). If mina was not met, the Mcode was entered for amt. As always, it is necessary to check for the Mcode when using the data.

The non-overlapped amount is the amount actually seen by an observer from below; i.e., the amount not obscured by lower clouds. It is analogous to the quantity reported by most satellite-derived climatologies where the amount reported is the amount not obscured by *higher* clouds. The sum of non-overlapped amounts is equal to the total cloud cover, whereas the sum of the other cloud-type amounts reported in this archive is greater than the total cloud cover because of overlap.

Because one can know that an upper cloud cannot be seen (NOL=0) even if one does not know, because of lower overcast, whether or not it is present, Nobs for NOL is larger than MOBS or HOBS. Indeed, NOL was given in 94% of the EECRs used for this climatology. NOL was not given in EECRs for cases with clouds present in 3 levels because the distribution of the upper amount (N-Nh) between Mid and Hi cannot be computed. However we were able to include this class of reports in the present climatology by apportioning (N-Nh) by reference to the average AWPs of the cloud types when they were computable. We used the following algorithm:

if middle cloud is Ac, then assign NOL(Ac) = 0.7(N-Nh) and NOL(Hi) = 0.3(N-Nh) or if middle cloud is As or Ns, then assign NOL(As or Ns) = 0.9(N-Nh) and NOL(Hi) = 0.1(N-Nh).

Using this approximation, NOL was computable in 99% of the reports. Only unusual reports, such as those for China in the 1970s (with CL=0 and Nh=/; see below), did not contribute.

The amount of a low cloud can always be determined: it is equal to Nh when it is present, and equal to zero when it is not present (CL=0). Thus it is not necessary to compute awp, as was shown above for middle and high clouds, to obtain low cloud amounts. We do, however, include awp for low clouds in the archive. For a low cloud, the number of computable obs (NC) is equal to the number of times the cloud was present (NTy).

The "daily" (or "diurnal") average (avgDN) was computed by one of three methods depending on the variable averaged. *For frequencies, amounts, and non-overlapped amounts,* avgDN was computed as the average of the Dy and Nt values. This method of forming avgDN weights day and night equally; it is the preferred method, if sufficient obs are available for both day and night, because there are generally fewer usable obs at night due to screening by the illuminance criterion. If NobD or NobN was less than the specified minimum (Section 4), then an average was computed using all available obs, regardless of time of day. A flag, the "averaging code" (Acode), is included in the data record to identify the DN-averaging method employed. Acode values and their meanings are given in Table 7. Note that, since both day and night averages and their Nobs are given, a user is free to obtain a DN average by a method different from the one used here.

For base height, avgDN was always computed as the simple average of all the obs of a low cloud type when it is present, regardless of time of day. The Acode supplied in this case does not represent the averaging method, which never varies, but does indicate the relationship between NobD, NobN and a specified min as defined in Table 7. Nobs for height may be less than the number of occurrences of a type (NTy) because h (Table 1) is sometimes not reported.

AwpDN is computed as: amtDN/fqDN (if fq=0, then awp=Mcode). This preserves the relationship in Eqn. (1) but, in general, awpDN computed in this way does NOT equal (awpD+awpN)/2. For example, if cumulus occurs frequently during daytime but rarely at night, then the awpDN should be weighted toward the daytime awp, as this method ensures. As for base height, the Acode supplied for awpDN indicates not the averaging method, which does not vary, but the relationship between NC(Dy), NC(Nt) and a specified minimum as defined in Table 7.

4. SPECIFIC COMMENTS ON THE DATA FILE CATEGORIES

Refer to Tables 4 and 6 throughout this discussion. The discussion of an individual File Category includes comments on the data content, data format and minima applied. Counts of the number of stations meeting minima for selected cloud variables will be listed. Reference will be made to examples given in **Table 8**.

4.1. File Category 1: Station Identification (STID)

Category 1 (Format 111) provides information about the land stations used. Data records for the 5388 selected stations are listed in ascending order of the 5-digit, WMO station identifiers (StaID) which here range from 01001 to 98851. Latitude and longitude are given in degrees (-90 to 90 N, 0 to 360 E) to 2 decimal places, and elevation is given in meters. The variables ny1, fy1 and ly1 give the number of years of Januarys with at least 20 obs, the first of such years and the last such year (e.g. "96" for 1996), respectively. The variables ny7, fy7 and ly7 give the same information for July. The "station data code" (SDC) indicates whether a station had at least 15 or more years of 20 or more obs in January or July and whether the number of night obs exceeded a certain fraction (about 15%) of the total. The meanings of the five possible values for SDC are given in **Appendix A4**. The table also lists the number of stations that have each value. A station reporting reliably both day and night for many years in all seasons will have SDC=2; there are 5053 such stations.

Two stations with SDC=2 are shown in Example (a) in Table 8. Station 01001, located at 70.93 deg N and 351.33 deg E at an elevation of 9 meters, has 20 or more obs in all 26 years for both January and July, while station 98851 has at least 20 obs/month in 21 of the years from 1971–96. Station 62700, in Africa, had only 3 Januarys and 2 Julys with 20 or more obs (SDC=0); these years were all between 1980 and 1991.

Finally, the variable b5c gives the number of the grid box, on the "5c" grid, that contains the station. We have used this grid in previous climatological data bases (NDP-026, NDP-026A) and in our atlas (Warren et al. 1986) but do not refer to it further here. The variable b5c can be ignored.

4.2. File Category 2: Mean Annual Cloud Amount (MACA)

Category 2 (Format 121) gives the annual average Dy, Nt, and DN amounts for all the cloud types, the clear-sky frequency, the sum of the low-level amounts, and the sum of the middle-level amounts. Annual averages were computed by averaging the seasonal values from Categories 3 (amounts) and 4 (Cr frequency). A seasonal value contributed to the annual average if there were at least 100 obs for the season. NSN is the number of seasons contributing. There were 5383 stations that had 4 seasons contributing to Tc. The Acode assigned here for AvgDN was based on the Acodes of the seasonal averages contributing (Table 7). Acode was assigned as 2 if all seasons contributing to the annual average had Acode=2. If any contributing season had Acode=3, then Acode=3 also for the annual average. Acode=1 does not apply here. Acode=0 if no seasons had 100 obs. Acode=2 was obtained by 5338 stations for Tc and by 5278 stations for Hi amount.

Example (b) in Table 8 shows the annual average total cloud amount for station 21749. These averages were obtained from the seasonal values shown in Examples (c–f). The annual averages were computed

from only 3 seasons because DJF, shown in Example (c), contained too few obs. The 3 seasons contributing to AvgDN [75.99 = (74.97 + 77.72 + 75.28)/3] all had Acode=2 so the Acode for the annual average is also 2.

4.3. File Categories 3–5: Mean Seasonal Amount, Frequency, and Amount-when-present (MSCA, MSCF, MSAW)

Categories 3–5 (Format 121) contain the mean-seasonal (multi-year) averages for amt, fq and awp, respectively. Amounts for the low and middle levels (LoL and MiL) are included in Category 3. Category 5 does not include awp for Tc, for which none is computed, or for Fo (sky obscured by fog) which is, by definition, always 100%. Fo is included in both Categories 3 and 4 even though fq_Fo = amt_Fo. These averages were obtained by summing, seasonally, all obs over the span of years for each station; they were not obtained by averaging the season averages of individual years. (Because the source data began with 1971 January, rather than 1970 December, we include data from Decembers 1971–1996 in the DJF averages in order to provide 26 years for each month for that season.) Nobs for awp is NC, the number of occurrences of a cloud type for which an amount was computable. (For low clouds NC=NTy; for upper clouds NC is generally less than NTy.) The Nobs given in a data record for amt is the same as that for fq, though amt may be missing for middle or high clouds (assigned the Mcode) if NC is inadequate (NC < mina as described in Section 3.4). The minimum used in computing avgDN and Acode was 100 for fq and amt, and 50 for awp. In DJF, Acode=2 was obtained by 5352 stations for Tc and by 4877 stations for Hi awp.

Examples (g–i) in Table 8 show amt, fq and awp, respectively, for St for station 15235 in DJF. The nighttime frequency here is quite low (0.93%) so although NobN=1941, there are only 18 occurrences of St from which to compute awp (90.28%). Although the Acode for both fq and amt is 2, and awpDN is computed as amtDN/fqDN (Section 3.4), the Acode assigned to awpDN here is 3, signifying that NC for either Dy or Nt (or both) is less than 50 while NC for DN is \geq 50 (221 in this case). In these examples only one of the 4 or 5 SCDGs contained in the file (see Appendix C) is shown. Example (j) lists all 4 SCDGs in the file for middle and high cloud frequency for JJA. Data records are shown for station 30692. Example (k) shows the sum of low cloud amounts for DJF for 3 stations. Station 21749 has few obs in this season as was seen in Example (c). Station 62840 in Africa has only a small amount of low clouds (1.40%) while station 89065 on the Antarctic Peninsula has much more (40.29%). Example (l) shows the use of bogus awp (see Section 5.1 below) for Hi (46%) for station 97760.

4.4. File Category 6: Mean Seasonal Non-overlapped Amount for Upper Clouds (MSUU)

Category 6 (Format 121) contains the mean-seasonal averages of the non-overlapped amount for the four middle and high cloud types. The min used in computing avgDN and Acode for non-overlapped amounts was 100, and the consequent number of stations with Acode=2 is 5352 for Hi in DJF, for example.

Example (m) in Table 8 shows NOL for the four upper types for MAM for two stations. Station 46734 has a small NOL_Hi averaged over day and night (AvgDN=1.67%, Acode=2), while station 89544 has a much larger amount averaged from mostly daytime obs (14.90%, Acode=3).

4.5. File Category 7: Mean Seasonal Low Cloud Base Height (MSLH)

Category 7 (Format 122) contains the base heights for the four low cloud types: St, Sc, Cu, Cb (Hgt for Fo is, by definition, zero). Format 122 differs from Format 121 only in that Avg for Hgt is given to whole meters (F6.0). Nobs for height may be less than NTy since h (Table 1) is not always reported. AvgDN for base height was computed from all available obs, as explained in Section 3.4. Using a min of 50 to determine Acodes, 4463 stations have Acode=2 for Sc in DJF. Fewer stations had Acode=2 for other types which occur less frequently.

Example (n) in Table 8 lists data records for two stations in the SCDGs for low cloud base heights for JJA. The average height of St at station 98851 is 513m as computed from only 52 obs. Cu is far more common in this case with 5331 obs and an average height of 516m. Station 21749, by contrast, has a height of 310m for St from 1189 obs and a height of 798m for Cu from 162 obs.

4.6. File Categories 8 and 9: Mean Monthly Cloud Amount and Frequency (MMCA, MMCF)

Categories 8 and 9 (Format 121) contain the mean-monthly averages for amt and fq. The min used in the computation of AvgDN for these files was 75. The number of stations with Acode=2 for January, for example, is 5283 for Tc, 5082 for fq_Hi and 5059 for amt_Hi. No examples are shown in Table 8 because the principles are the same as for Categories 3 and 4 discussed above. These files were used in computing the annual cycles in Category 14.

4.7. File Categories 10–13: Mean Seasonal Averages by Synoptic Hour (MSAT, MSFT, MSUT, MSHT)

Categories 10-13 (Formats 138 and 139) give cloud variable averages (seasonally) for the eight synoptic hours. Formats 138 and 139 contain fewer variables than Formats 121 and 122 used above but eight data lines (one for each hour) are given for each station. No min was applied for computing these averages (except mina for amt of upper clouds) so the user must check Nobs (and Mcode for amt) to evaluate the representativeness of the average given. These files were used in computing the diurnal cycles in Category 14.

Example (o) in Table 8 lists the data records for two stations for the frequency of clear sky in SON. Station 84782 (Tacna, Peru) has at least 300 obs for all 8 hours while station 72469 (Denver) exceeds 75 obs at only the four 6-hourly times. Cr is reported more frequently at night at Denver but more frequently in the daytime at Tacna. (GMT can be converted to LT by using the station longitude given in Category 1.)

4.8. File Category 14: Annual and Diurnal Cycles (HARM)

Category 14 (Formats 140 and 148) gives the phase (PHASE), amplitude (AMP), and variance accounted for (VAF) of the first harmonic of the annual cycle (DN averages only) and diurnal cycle for cloud amount and frequency. PHASE is the time of maximum of the fitted cosine curve. Formats 140 and 148 differ only in that the label "140" is used to signify that the values of PHASE and NT are representative of months whereas the label "148" is used to signify that PHASE and NT are representative of hours of the day (see Table 7). AVG is the average of the 12 monthly (annual cycle) or 8 (or 4) hourly (diurnal cycle) values; these averages may differ slightly from each other and from the annual averages given in Category 2.

Annual cycles were computed from the monthly (DN) averages in Categories 8–9 and are given for a station only if all 12 months had Acode=2 (min 75 both day and night). Mcode was inserted for the variables if the number of months (NT) was less than 12. In this way, annual cycles were obtained for 5240 stations for Tc, 4913 stations for Fq_Hi and 4829 stations for Amt_Hi.

Example (p) in Table 8 shows the annual harmonic parameters for Tc for 4 stations. Station 89544 did not have 75 obs both day and night in any year so the Mcode was inserted for the variables. The other 3 stations are located in the USA (Tucson, Denver and Seattle, respectively) and have distinctly different climates from each other. Tucson, with the lowest annual cloud amount (38.6%) of the three, shows a small maximum (AMP=1.39% absolute cloud cover) in early December (PHASE=11.86), but VAF is quite small (0.12%). Denver, with an annual cloud amount of 52.6%, shows a larger and more significant cycle (AMP=6.44%) with the maximum in late March (PHASE=3.30) and VAF= 69.6%. Seattle has the greatest cloud cover (69.3%) and the largest variation (AMP=12.35%, VAF= 69.1%) with its maximum in early Feb (PHASE=1.55).

Diurnal cycles were computed from the 3-hourly averages given in Categories 10 and 11. The diurnal parameters for a station are given, in the Category 14 files, if each of the 8 hours had a minimum of 75 obs or if each of the four 6-hourly times (0,6,12,18 GMT) had the minimum 75 obs. A station with 8 hours by this test was then tested for the ratio N6/N3, where N6 is the total number of obs at the 6-hourly times and N3 is the total number of obs at the intermediate 3-hourly times. If this ratio exceeded 4.0 then the diurnal cycle was computed from only the four 6-hourly averages. This was done to reduce a possible bias which may result if reports are made at the intermediate 3-hourly times only in special weather conditions. Diurnal cycles for Tc in DJF, for example, were computed for 4755 stations. Of those, 993 cycles were computed from only 4 hours; of these, 16 had 75 obs for all 8 hours but failed the N6/N3 test.

Example (q) in Table 8 gives the diurnal parameters for Fq_Cr in SON for the two stations listed in Example (o) discussed in Section 4.7. With all 8 hours contributing, station 84782 shows an amplitude of 30.66% (around a mean of 32.4%) with the maximum around 3 PM local time. Only 4 hours contributed to the computations for station 72469 which shows an amplitude of 14.06% around an average of 16.9% with the maximum occurring around 2 AM. Both stations showed a large VAF (77.0 and 73.8, respectively) indicating that the first harmonic represents the diurnal cycle fairly well.

4.9. File Categories 15–30: Seasonal Averages by Year (SMCA, SMCF, SMUU, SMHL)

Categories 15–30 (Formats 126 and 127) provide Dy, Nt and DN averages of the cloud variables for the individual years (1971–96) of each season. The data record for a station contains 26 lines, one for each year, listed in ascending order by year (the year is not included in the data line). The min used in the computation of AvgDN in these files varied with the cloud type because LOBS \geq MOBS \geq HOBS, and Nobs becomes limiting as the period of averaging becomes small. A station making one report each night could have a maximum NobN of about 90 for a 3-month season. About 60% of these reports will be excluded by the illuminance criterion and reports are occasionally missing from the source data set due to failures in data transmission or archiving. Considering these factors, we used the mins listed in the following table in computing AvgDN and in setting the Acode for an individual year-season.

- min variable
- 35 Tc, Cr, low clouds, NOL and Fq_Ns
- 30 As, Ac and Amt Ns
- 25 Hi
- 20 Hgt (min used for Acode only; Hgt is computed from all available obs)

Using these mins, for DJF for example, the number of stations with Acode=2 in 15 or more years for Tc is 4119 while the number for Amt_Hi is 3536.

Example (r) in Table 8 lists the Cu amounts by year for MAM for station 94248 (Centre Island, northern Australia). This example demonstrates a variety of averaging possibilities. There are 18 years with Acode=2 for AvgDN, such as in 1980 for which AvgDN = 6.44% = (9.76 + 3.12)/2. In 1971 there were 64 obs, all for daytime, so Mcode appears for AvgNt, and AvgDN (7.42) was computed from the daytime obs with Acode=3. In 1976 there were 131 obs but only 22 for nighttime so AvgDN was computed from all the obs with Acode=3. In 1972 there were only 3 obs so Acode=1. There were no obs at all for 1975 so all averages were assigned the Mcode and Acode=0. This example also shows the increase in the number of reports from 1988 to 1989, as is seen for many Australian stations, due to inclusion of intermediate 3-hourly reports beginning at that time. For numerous other stations around the globe, an increase in the number of reports occurs in 1995 due to duplication of 6-hourly reports into succeeding intermediate 3-hourly slots.

These files can be used in analyzing trends in cloud cover. Again, mins were not applied for Dy and Nt averages so NobD and NobN must be consulted to choose representative averages. Middle and high cloud amounts must also be checked for the Mcode. Note that because 1970 December was not available for use in preparing this dataset, "DJF 1971" contains data only for 1971 January and February and thus should not be used in seasonal trend analyses.

4.10. File Categories 31–42: Monthly Daytime Averages by Year (MNYD)

Categories 31–42 (Format 162) give monthly averages for individual years (1971–96) for selected cloud variables. Because more than half of nighttime reports are excluded by the illuminance criterion, nighttime averages for a single month cannot be fully representative of that month. Therefore we give only daytime averages for cloud variables for individual months. It is then convenient to include the three cloud variables (amt, fq, awp) in a single data record (Format 162). The data record for a single year includes Nobs, Amt, Fq, AWP and NC. NC is the number (note exception below) of occurrences of a cloud type for which AWP was computable (and Amt = Fq x AWP). Again, to allow for user flexibility, no min is applied in presenting these averages so the user is responsible for checking Nobs (the maximum possible NobD per month is 124) to determine reliability of Fq, and for checking NC to determine the reliability of AWP and Amt. There are two special situations, involving AWP for middle and high cloud types, for which NC is assigned a code value (<0) instead of the number of computable occurrences. Values of -1 or -2 are used to indicate that one of two types of bogus values for AWP has been used to

compute Amt (see Section 5.1 below). NC is not applicable for Tc or Cr and is therefore assigned the value –9 (and AWP=Mcode).

Example (s) in Table 8 shows a few years of data (Ac cloud variables for Januarys) for each of three stations. For station 01035 in 1978 there were 19 obs and Fq_Ac was 15.79% (NTy=3) but AWP was not computable in any report (NC=0) so AWP and Amt contain the Mcode. NC=0 also in 1977 so AWP=Mcode but Amt=0 because Fq=0. The sample listing for the China station 54511 shows NC=-2 for 1978 and 1979 indicating that AWP (29.83) was obtained from 1980–89 data (Section 5.1). For station 97900, a bogus value of AWP (51% for Ac; Section 5.1) was used in all years.

Example (t) shows a partial listing of high cloud data for Decembers for a station in the USA (72290, San Diego). Synoptic weather reports no longer appeared in the source data set after 1995 for this and many other USA stations (Hahn and Warren 1999).

5. IMPORTANT NOTES ON USE OF THIS DATA SET

5.1. Stations with Bogus Amount-When-Present

China. Because of problems in China's reporting procedures in the 1970s [described in detail by Warren et al. (1986) and by Hahn and Warren (1999)], we assigned to AWP, for middle cloud types for the years 1971–79, a value obtained by averaging AWP for 1980–89 (averaged and applied for each of the 12 months separately). This is indicated in Categories 31–42 by the value "-2" assigned to NC (Format 162) for all China stations (StaID begins with "5") for data records for the years 1971–79. Thus any interannual variations of middle cloud amounts obtained in China for these years will be due solely to interannual variations of frequency.

Indonesia and South America. During preliminary analyses, we discovered that there were two equatorial regions in which the ratio NC/NTy for upper cloud types (the number of times the cloud amount was computable, divided by the number of times the cloud was present) was quite small (<0.25 compared to 0.7 globally). Our analysis suggested that the average AWPs obtained from this small sample were unrepresentative. We chose therefore to apply appropriate mean values to AWP for the stations in the affected region. Global, mean annual values for DN averages of AWP were obtained in the preliminary analysis. The values (applied to all seasons and times) used for AWP are 98% for Ns, 80% for As, 51% for Ac, and 46% for Hi.

The stations affected lie in an irregular region between latitudes 10N and 10S and between longitudes 95E and 175E (includes Indonesia and other islands) and in a much smaller region of South America from 0 to 10N and 55 to 60W. StaIDs for the 155 stations affected are listed in **Appendix B**. Ten stations were added to a preliminary list of 145 stations after completion of Categories 2–14.

These "bogus" values of AWP appear in the Dy, Nt and DN avgs in Category 5 for these stations. In Categories 31–42 a "-1" appears in the NC variable. Interannual and diurnal variations of middle or high cloud amounts for these stations will be due solely to variations of frequency.

5.2. Minimum Observations, the Missing-Value Code, and the A-code

We did not impose a minimum number of observations to report averages for the individual synoptic hours, the day average, or the night average. This allows the user to aggregate the data in any manner. However, this also REQUIRES THE USER TO CHECK the sum of Nobs against a user-specified min, and to check an Amt for Mcode before using the data. (The amount of middle or high clouds may be "missing" even when Nobs>0 if AWP is unavailable, as discussed above.) The Acode is a convenient guide for evaluating DN averages if one accepts the mins applied in creating this archive.

6. HOW TO OBTAIN THE DATA

This documentation and the data described herein are available from:

Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Post Office Box 2008 Oak Ridge, TN 37831-6335, U.S.A. (http://cdiac.ornl.gov/epubs/ndp/ndp026d/ndp026d.html)

The following citation should be used for referencing this archive and/or this documentation report:

Hahn, C.J., and S.G. Warren, 2003: *Cloud Climatology for Land Stations Worldwide*, 1971–96. NDP-026D, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN.

(Email to authors: hahn@atmo.arizona.edu; sgw@atmos.washington.edu.)

ACKNOWLEDGMENTS

This work was supported by NSF Climate Dynamics (Geosystems Database Infrastructure Program), and NOAA Climate Change Data and Detection Program, under grants ATM-99-08699 and ATM-99-08700, and by a computing grant from NCAR.

REFERENCES

- Hahn, C.J., S.G. Warren, J. London, and R.L. Jenne, 1988: Climatological Data for Clouds Over the Globe from Surface Observations. NDP-026, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN. (Also available from Data Support Section, National Center for Atmospheric Research, Boulder, CO.)
- Hahn, C.J., S.G. Warren, and J. London, 1994: Climatological Data for Clouds Over the Globe from Surface Observations, 1982–1991: The Total Cloud Edition. NDP-026A, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN. (Also available from Data Support Section, National Center for Atmospheric Research, Boulder, CO.)
- Hahn, C.J., S.G. Warren and J. London, 1995: The effect of moonlight on observation of cloud cover at night, and application to cloud climatology. *J. Climate*, **8**, 1429–1446.
- Hahn, C.J., and S.G. Warren, 1999: Extended Edited Synoptic Cloud Reports from Ships and Land Stations Over the Globe, 1952–1996. NDP-026C, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN.
- Warren, S.G., C.J. Hahn, J. London, R.M. Chervin and R.L. Jenne, 1986 (W86): Global Distribution of Total Cloud Cover and Cloud Type Amounts over Land. NCAR Technical Note TN-273+STR, Boulder, CO, 29 pp. + 200 maps (also DOE/ER/60085-H1).
- Warren, S.G., J. London and C.J.Hahn, 1991: Cloud Hole Over the United States? Bull. Amer. Meteor. Soc., 72, 237–238.
- World Meteorological Organization, 1988: Weather Reporting/Messages Meteorologiques, Volume A, Stations. (WMO Publ. No. 9), WMO, Geneva.
- World Meteorological Organization, 1988: *Manual on Codes, Volume 1*. (WMO Publ. No. 306), WMO, Geneva.

Symbol	Meaning	Codes#
N	total cloud cover	0-8 oktas 9= sky obscured
Nh	lower* cloud amount	0-8 oktas
h	lower* cloud base height	0-9
CL	low cloud type	0-9
CM	middle cloud type	0-9
CH	high cloud type	0-9
WW	present weather	00-99
Ix	present weather indicator	1-6

TABLE 1. CLOUD INFORMATION CONTAINED IN SYNOPTIC WEATHER REPORTS^

^ Reports are made 8 times per day: 00, 03, 06, 09, 12, 15, 18, 21 GMT. # Oktas are eights of sky cover, with "0" meaning completely clear sky and "8" meaning completely overcast sky.

Any category for which information is lacking is coded as "/".

* The "lower" cloud is the middle level if there are no low clouds.

TABLE 2. CLOUD TYPE AND WEATHER TYPE DEFINITIONS USED

Level	Shorthand notation	Meaning	Extende Synoptic codes codes
	Тс	total cloud cover	N = 0-9 0-8
	Cr	completely clear sky	N = 0
	Ppt D R S Ts	precipitation drizzle rain snow thunderstorm or shower	ww= 50-75,77,79,80-99 50-59 60-69 70-75,77,79 80-99
Low	Fo	sky obscured by fog	CL= / with N=9 and 11
	FO	sky obscured by rog	/ with N=9 and ww=10-12,40-49
	St Sc Cu Cb	stratus stratocumulus cumulus cumulonimbus	6,7 4,5,8 1,2 3,9,
	LoL	Fo + St + Sc + Cu + Cb	or N=9 with ww=Ts 10
Mid	Ns	nimbostratus	CM= 2,7, or N=9 with ww=DRS 12,11,1 / with ww=DRS and CL=0,7 10 / with ww= RS and CL=4-8 10
	As Ac MiL	altostratus altocumulus Ns + As + Ac	/ with ww= RS and CL=4-8 10 1; 2 if not DRS 3,4,5,6,8,9; 7 if not DRS
High	Ci or Hi	cirriform clouds	CH= 1-9

Used in the source data set, the EECRA (NDP-026C). Extended codes are shown where they differ from synoptic codes. In the extended code the value "-1", rather than "/", is used to signify missing information.

File Cat.		General contents* (for 5388 Stations)	Num of Types	-	Char per data_rec		2
	RDME	README (brief documentation)		812	80	80	0.07
1	STID	STATION ID, Lat, Lon, Elev & Number of Years Contributing		5,389	48	111	0.26
2	MACA	Mean Annual Cloud AMOUNT	13	70,057	46	121	3.2
3	MSCA	Mean Seasonal Cloud AMOUNT	12	258,672	46	121	11.9
4	MSCF	Mean Seasonal Cloud FREQUENCY	10	215,560	46	121	9.9
5	MSAW	Mean Seasonal AMT-WHEN-PRESENT	8	172,448	46	121	7.9
6	MSUU	Mean Seasonal Mid, Hi Cloud NOL	4	86,224	46	121	4.0
7	MSLH	Mean Seasonal Low Cloud Base H	GT 4	86,224	46	122	4.0
8	MMCA	Mean Monthly Cloud AMOUNT	10	646,680	46	121	29.7
9	MMCF	Mean Monthly Cloud FREQUENCY	10	646,680	46	121	29.7
10	MSAT	Mean Seasonal Cloud AMOUNT by synoptic hour	10	215,560	8*20	138	34.5
11	MSFT	Mean Seasonal Cloud FREQUENCY by synoptic hour	10	215,560	8*20	138	34.5
12	MSUT	Mean Seasonal Mid,Hi NOL by synoptic hour	4	86,224	8*20	138	13.8
13	MSHT	Mean Seasonal Low Base HEIGHT by synoptic hour	4	86,224	8*20	139	13.8
14	HARM	Harmonics: DIURNAL, ANNUAL	11	291,006	26	140	7.6
 15	SMCA	Seasonal Mean Cloud AMT, DJF	10	53,890	26*46	 126	64.4
16	SMCA	Seasonal Mean Cloud AMT, MAM		53,890		126	64.4
17	SMCA	Seasonal Mean Cloud AMT, JJA	10	53,890	26*46	126	64.4
18	SMCA	Seasonal Mean Cloud AMT, SON	10	53,890	26*46	126	64.4
19	SMCF	Seasonal Mean Cloud FQ, DJF	10	53 , 890	26*46	126	64.4
20	SMCF	Seasonal Mean Cloud FQ, MAM	10	53,890	26*46	126	64.4
21	SMCF	Seasonal Mean Cloud FQ, JJA	10	53,890	26*46	126	64.4
22	SMCF	Seasonal Mean Cloud FQ, SON	10	53,890	26*46	126	64.4
23	SMUU	Seasonal Mean Mid, Hi NOL, DJF	4	21,556	26*46	126	25.8
24	SMUU	Seasonal Mean Mid, Hi NOL, MAM	4	21 , 556	26*46	126	25.8
25	SMUU	Seasonal Mean Mid, Hi NOL, JJA	4	21 , 556	26*46	126	25.8
26	SMUU	Seasonal Mean Mid, Hi NOL, SON	4	21 , 556	26*46	126	25.8
27	SMHL	Seasonal Mean Base HEIGHT, DJF				127	25.8
28	SMHL	Seasonal Mean Base HEIGHT, MAM		,		127	25.8
29	SMHL	Seasonal Mean Base HEIGHT, JJA	4	21,556	26*46	127	25.8
30	SMHL	Seasonal Mean Base HEIGHT, SON	4	21,556	26*46	127	25.8
31 	MNYD	Monthly Day AMT, FQ, AWP JAN	11	59 , 279	26*34	162	52.4
42	MNYD	Monthly Day AMT, FQ, AWP DEC	11	59 , 279	26*34	162	52.4
	(indivio (indivio	erm averages) dual year-season avgs) dual year-month avgs)		3,082,508 603,568 711,348 3,397,424			205 722 629 1,555

TABLE 3. DATA FILE CATEGORIES FOR LAND STATION CLOUD ARCHIVE, 1971–1996

* The specific cloud types given within each category are listed in footnote to Table 4. Data formats are given in Table 6. Abbreviations used are defined in Table 7.

	Num of		Contontatt (File Cotorers news	Data
.at.*	SCDGS	numpers#	Contents** (File Category name abbreviation)	Format
STATI	ON ID		(STID)	
1	1	01001	LAND_STATION_ID, Lat,Lon, Elev, Yrs of data	111
MEAN-	ANNUAL	AVERAGES	(MACA)	
2	13	02001-13	Mean-Annual CLOUD AMOUNT & CLEAR-SKY FQ	121
			ANN:	
		1	Tc 5388 Stations	
		2	Cr	
			5388 Stations	
		3	Fo "	
		4 5	St " Sc "	
		6	Cu "	
		7	Cb "	
		8	Ns "	
		9 10	As " Ac "	
		10	Hi "	
		12	MiL "	
		13	LoL "	
 MEAN-	SEASONA	L AVERAGES		
3	48	03001-48	Mean-Seasonal Cloud AMOUNT (MSCA)	121
		1-12	DJF: 12 TYPES, 5388 Stations	
		13-24	MAM: 12 TYPES, 5388 Stations	
		25-36 37-48	JJA: 12 TYPES, 5388 Stations SON: 12 TYPES, 5388 Stations	
	4.0		·	1 0 1
4	40	$04001-40 \\ 1-10$	Mean-Seasonal Cloud FREQUENCY (MSCF) DJF: 10 TYPES, 5388 Stations	121
		11-20	MAM: 10 TYPES, 5388 Stations	
		21-30	JJA: 10 TYPES, 5388 Stations	
		31-40	SON: 10 TYPES, 5388 Stations	
5	32	05001-32	Mean-Seasonal AMOUNT-WHEN-PRESENT (MSAW)	121
		1-8	DJF: 8 TYPES, 5388 Stations	
		9-16 17-24	MAM: 8 TYPES, 5388 Stations JJA: 8 TYPES, 5388 Stations	
		25-32	SON: 8 TYPES, 5388 Stations	
6	16	06001-16		121
0	ΤQ	0000T-T0	4 SEASONS, 4 TYPES, 5388 Stations	ΤΖΤ
7	10	07001 16		100
7	16	07001-16	Mean-Seasonal BASE HEIGHTs Low Clouds (MSLH) 4 SEASONS, 4 TYPES, 5388 Stations	122
		AVERAGES		101
8	120	08001-120	Mean-Monthly Cloud AMOUNT (MMCA) 12 MONTHS (Jan-Dec), 10 TYPES, 5388 Stations	121
_				
9	120	09001-120	Mean-Monthly Cloud FREQUENCY (MMCF) 12 MONTHS, 10 TYPES, 5388 Stations	121
			12 MONTHS, 10 TYPES, 5388 Stations	
1EAN-	SEASONA	L by SYNOPI		
10	40	10001-40	Mean-Seasonal Cloud AMOUNT by Hour (MSAT)	138
			4 SEASONS, 10 TYPES, 5388 Stations, 8 Hrs	
11	40	11001-40	Mean-Seasonal Cloud FREQUENCY by Hour (MSFT)	138
			4 SEASONS, 10 TYPES, 5388 Stations, 8 Hrs	
12	16	12001-16	Mean-Seasonal NOL Upper Clouds by Hour (MSUT)	138
			4 SEASONS, 4 TYPES, 5388 Stations, 8 Hrs	
13	16	13001-16	Mean-Seasonal BASE HGT Low by Hour (MSHT)	139
-	-		4 SEASONS, 4 TYPES, 5388 Stations, 8 Hrs	

TABLE 4. DATA ORGANIZATION FOR LAND STATION CLOUD ARCHIVE, 1971–1996

TABLE 4 cont. DATA ORGANIZATION FOR LAND STATION CLOUD ARCHIVE, 1971–1996	TABLE 4 cont.	DATA	ORGANIZA	TION FOR	LAND ST	TATION CL	OUD ARCH	HVE, 1971–	-1996
---	---------------	------	----------	----------	---------	-----------	----------	------------	-------

File Cat.*	Num of SCDGs		Contents** (File Category name abbreviation)	Data Format
HARMOI	NIC ANA	VSES	(HARM)	
14	100	14001-100 1-10	Annual and Diurnal Cycles, First Harmonic ANNUAL CYCLE AMOUNT (DN) 10 TYPES, 5388 Stations	140
		11-20	ANNUAL CYCLE FREQUENCY (DN) 10 TYPES, 5388 Stations	140
		21-60	DIURNAL CYCLE AMOUNT 4 SEASONS, 10 TYPES, 5388 Stations	148
		61-100	DIURNAL CYCLE FREQUENCY 4 SEASONS, 10 TYPES, 5388 Stations	148
SEASO	NAL-MEAI	N AVERAGES		
			ch SEASON: 10 TYPES, 5388 Stations, 26 Yrs (SMCA)	
15 16	10 10	15001-10 16001-10	Seasonal-Mean CLOUD AMOUNT, DJF Seasonal-Mean CLOUD AMOUNT, MAM	126 126
17	10	17001-10		120
18	10	18001-10		126
		ea	ch SEASON: 10 TYPES, 5388 Stations, 26 Yrs (SMCF)	
19	10	19001-10	Seasonal-Mean CLOUD FREQUENCY, DJF	126
20	10	20001-10	Seasonal-Mean CLOUD FREQUENCY, MAM	126
21 22	10 10	21001-10 22001-10	Seasonal-Mean CLOUD FREQUENCY, JJA Seasonal-Mean CLOUD FREQUENCY, SON	126 126
		A A	ch SEASON: 4 TYPES, 5388 Stations, 26 Yrs (SMUU)	
23	4	23001-4	Seasonal-Mean NOL Upper Clouds, DJF	126
24	4	24001-4	Seasonal-Mean NOL Upper Clouds, MAM	126
25 26	4 4	25001-4	Seasonal-Mean NOL Upper Clouds, JJA	126 126
20	4	26001-4	Seasonal-Mean NOL Upper Clouds, SON	
27	4	ea 27001-4	ch SEASON: 4 TYPES, 5388 Stations, 26 Yrs (SMHL) Seasonal-Mean BASE HGT Low Clouds, DJF	127
28	4	28001-4	Seasonal-Mean BASE HGT Low Clouds, MAM	127
29	4	29001-4	Seasonal-Mean BASE HGT Low Clouds, JJA	127
30	4	30001-4	Seasonal-Mean BASE HGT Low Clouds, SON	127
MONTHI	LY-MEAN	AVERAGES,		
31	11	31001-11	each MONTH: 11 TYPES, 5388 Stations, 26 Yrs Monthly-Mean Daytime Cloud AMT,FQ,AWP, JAN	162
32	11	42001-11	Monthly-Mean Daytime CLOUD AMT, FQ, AWP, FEB	162
33	11	42001-11	Monthly-Mean Daytime CLOUD AMT, FQ, AWP, MAR	162
34	11	42001-11	Monthly-Mean Daytime CLOUD AMT, FQ, AWP, APR	162
35	11	42001-11	Monthly-Mean Daytime CLOUD AMT,FQ,AWP, MAY	162
36	11	42001-11	Monthly-Mean Daytime CLOUD AMT,FQ,AWP, JUN	162
37	11	42001-11	Monthly-Mean Daytime CLOUD AMT, FQ, AWP, JUL	162
38	11	42001-11	Monthly-Mean Daytime CLOUD AMT, FQ, AWP, AUG	162
39 40	11	42001-11	Monthly-Mean Daytime CLOUD AMT,FQ,AWP, SEP Monthly-Mean Daytime CLOUD AMT,FQ,AWP, OCT	162
40 41	11 11	42001-11 42001-11	Monthly-Mean Daytime CLOUD AMT,FQ,AWP, OCT Monthly-Mean Daytime CLOUD AMT,FQ,AWP, NOV	162 162
42	11	42001-11	Monthly-Mean Daytime CLOUD AMT, FQ, AWP, DEC	162
* Abbr	eviation	s and non-st	andard terms are defined in Table 7.	
			s encoded in header format 120 are:	
# Dala			er x 1000) + (sequence-number within file category).	
	r of dat	a groups in	a multi-group file is: hold lifier constant and increment RIGHT (lower) qualifier.	
** Not	all typ	es are given	in every file. The rule applied is:	
"13 t	ypes" me	ans Tc, Cr,	Fo, St, Sc, Cu, Cb, Ns, As, Ac, Hi, MiL, LoL.	
	ypes" me ypes" me		Fo, St, Sc, Cu, Cb, Ns, As, Ac, Hi, MiL, LoL. Fo, St, Sc, Cu, Cb, Ns, As, Ac, Hi.	
	ypes me ypes" me		Fo, St, Sc, Cu, Cb, NS, AS, Ac, Hi (for Amt).	
	or me	ans Cr,	Fo, St, Sc, Cu, Cb, Ns, As, Ac, Hi (for Fq).	
	ypes" me		St, Sc, Cu, Cb, Ns, As, Ac, Hi (for Awp).	
4 L	ypes" me or m		Ns, As, Ac, Hi (for NOL), St, Sc, Cu, Cb (for Hgt).	

Format	15	I5	I3	12	I3	I2	15	I3	I4
Parameter	SCDG	NSTA	SIZE	LO	TYPE	PCODE	YEAR	SN	FMT
Values	10001 42011	5388 (820) (1820)	0 (5) (10)	1=Land (2=Ocean) (3=Global)	1=Tc 2=Cr (3=Ppt) 11=Fo 12=St 13=Sc 14=Cu 15=Cb 21=Ns 22=As 23=Ac 30=Hi 20=MiL 10=LoL	0=AFW 1=AMT 2=FQ 3=AWP 4=NOL 5=HGT	(1951) 1971 1996 (5296) 7196	0=ANN 1=Jan 12=Dec 41=DJF 42=MAM 43=JJA 44=SON	111 121 122 126 127 138 139 140 148 162

TABLE 5. HEADER RECORD FORMAT (Format 120) AND CODES* USED FOR LAND STATION CLOUD CLIMATOLOGY ARCHIVE#

* Terms are defined in text or in Tables 2 & 7.
Values in parentheses are not used in this Land Station Archive but are included to show generalized header record to be used also in land and ocean gridded climatologies.

	Variables & Format	(Num of characters in record)	
80	Text: 812A80	(80)	FO
110	I5 I5 I3 I2 I3 I2 I5 I3 SCDG NSTA SIZE LO -9 -9 YR -9 H		F1,Header
111	I5 F6.2 F6.2 I5 I3 I3 I3 I3 StaID LAT LON ELEV nyl fyl lyl ny7 i		F1,Data
120	I5 I5 I3 I2 I3 I2 I5 I3 SCDG NSTA SIZE LO TYPE PCODE YR SN H	I4 (32) FMT	
121	I5 I7 F6.2 I7 F6.2 I7 F6.2 StaID NobD AvgDy NobN AvgNt NobDN AvgI StaID NSNd AvgDy NSNn AvgNt NSNdn AvgI	DN Acode	Data: F3-6,8-9 F2
122	I5 I7 F6.0 I7 F6.0 I7 F6.0 StaID NobD AvgDy NobN AvgNt NobDN AvgI		F7
126	26(I5 I7 F6.2 I7 F6.2 I7 F StalD NobD AvgDy NobN AvgNt NobDN 2		F15-26
127	26(I5 I7 F6.0 I7 F6.0 I7 I		F27-30
138	8(I5 I3 I6 F6.2)	(8x 20)	F10-12
139	StaID HR Nobs Avg 8(I5 I3 I6 F6.0)		F13
140	I5 F5.2 F5.2 F4.1 I3 F4.1 StaID PHASE AMP VAF NT AVG	(26)	F14
148	Staid PHASE AMP VAF NI AVG		
162	26(I5 I3 I4 F6.2 F6.2 F6.2 F StaID YR Nobs Amt Fq AWP N	I4) (26x 34) NC	F31-42

* Abbreviations are defined in text or in Table 7. The value "-9" in Format 110
means that the variable (used in Format 120) is not applicable.
File categories (F1-F42) are listed in Tables 3 & 4 and discussed in Section 4.

Term	Meaning and description					
 Acode	"Average code" for avgDN;					
	indicates relations between NobD, NobN and min:					
	Acode Nobs AvgDN					
	0 0 missing value entered					
	1 NobD+NobN < min avg all obs [except awp=amt/fq]					
	2 NobD≥min and NobN≥min (avgDy+avgNt)/2 [except awp=amt/fq and avg all obs for Hgt]					
	3 NobD+NobN≥min avg all obs [except awp=amt/fq]					
AFW	Amount, Frequency, Amount-When-Present.					
AMP	Absolute amplitude of harmonic (not normalized).					
Amt	Amount of cloud cover (actual).					
ANN	Annual.					
Avg	Average (of Amt, Fq, AWP, NOL or Hgt).					
AvgDy, AvgNt	Average of daytime or nighttime obs.					
AvgDN	Average over day and night ("daily" or "diurnal" average).					
AWP	Amount-When-Present.					
B5c	One of 1820 grid boxes distributed over the globe such that t					
	dimensions (lat x lon) of the boxes are 5x5 deg between 50N 50S, 5x10 deg for lats 50-70, 5x20 deg for lats 70-80, 5x40 for lats 80-85, and 5x360 deg for lats 85-90. The boxes are numbered east-to-west (beginning at the Greenwich Meridian) north-to-south.					
Cat.	Category.					
D, Dy	Abbreviation or suffix meaning "daytime".					
day	Refers to either the full 24-hour day or to "daytime" (q.v.) depending on context.					
daytime	Local time 06-18. Abbreviations used are Dy and D.					
DJF	December, January, February.					
EECRA	Extended Edited Cloud Report Archive (Hahn & Warren, 1999).					
EECR	A report in the EECRA.					
ELEV	Station elevation in meters.					
FMT	Data format number (see Table 6).					
Fq	Frequency of occurrence (actual).					
GMT	Greenwich Mean Time.					
Hgt	Low cloud base height (given in meters).					
HR	Hour. (00, 03, 06, 09, 12, 15, 18, 21 GMT)					
HOBS	Number of obs with cloud information for the high level.					
JJA	June, July, August.					
Lat	Latitude (-90 to 90 degrees North).					
Lon	Longitude (0 to 360 degrees East).					
light obs	Obs that satisfy the illuminance criterion of Hahn et al.(19					
LOBS	Number of obs with cloud information for low level.					
LoL	Sum of all clouds in the low level.					
Low	Low level cloud types (Fo, St, Sc, Cu, Cb).					
LT	Local time; determined from Lon in File Cat. 1.					

TABLE 7. GLOSSARY OF TERMS AND ABBREVIATIONS USED

TABLE 7 cont. GLOSSARY OF TERMS AND ABBREVIATIONS USED

Term	Meaning and description
MAM	March, April, May.
Mcode	Missing-value code (q.v.).
mean seasonal	Average over several years for a season.
Mid	Middle level cloud types (Ns, As, Ac).
MiL	Sum of all clouds in the middle level (if none missing).
min	Minimum number of obs used for averaging or reporting.
mina	<pre>= minimum NC required for computing amts for Hi or Mid clouds = min * Fq * 0.6.</pre>
missing-value code	The integer -90000 (-900 for hgt and harmonic parameters); put in data record where no legitimate value is computed.
mns	Months. (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec)
MOBS	Number of obs with cloud information for middle level.
Ν	 Number (of obs, etc.); used with other abbreviations. Used as suffix for "night" (as in "NobN"). Symbol for total cloud cover in Synoptic Code.)
NC	Number of obs with cloud type present and amount computable.
night(time)	Local time 18-06. Abbreviations used are Nt and N.
Nobs	Number of observations; generic for LOBS, MOBS, HOBS, NTy, NC.
NOL	Non-overlapped amount; the amount of a middle or high cloud visible from below.
NSN	Number of seasons contributing to the annual average.
NSTA	Number of land stations for which data are given (5388).
Nt	Abbreviation or suffix for "nighttime" (distinct from NT).
NT	Number of HRs used (4 or 8) for diurnal harmonic analysis or number of months used (12) for annual harmonic analysis.
NTy	Number of times a cloud type was reported present.
Num	Number.
obs	Cloud reports or observations.
PC	Pcode (q.v.).
2code	Parameter code: 0=AFW, 1=Amt, 2=Fq, 3=AWP, 4=NOL, 5=Hgt.
PHASE	<pre>Phase of first harmonic (time of maximum). Diurnal: 0-24 hours mean solar time of station longitude; when indeterminate (AMP=0), value was set to "-899". Annual: month (0.5 to 12.4 [1.0 = middle of January, etc.]; 0 if AMP=0).</pre>
SCDG	Station Cloud Data Group number. Aid in identifying data.
SDC	Station data code. See text for File Cat. 1 (Section 4.1) and Appendix A4.
seasonal mean	Average for an individual year for a particular season.
SN	Season or month indicator in header record or file names.
SON	September, October, November.
StaID	Station identification number (5 digits) assigned by WMO.
upper cloud	Clouds in middle or high levels.
/AF	Percent variance accounted for by the first harmonic.
MMO	World Meteorological Organization.
YEAR, YR	Year(s) that apply to data group. Coded as 19yr or as yfyl for multi-year averages where yf=yr of the first year and yl=yr of the last year of the period analyzed. (For example, "7196" means 1971 through 1996.)

TABLE 8. EXAMPLES OF CONTENTS OF DATA FILES

Example File_name		* and sa NSta sz							Comments
a) 01_STID	1001 01001 62700 98851	5388 0 7093 3 1670 5 612 1	5133 3343 3	926 3603	-9 111 71 96 80 82 71 96	2 81 9	91 0	46 629 792	first Africa last
) 02_MACA.tc	2001 21749	5388 0 3	1 1 1 7472	L 7196 3	00 121 7727	3	7599	2	ann
e) 03_MSCA.41.tc	3001 21749	5388 0 18	1 1 1 6667	17196 2	41 121 4375	20	6437	1	djf
1) 03_MSCA.42.tc	3013 21749	5388 0 475	1 1 1 7326	1 7196 497	42 121 7669	972	7497	2	mam
e) 03_MSCA.43.tc	3025 21749	5388 0 2446	1 1 1 7693	1 7196 2525	43 121 7852	4971	7772	2	jja
<pre>5) 03_MSCA.44.tc</pre>	3037 21749	5388 0 2357	1 1 1 7396	1 7196 911	44 121 7661	3268	7528	2	son
g) 03_MSCA.41.low	3003 15235	5388 0 6676	1 12 1 257	l 7196 1941	41 121 84	8617	170	2	amt_St
n) 04_MSCF.41.low	4003 15235	5388 0 6676	1 12 2 304	2 7196 1941	41 121 93	8617	198	2	fq_St
) 05_MSAW.41.low	5001 15235	5388 0 203	1 12 3 8454	3 7196 18	41 121 9028	221	8588	3	awp_St
) 04_MSCF.43.mh	4027 30692 4028	5388 0 8428 5388 0	247	4832	43 121 321 43 121	13260	284	2	fq_Ns fq_As
	30692 4029	6787 5388 0	417 1 23 2	3948 2 7196	436 43 121	10735	426		fq_Ac
	30692 4030 30692	6787 5388 0 5903	2929 1 30 2 6353	3948 2 7196 3351	3873 43 121 6121	10735 9254	3401 6237		fq_Hi
) 03_MSCA.41.lol	3012 21749 62840 89065	5388 0 18 1545 644	1 10 1 2777 176 4274	1 7196 2 168 585	41 121 0 104 3784	20 1713 1229	2499 140 4029	2	sum_low
.) 05_MSAW.41.mh	5008 97760 97900	5388 0 976 1132	1 30 3 4600 4122	3 7196 83 311	41 121 4600 3969	1059 1443	4600 4052		bogus_a *App.B
n) 06_MSUU.42	6005 46734 89544	5388 0 7852 367	1 21 4 24 722	1 7196 2706 3	42 121 22 2917	10558 370	23 740		nol_Ns
	6006 46734 89544	7852 367	107 1454	2706 3	42 121 104 2917	10558 370	105 1466		nol_As
	6007 46734 89544		647	17196 2706 3	590	10558 370	619 1196		nol_Ac
	6008 46734 89544	5388 0 7845 366	1 30 4 212 1492	1 7196 2702 3		10547 369	167 1490		nol_Hi
) 07_MSLH.43	7009 21749 98851	5388 0 583 35	1 12 5 299 533	5 7196 606 17	43 122 321 472	1189 52	310 513	2	hgt_St
	7010 21749 98851	5388 0 795 137	1 13 5 501 652	5 7196 656 54	43 122 510 583	1451 191	505 632		hgt_Sc
		5388 0 127 3811				162 5331	798 516	3	hgt_Cu
		5388 0 112				209	436		hgt_Cb

cont.

Example File_name	Header* and sample Data^ Records *SCDG NSta sz lo Ty PC YR SN FMT	Comments
o) 11_MSFT.44.cr	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 hrs 8 hrs
p) 14_HARM.aa.tc	14001 5388 0 1 1 1 7196 0 140 72274 1186 139 12 12 386 72469 330 644 696 12 526 72793 155 1235 691 12 693 89544 -900 -900-900 0-900	annual cycle Tucson Denver Seattle Mcode
q) 14_HARM.df.44.cr	14091 5388 0 1 2 2 7196 44 148 72469 212 1406 738 4 169 84782 1462 3066 770 8 324	diurnal cycle 4 hrs 8 hrs
r) 16_SMCA.42.cu	16005 5388 0 1 14 1 7196 42 126 94248 64 742 0-90000 64 742 3	1971
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1975
	94248 160 1305 47 346 207 825 2 94248 169 976 52 312 221 644 2 94248 159 1164 45 278 204 721 2 94248 161 683 36 312 197 498 2 94248 158 578 52 96 210 337 2	1980
	94248 151 745 41 183 192 464 2 94248 137 940 30 0 167 771 3 94248 170 618 35 36 205 327 2 94248 169 703 45 139 214 421 2 94248 150 767 43 291 193 529 2	1985
	94248 350 1450 133 893 483 1171 2 94248 286 1010 107 432 393 721 2 94248 357 886 140 286 497 586 2 94248 351 1068 139 279 490 674 2 94248 359 912 141 204 500 558 2	1990
	942483596091311534903812942483387581383444765512942483614361812215423292	1995
s) 31_MNYD.01.ac	31010 5388 0 1 23 0 7196 1 162	
	01035 77 2 0 0-90000 0 01035 78 19-90000 1579-90000 0 01035 79 29 453 1034 4375 2	fq=0 NTy=3,NC=0
	54511 78 121 592 1983 2983 -2 54511 79 116 334 1121 2983 -2	China_70s
	54511 80 118 487 1780 2738 21 54511 81 117 687 2393 2870 27	China_80s
	97900 79 103 2377 4660 5100 -1 97900 80 104 3237 6346 5100 -1	bogus_awp
t) 42_MNYD.12.hi	42011 5388 0 1 30 0 7196 12 162 72290 71 49 2022 4490 4504 18	
	72290 92 52 1949 5385 3620 22 72290 93 57 2611 6140 4252 33 72290 94 49 1738 3878 4482 17 72290 95 96 2231 4583 4867 43 72290 96 0-90000-90000 0	USA_1996

 Table 8 cont.
 Examples of Contents of Data Files

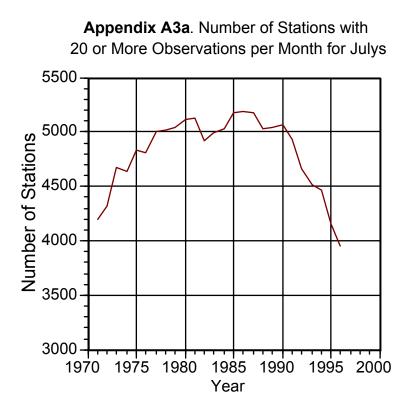
^ Only 1 to 3 station data records are shown in any sample data group.

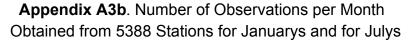
APPENDIX A. NUMBERS OF STATIONS AND OBSERVATIONS USED

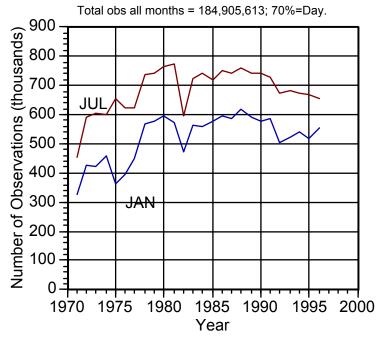
Appendix A1. Number of Stations from EECRA with 20 or More Reports					
Containing Cloud Type Data for Specified Number of Years					
for January or July 1971–1996					

Num Yrs:	0	1-2	3-5	6-10	11-15	16-20	21-25	26	
									Total
Num Sta:	1680	1220	930	1235	849	1127	1906	2639	11,586

Station ID Number Range*	Region	Number of Stations
Onnnn and 1nnnn	Europe#	1190
2nnnn and 3nnnn	Soviet Union (former)	1558
4nnnn	Asia##	507
5nnnn	China	586
6nnnn	Africa	452
7nnnn	North & Central America	498
80000 to 88962	South America	268
88963 to 89999	Antarctica	29
94100 to 94999	Australia	74
91000 to 98999**	SW Pacific Islands	226
01001 to 98851	TOTAL	5388


Appendix A2. REGIONAL DISTRIBUTION OF CONTRIBUTING STATIONS


 Synoptic weather stations are assigned (by WMO) 5-digit identification numbers ranging from 01001 to 98999.
 Each country is assigned a specific range of numbers.


Excluding former Soviet Union.

Excluding former Soviet Union and China.

** Excluding Australia.

		011 0/11		50)		
SDC*		-2	-1	0	1	2
Numumber of	Stations**	102	14	114	105	5053
* SDC meaning	J:					
1 either 0 neither -1 either -2 both where "Y" m	Jan and Jul ha Jan or Jul ha Jan nor Jul ha Jan or Jul ha Jan and Jul ha means: at least ans: NobDy/NobN	s "Y" s "Y" s "Y" ve "Y" 15 yrs	and R < (, R unspect and R > (and R > (6, cified, 6, 6,	0 obs,	
** All statio	ons with SDC <	1 are 1	located so	outh of	30 deg 1	Ν.

Appendix A4. NUMBER OF STATIONS WITH SPECIFIED STATION DATA CODE (SDC)

APPENDIX B

48077	48096	48108	48110	48112	48300	48303	48325	48327	48328
48330	48331	48351	48352	48353	48354	48356	48357	48375	48376
48377	48378	48379	48381	48383	48400	48403	48405	48407	48425
48426	48430	48431	48432	48450	48455	48456	48459	48460	48462
48475	48477	48480	48500	48501	48517	48532	48550	48551	48552
48564	48565	48567	48568	48569	48580	48583	48601	48615	48620
48647	48657	48665	48698	48917	59995	81200	81202	81225	81250
81251	81253	91203	91212	91217	91317	91324	91334	91348	91353
91356	91366	91367	91371	91376	91408	91413	91425	91434	94044
94085	96001	96009	96011	96015	96035	96073	96075	96091	96109
96145	96147	96163	96171	96179	96221	96237	96249	96253	96295*
96413	96421	96441	96449	96471	96491	96581	96633	96685	96743*
96747*	96797*	96805*	96839	96925	96933	97008	97016	97048	97072
97086	97096	97146	97180	97230	97260	97300	97340	97388*	97390*
97395*	97406	97430	97502	97530	97560	97630	97690	97698	97724
97748	97760	97900*	97980*	98618					

155 STATIONS $^{\#}$ FOR WHICH BOGUS $^{\wedge}$ AMOUNT-WHEN-PRESENT WAS USED FOR MIDDLE AND HIGH CLOUDS

The stations affected lie in an irregular region between latitudes 10N and 10S and between longitudes 95E and 175E (includes Indonesia and other islands) and in a much smaller region of South America from 0 to 10N and 55 to 60W.

^ The values used for AWP are 98% for Ns, 80% for As, 51% for Ac, and 46% for Hi.

* Added to a preliminary list of 145 stations after completion of Files 2-14.

FILE	E NAMES, NDF	ON CLOUD ARCHIVE 2-026D 2 File Categories		08067-70 08071 08072-76 08077-80	1013076 253269 1266345 1013076	08_MMCA.07.mh 08_MMCA.08.tc 08_MMCA.08.low 08_MMCA.08.mh
SCDGs	bytes	File_Name		08081	253269	08_MMCA.09.tc
				08082-86 08087-90	1266345 1013076	08_MMCA.09.low 08_MMCA.09.mh
01001	48164	README		08091	253269	08_MMCA.10.tc
01001	264045	01_STID		08092-96	1266345	08_MMCA.10.low
02001 02002	253269 253269	02_MACA.tc 02_MACA.cr		08097-100 08101	1013076 253269	08_MMCA.10.mh 08_MMCA.11.tc
02003-07	1266345	02_MACA.low		08102-106	1266345	08_MMCA.11.low
02008-11 02012	1013076 253269	02_MACA.mh 02_MACA.mil		08107-110 08111	1013076 253269	08_MMCA.11.mh 08_MMCA.12.tc
02013	253269	02_MACA.lol		08112-116	1266345	08_MMCA.12.low
03001	253269	03_MSCA.41.tc		08117-120	1013076	08_MMCA.12.mh
03002-06 03007-10	1266345 1013076	03_MSCA.41.low 03_MSCA.41.mh		09001 09002-06	253269 1266345	09_MMCF.01.cr 09_MMCF.01.low
03011	253269	03_MSCA.41.mil		09002-00	1013076	09_MMCF.01.mh
03012	253269	03_MSCA.41.101		09011	253269	09_MMCF.02.cr
03013 03014-18	253269 1266345	03_MSCA.42.tc 03_MSCA.42.low		09012-16 09017-20	1266345 1013076	09_MMCF.02.low 09_MMCF.02.mh
03019-22	1013076	03_MSCA.42.mh		09021	253269	09_MMCF.03.cr
03023 03024	253269 253269	03_MSCA.42.mil 03_MSCA.42.lol		09022-26 09027-30	1266345 1013076	09_MMCF.03.low 09_MMCF.03.mh
03025	253269	03_MSCA.43.tc		09031	253269	09_MMCF.04.cr
03026-30 03031-34	1266345 1013076	03_MSCA.43.low 03_MSCA.43.mh		09032-36 09037-40	1266345 1013076	09_MMCF.04.low 09_MMCF.04.mh
03035	253269	03_MSCA.43.mil		09041	253269	09_MMCF.05.cr
03035 03037	253269 253269	03_MSCA.43.1o1 03_MSCA.44.tc		09042-46 09047-50	1266345 1013076	09_MMCF.05.low 09_MMCF.05.mh
03038-42	1266345	03_MSCA.44.1ow		09051	253269	09_MMCF.06.cr
03043-46 03047	1013076 253269	03_MSCA.44.mh 03_MSCA.44.mil		09052-56 09057-60	1266345 1013076	09_MMCF.06.low 09_MMCF.06.mh
03048	253269	03_MSCA.44.101		09061	253269	09_MMCF.07.cr
04001	253269	04_MSCF.41.cr		09062-66 09067-70	1266345 1013076	09_MMCF.07.low 09_MMCF.07.mh
04002-06 04007-10	1266345 1013076	04_MSCF.41.low 04_MSCF.41.mh		09071	253269	09_MMCF.08.cr
04011	253269	04_MSCF.41.mm 04_MSCF.42.cr		09072-76 09077-80	1266345 1013076	09_MMCF.08.low 09_MMCF.08.mh
04012-16	1266345	04_MSCF.42.low		09081	253269	09_MMCF.09.cr
04017-20 04021	1013076 253269	04_MSCF.42.mh 04_MSCF.43.cr		09082-86	1266345	09_MMCF.09.low
04022-26	1266345	04_MSCF.43.low		09087-90 09091	1013076 253269	09_MMCF.09.mh 09_MMCF.10.cr
04027-30 04031	1013076 253269	04_MSCF.43.mh 04_MSCF.44.cr		09092-96	1266345	09_MMCF.10.low
04032-36	1266345	04_MSCF.44.low		09097-100 09101	253269	09_MMCF.10.mh 09_MMCF.11.cr
04037-40	1013076	04_MSCF.44.mh		09102-106	1266345	09_MMCF.11.low
05001-04 05005-08	1013076 1013076	05_MSAW.41.low 05_MSAW.41.mh		09107-110 09111	1013076 253269	09_MMCF.11.mh 09_MMCF.12.cr
05009-12	1013076	05_MSAW.42.low		09112-116	1266345	09_MMCF.12.low
05013-16 05017-20	1013076 1013076	05_MSAW.42.mh 05_MSAW.43.low		09117-120	1013076	09_MMCF.12.mh
05021-24	1013076	05_MSAW.43.mh		10001 10002-06	905217 4526085	10_MSAT.41.tc 10_MSAT.41.low
05025-28 05029-32	1013076 1013076	05_MSAW.44.low 05_MSAW.44.mh		10007-10	3620868	10_MSAT.41.mh
06001-04	1013076	06_MSUU.41		10011 10012-16	905217 4526085	10_MSAT.42.tc 10_MSAT.42.low
06005-08	1013076	06_MSUU.42		10017-20	3620868	10_MSAT.42.mh
06009-12 06013-16	1013076 1013076	06_MSUU.43 06_MSUU.44		10021 10022-26	905217 4526085	10_MSAT.43.tc 10_MSAT.43.low
07001-04	1013076	07_MSLH.41		10027-30	3620868	10_MSAT.43.mh
07005-08	1013076	07_MSLH.42		10031 10032-36	905217 4526085	10_MSAT.44.tc 10_MSAT.44.low
07009-12 07013-16	1013076 1013076	07_MSLH.43 07_MSLH.44		10032-30	3620868	10_MSAT.44.mh
08001	253269	08_MMCA.01.tc		11001	905217	11_MSFT.41.cr
08002-06	1266345	08_MMCA.01.low		11002-06 11007-10	4526085	11_MSFT.41.low
08007-10 08011	1013076 253269	08_MMCA.01.mh 08_MMCA.02.tc		11011	3620868 905217	11_MSFT.41.mh 11_MSFT.42.cr
08012-16	1266345	08_MMCA.02.low		11012-16	4526085	11_MSFT.42.low
08017-20 08021	1013076 253269	08_MMCA.02.mh 08_MMCA.03.tc		11017-20 11021	3620868 905217	11_MSFT.42.mh 11_MSFT.43.cr
08022-26	1266345	08_MMCA.03.1ow		11022-26	4526085	11_MSFT.43.low
08027-30	1013076	08_MMCA.03.mh		11027-30 11031	3620868 905217	11_MSFT.43.mh 11_MSFT.44.cr
08031 08032-36	253269 1266345	08_MMCA.04.tc 08_MMCA.04.low		11032-36	4526085	11_MSFT.44.low
08037-40	1013076	08_MMCA.04.mh		11037-40	3620868	11_MSFT.44.mh
08041 08042-46	253269 1266345	08_MMCA.05.tc 08_MMCA.05.low		12001-04	3620868	12_MSUT.41
08047-50	1013076	08_MMCA.05.mh		12005-08 12009-12	3620868 3620868	12_MSUT.42 12_MSUT.43
08051 08052-56	253269 1266345	08_MMCA.06.tc 08_MMCA.06.low		12013-16	3620868	12_MSUT.44
08057-60	1013076	08_MMCA.06.mh		13001-04	3620868	13_MSHT.41
08061 08062-66	253269 1266345	08_MMCA.07.tc 08_MMCA.07.low		13005-08 13009-12	3620868 3620868	13_MSHT.42 13_MSHT.43
			22			

			20002	6584169	20_SMCF.42.fo
13013-16	3620868	13_MSHT.44	20003 20004	6584169 6584169	20_SMCF.42.st 20_SMCF.42.sc
14001	145509	14_HARM.aa.tc	20005	6584169	20_SMCF.42.cu
14002-06 14007-10	727545 582036	14_HARM.aa.low 14 HARM.aa.mh	20006	6584169	20_SMCF.42.cb
14007-10	145509	14_HARM.aa.nui 14 HARM.af.cr	20007 20008	6584169 6584169	20_SMCF.42.ns 20 SMCF.42.as
14012-16	727545	14_HARM.af.low	20008	6584169	20_SMCF.42.as 20_SMCF.42.ac
14017-20	582036	14_HARM.af.mh	20010	6584169	20_SMCF.42.hi
14021 14022-26	145509 727545	14_HARM.da.41.tc 14_HARM.da.41.low	21001	6584169	21_SMCF.43.cr
14027-30	582036	14_HARM.da.41.mh	21002	6584169	21_SMCF.43.fo
14031	145509	14_HARM.da.42.tc	21003	6584169	21_SMCF.43.st 21 SMCF.43.sc
14032-36	727545	14_HARM.da.42.low	21004 21005	6584169 6584169	21_SMCF.43.sc 21_SMCF.43.cu
14037-40 14041	582036 145509	14_HARM.da.42.mh 14_HARM.da.43.tc	21006	6584169	21_SMCF.43.cb
14042-46	727545	14_HARM.da.43.low	21007	6584169	21_SMCF.43.ns
14047-50	582036	14_HARM.da.43.mh	21008 21009	6584169 6584169	21_SMCF.43.as 21_SMCF.43.ac
14051 14052-56	145509 727545	14_HARM.da.44.tc 14_HARM.da.44.low	21000	6584169	21_SMCF.43.hi
14057-60	582036	14_HARM.da.44.mh	22001	6584169	_ 22_SMCF.44.cr
14061	145509	14_HARM.df.41.cr	22002	6584169	22_SMCF.44.fo
14062-66 14067-70	727545 582036	14_HARM.df.41.low 14_HARM.df.41.mh	22003	6584169	22_SMCF.44.st
14071	145509	14_HARM.df.42.cr	22004 22005	6584169 6584169	22_SMCF.44.sc 22_SMCF.44.cu
14072-76	727545	14_HARM.df.42.low	22005	6584169	22_SMCF.44.cb
14077-80	582036	14_HARM.df.42.mh	22007	6584169	22_SMCF.44.ns
14081 14082-86	145509 727545	14_HARM.df.43.cr 14_HARM.df.43.low	22008	6584169	22_SMCF.44.as
14087-90	582036	14_HARM.df.43.mh	22009 22010	6584169 6584169	22_SMCF.44.ac 22_SMCF.44.hi
14091	145509	14_HARM.df.44.cr			—
14092-96 14097-100	727545 582036	14_HARM.df.44.low 14 HARM.df.44.mh	23001 23002	6584169	23_SMUU.41.ns 23_SMUU.41.as
14097-100	562050	14_HARM.01.44.001	23002	6584169 6584169	23_SMUU.41.as 23 SMUU.41.ac
15001	6584169	15_SMCA.41.tc	23004	6584169	23_SMUU.41.hi
15002 15003	6584169 6584169	15_SMCA.41.fo 15_SMCA.41.st	24001	6584169	24_SMUU.42.ns
15004	6584169	15_SMCA.41.sc	24002	6584169	24_SMUU.42.as
15005	6584169	15_SMCA.41.cu	24003	6584169	24_SMUU.42.ac
15006 15007	6584169 6584169	15_SMCA.41.cb 15_SMCA.41.ns	24004	6584169	24_SMUU.42.hi
15008	6584169	15_SMCA.41.as	25001 25002	6584169 6584169	25_SMUU.43.ns 25_SMUU.43.as
15009	6584169	15_SMCA.41.ac	25002	6584169	25_SMUU.43.ac
15010	6584169	15_SMCA.41.hi	25004	6584169	25_SMUU.43.hi
16001	6584169	16_SMCA.42.tc	26001	6584169	26_SMUU.44.ns
16002 16003	6584169 6584169	16_SMCA.42.fo 16_SMCA.42.st	26002	6584169	26_SMUU.44.as
16004	6584169	16_SMCA.42.sc	26003 26004	6584169 6584169	26_SMUU.44.ac 26_SMUU.44.hi
16005	6584169	16_SMCA.42.cu			
16006 16007	6584169 6584169	16_SMCA.42.cb 16_SMCA.42.ns	27001 27002	6584169 6584169	27_SMHL.41.st 27_SMHL.41.sc
16008	6584169	16 SMCA.42.as	27002	6584169	27_SMHL.41.cu
16009	6584169	16_SMCA.42.ac	27004	6584169	27_SMHL.41.cb
16010	6584169	16_SMCA.42.hi	28001	6584169	28_SMHL.42.st
17001	6584169	17_SMCA.43.tc	28002	6584169	28_SMHL.42.sc
17002 17003	6584169 6584169	17_SMCA.43.fo 17_SMCA.43.st	28003 28004	6584169 6584169	28_SMHL.42.cu 28_SMHL.42.cb
17004	6584169	17_SMCA.43.sc	29001	6584169	29 SMHL.43.st
17005	6584169	17_SMCA.43.cu	29001	6584169	29_SMHL.43.sc 29_SMHL.43.sc
17006 17007	6584169 6584169	17_SMCA.43.cb 17_SMCA.43.ns	29003	6584169	29_SMHL.43.cu
17008	6584169	17_SMCA.43.as	29004	6584169	29_SMHL.43.cb
17009	6584169	17_SMCA.43.ac	30001	6584169	30_SMHL.44.st
17010	6584169	17_SMCA.43.hi	30002 30003	6584169 6584169	30_SMHL.44.sc 30_SMHL.44.cu
18001	6584169	18_SMCA.44.tc	30004	6584169	30_SMHL.44.cb
18002 18003	6584169 6584169	18_SMCA.44.fo 18_SMCA.44.st			
18004	6584169	18_SMCA.44.sc	31001 31002	4903113 4903113	31_MNYD.01.tc 31_MNYD.01.cr
18005	6584169	18_SMCA.44.cu	31002	4903113	31_MNYD.01.fo
18006 18007	6584169 6584169	18_SMCA.44.cb 18_SMCA.44.ns	31004	4903113	31_MNYD.01.st
18008	6584169	18_SMCA.44.as	31005 31006	4903113 4903113	31_MNYD.01.sc 31 MNYD.01.cu
18009	6584169	18_SMCA.44.ac	31008	4903113	31_MNYD.01.cb
18010	6584169	18_SMCA.44.hi	31008	4903113	31_MNYD.01.ns
19001	6584169	19_SMCF.41.cr	31009	4903113	31_MNYD.01.as
19002	6584169	19_SMCF.41.fo	31010 31011	4903113 4903113	31_MNYD.01.ac 31_MNYD.01.hi
19003 19004	6584169 6584169	19_SMCF.41.st 19_SMCF.41.sc	32001	4903113	32_MNYD.02.tc
19005	6584169	19_SMCF.41.cu	32001	4903113	32_MNYD.02.cc
19006	6584169	19_SMCF.41.cb	32003	4903113	32_MNYD.02.fo
19007 19008	6584169 6584169	19_SMCF.41.ns 19_SMCF.41.as	32004 32005	4903113 4903113	32_MNYD.02.st 32_MNYD.02.sc
19009	6584169	19_SMCF.41.ac	32005	4903113	32_MNYD.02.sc 32_MNYD.02.cu
19010	6584169	19_SMCF.41.hi	32007	4903113	32_MNYD.02.cb
20001	6584169	20_SMCF.42.cr	32008	4903113	32_MNYD.02.ns
		2	4		

32009 32010 32011 33002 33003 33004 33005 33006 33007 33008 33009 33010 33011	4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113	32_MNYD.02.as 32_MNYD.02.ac 32_MNYD.02.hi 33_MNYD.03.tc 33_MNYD.03.cr 33_MNYD.03.st 33_MNYD.03.sc 33_MNYD.03.cu 33_MNYD.03.cb 33_MNYD.03.as 33_MNYD.03.as 33_MNYD.03.as 33_MNYD.03.ac
34001 34002 34003 34004 34005 34006 34007 34008 34009 34010 34010 35001 35001	4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113	34_MNYD.04.tc 34_MNYD.04.cr 34_MNYD.04.sc 34_MNYD.04.sc 34_MNYD.04.sc 34_MNYD.04.cu 34_MNYD.04.cb 34_MNYD.04.ns 34_MNYD.04.ac 34_MNYD.04.ac 34_MNYD.04.hi 35_MNYD.05.tc 35_MNYD.05.cr
35003 35004 35005 35006 35007 35008 35009 35010 35011 36001 36001 36002 36003	4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113	35_MNYD.05.fo 35_MNYD.05.st 35_MNYD.05.sc 35_MNYD.05.cb 35_MNYD.05.cb 35_MNYD.05.as 35_MNYD.05.as 35_MNYD.05.hi 36_MNYD.06.tc 36_MNYD.06.cr
36004 36005 36006 36007 36008 36009 36010 36011 37001 37001 37002 37003 37004	4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113	36_MNYD.06.st 36_MNYD.06.sc 36_MNYD.06.cu 36_MNYD.06.cb 36_MNYD.06.ns 36_MNYD.06.ac 36_MNYD.06.ac 36_MNYD.06.hi 37_MNYD.07.tc 37_MNYD.07.cr 37_MNYD.07.st
37005 37006 37007 37008 37009 37010 37011 38001 38002 38003 38004	4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113	37_MNYD.07.sc 37_MNYD.07.cu 37_MNYD.07.cb 37_MNYD.07.ns 37_MNYD.07.ac 37_MNYD.07.ac 37_MNYD.07.hi 38_MNYD.08.tc 38_MNYD.08.tc 38_MNYD.08.st
38005 38006 38007 38008 38010 38011 39001 39002 39003 39004 39005	4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113	38_MNYD.08.sc 38_MNYD.08.cu 38_MNYD.08.cb 38_MNYD.08.ns 38_MNYD.08.ac 38_MNYD.08.ac 38_MNYD.08.hi 39_MNYD.09.tc 39_MNYD.09.tc 39_MNYD.09.fo 39_MNYD.09.st 39_MNYD.09.sc
39006 39007 39008 39009 39010 39011 40001 40002 40003	4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113	39_MNYD.09.cu 39_MNYD.09.cb 39_MNYD.09.ns 39_MNYD.09.as 39_MNYD.09.ac 39_MNYD.09.hi 40_MNYD.10.tc 40_MNYD.10.cr 40_MNYD.10.fo

40004	4903113	40_MNYD.10.st
40005	4903113	40_MNYD.10.sc
40006	4903113	40_MNYD.10.cu
40007	4903113	40_MNYD.10.cb
40008	4903113	40_MNYD.10.ns
40009	4903113	40_MNYD.10.as
40010	4903113	40_MNYD.10.ac
40011	4903113	40_MNYD.10.hi
41001 41002 41003 41004 41005 41006 41007 41008 41009 410010 41011	4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113 4903113	41_MNYD.11.tc 41_MNYD.11.cr 41_MNYD.11.cr 41_MNYD.11.st 41_MNYD.11.sc 41_MNYD.11.cu 41_MNYD.11.cb 41_MNYD.11.ns 41_MNYD.11.as 41_MNYD.11.ac
42001	4903113	42_MNYD.12.tc
42002	4903113	42_MNYD.12.cr
42003	4903113	42_MNYD.12.fo
42004	4903113	42_MNYD.12.st
42005	4903113	42_MNYD.12.st
42006	4903113	42_MNYD.12.cu
42007	4903113	42_MNYD.12.cb
42008	4903113	42_MNYD.12.ns
42009	4903113	42_MNYD.12.as
42010	4903113	42_MNYD.12.ac
42011	4903113	42_MNYD.12.hi

SCDG bytes File_Name (Land-Station Cloud Archive, NDP-026D)