Complitation and Analysis of the

 Instantaneous Pischarge Record fothe conetodo River at Lees Ferry

\#USGS
 science for a changing world

http://pubs.water.usgs.gov/pp1677/

Computation and Analysis of the Instantaneous-Discharge Record for the Colorado River at Lees Ferry, ArizonaMay 8, 1921, through September 30, 2000

PROFESSIONAL PAPER 1677

Objectives

- Evaluation of the natural hydrologic variability in the Upper Basin as measured in the discharge of the Colorado River at Lees Ferry (42-year period from May 1921 to March 1963; only 10-15\% virgin flow depleted prior to 1963, mostly before 1921)
- Evaluation of the effects of the operation of Glen Canyon Dam on the discharge of the Colorado River in Grand Canyon National Park (37-year period from March 1963 through September 2000)
- Implications for sediment transport and storage in the reach between Lees Ferry and the Grand Canyon gaging station

Chief analyses

- Flow duration (with sediment transport implications)
- Sub-daily discharge variability
- Flood frequency

Main problem to overcome

Data were of differing precision during different time periods

- May 8, 1921 through June 12, 1921 not published
- June 13, 1921, through September 30, 1986 mean daily
- October 1, 1986, through May 31, 1998 30 minutes
- After June 1, 1998 15 minutes

Retrieve and compile digitally all raw data collected by the USGS at the Lees Ferry and Grand Canyon gaging stations

4 years of work
Lees Ferry - May 1921 through September 1986
35 boxes of data in the Federal Records Center
Grand Canyon - November 1922 through September 1986
-Construct a continuous record of instantaneous stage
-Enter staff gage data from May 8, 1921, through January 18, 1923
-Digitize strip-chart data from January 19, 1923, through September 30, 1986
-Enter digital-recorder data from February 2, 1967, through September 30, 1986
-Compute a continuous record of instantaneous discharge using the appropriate rating curves and shifts
-Quality control

Check and, if necessary, revise peak discharges of the largest pre-dam floods

Original value
$1921174,000 \mathrm{ft} / \mathrm{s}$
$1884210,000-250,000 \mathrm{fi} / \mathrm{s}$

1939 revision
$220,000 \mathrm{ft} 3 / \mathrm{s}$
$300,000 \mathrm{ft}^{3 / \mathrm{s}}$

This study
$170,000 \pm 20,000 \mathrm{ft} 3 / \mathrm{s}$

Largest flood within last 4,500 years occurred 1,200-1,600 years ago (O'Connor et al., 1994) ~ 300,000 ft³/s

EXPLANATION

- WATER-YEAR 1921-1922 DATA

RATING CURVE
RANGE OF UNCERTAINTY IN THE PEAK DISCHARGE OF THE 1884 FLOOD
RANGE OF UNCERTAINTY IN THE PEAK DISCHARGE OF THE 1921 FLOOD

Ice effects

Errors

Example: 11-11-52 daily mean Stage incorrectly recorded as 7.29' instead of 7.19'
+6.0\% discharge error

89 non-ice-effected days in the published daily mean discharge record were found to have errors in excess of 5%

Mean disagreement
= +0.055\%

The continuous record of instantaneous discharge

EXPLANATION

MAY 8, 1921 - SEPTEMBER 30, 2000, CONTINUOUS RECORD OF INSTANTANEOUS DISCHARGE

- PEAK DISCHARGE OF THE 1884 FLOOD

Flow duration

EXPLANATION

———PRE-DAM (May 8, 1921, through March 12, 1963)
POST-DAM (March 14, 1963, through September 30, 2000)

EXPLANATION

_ 1920s (May 8, 1921, through December 31, 1930)
.......... 1930s (January 1, 1931, through December 31, 1940)

- - 1940s (January 1, 1941, through December 31, 1950)
——--1950s-early 1960s (January 1, 1951, through March 12, 1963)
- POST-DAM (March 14, 1963, through September 30, 2000)

EXPLANATION

__ 1920s (May 8, 1921, through December 31, 1930)

- - 1930s (January 1, 1931, through December 31, 1940)

1940s (January 1, 1941, through December 31, 1950)

- - - 1950s-early 1960s (January 1, 1951, through March 12, 1963)
- $\cdot .$. POST-DAM (March 14, 1963, through September 30, 2000)

EXPLANATION

-_ 1960s (March 14, 1963, through December 31, 1970)

- - 1970s (January 1, 1971, through December 31, 1980)
......... 1980s (January 1, 1981, through December 31, 1990)
- - 1990s (January 1, 1991, through September 30, 2000)

PRE-DAM (May 8, 1921, through March 12, 1963)

EXPLANATION

——PRE-DAM ALL (May 9, 1921, through March 12, 1963)
—— - PRE-DAM JULY THROUGH OCTOBER (summer thunderstorm season) PRE-DAM NOVEMBER THROUGH JUNE

EXPLANATION

- PRE-DAM PARTIAL-DURATION FLOOD SERIES
\triangle POST-DAM PARTIAL-DURATION FLOOD SERIES
UPWARD EXTENSION OF PRE-DAM PARTIAL-DURATION FLOOD SERIES BASED ON THE PALEOFLOOD DATA COMPUTED FROM THE REVISED DISCHARGES AND ADJUSTED RETURN PERIODS FROM THIS STUDY

PRE-DAM

$1 \mathrm{yr}-50,000 \mathrm{ft} 3 / \mathrm{s}$
2 yrs - 85,000 ft³/s
$6 \mathrm{yrs}-120,000 \mathrm{ft}^{3} / \mathrm{s}$

POST-DAM

$1 \mathrm{yr}-29,500 \mathrm{ft} 3 / \mathrm{s}$
$2 \mathrm{yrs}-31,500 \mathrm{ft}^{3} / \mathrm{s}$
6 yrs $-52,800 \mathrm{ft}^{3} / \mathrm{s}$
PRE-DAM
20,000 ft³/s - 97 days
POST-DAM
20,000 ft³/s - 3.6 days

Fruipuration of sustained high flows

Conclusions --- pre-dam

- Substantial natural variability existed in discharge and in the daily range in discharge over decadal timescales prior to construction of the dam
- Median discharge $=7,980 \mathrm{ft}^{3} / \mathrm{s}$
- Median daily range in discharge $542=\mathrm{ft} 3 / \mathrm{s}$
- Wettest decade---1920s---median discharge $10,700 \mathrm{ft} 3 / \mathrm{s}$, median daily range in discharge $808 \mathrm{ft} 3 / \mathrm{s}$
- Driest decade---1930s---median discharge $6,720 \mathrm{ft} 3 / \mathrm{s}$, median daily range in discharge $516 \mathrm{ft} 3 / \mathrm{s}$
- Flows conducive to sand accumulation occurred 55.7\% of the time between 1921 and 1963, with the 1930s likely being the decade most dominated by sand accumulation
- Discharges in excess of $18,500 \mathrm{ft}^{3} / \mathrm{s}$ occurred only 25% of the time predam
- Daily ranges in discharge exceeded $10,000 \mathrm{ft} 3 / \mathrm{s}$ only during 1% of all pre-dam days and exceeded $30,000 \mathrm{ft} 3 / \mathrm{s}$ during 1 day every 3 years
- On average, floods with peak discharges of $50,000 \mathrm{ft}^{3} / \mathrm{s}$ occurred every year, floods with peak discharges of $85,000 \mathrm{ft}^{3} / \mathrm{s}$ occurred every 2 years, and floods with peak discharges of $120,000 \mathrm{ft}^{3} / \mathrm{s}$ occurred every 6 years

Conclusions --- post-dam

- Changes imposed on the hydrology by dam operations exceed anything in the quasi-natural pre-dam period of record; seasonality removed from both discharge and the daily range in discharge
- Median discharge -- $1960 \mathrm{~s}=9,490 \mathrm{ft}^{3} / \mathrm{s}--\mathrm{1} 990 \mathrm{~s}=13,500 \mathrm{ft}^{3} / \mathrm{s}$
- Dam operations have largely eliminated base flows; pre-dam minimum discharge $=483 \mathrm{ft}^{3} / \mathrm{s}$; pre-dam discharges $<5,000 \mathrm{ft}^{3} / \mathrm{s} 32.7 \%$ of the time
- Median daily range in discharge has increased by a factor of 15.8 relative to predam; post-dam median daily range ($8,580 \mathrm{ft} 3 / \mathrm{s}$) exceeds pre-dam median discharge ($7,980 \mathrm{ft}^{3} / \mathrm{s}$)
- Post-dam daily range in discharge exceeds pre-dam daily range in discharge except during 0.1% of all pre-dam days
- Flows conducive to sand accumulation have progressively disappeared; discharge exceeded $9,000 \mathrm{ft}^{3} / \mathrm{s}$--in 1960s, 52.7% of the time--in $1970 \mathrm{~s}, 62.2 \%$ of the time--in $1980 \mathrm{~s}, 75.5 \%$ of the time--in $1990 \mathrm{~s}, 82.6 \%$ of the time
- Dam operations have maintained the frequency of floods with peak discharges of $29,000 \mathrm{ft} 3 / \mathrm{s}$, have decreased the frequency of floods with larger peak discharges, and have greatly increased the frequency of "smaller" floods
- Pre-dam 2 -year flood $=85,000 \mathrm{ft}^{3} / \mathrm{s} ;$ post-dam 2 -year flood $=31,500 \mathrm{ft} 3 / \mathrm{s}$
- Recurrence interval of $20,000 \mathrm{ft}^{3} / \mathrm{s}$ flood -----97 days pre-dam, 3.6 days postdam (factor of 27 increase)
- Longest 4 periods of sustained high discharge all post-date the dam: 1984, 1997, 1983, 1985

More conclusions

- Largest flood in the 80-year period prior to 1963 would completely fill many arroyos
- Pre-dam floods with 6-year recurrence interval would deposit 4-5 m of sand in lower portions of arroyos
- Flood deposits are common up to stage of 1921 flood, some deposits 4,500 years old
- Flood deposits above stage of 1884 flood are rare; now have 4 likely occurrences of 1,2001,600 year old $\sim 300,000 \mathrm{ft}^{3} / \mathrm{s}$ flood (RM 2, $70.5,73,88)$

