

http://pubs.water.usgs.gov/pp1677/

Computation and Analysis of the Instantaneous-Discharge Record for the Colorado River at Lees Ferry, Arizona— May 8, 1921, through September 30, 2000

PROFESSIONAL PAPER 1677

Data downloadable from the temporary site:

Objectives

- Evaluation of the natural hydrologic variability in the Upper Basin as measured in the discharge of the Colorado River at Lees Ferry (42-year period from May 1921 to March 1963; only 10-15% virgin flow depleted prior to 1963, mostly before 1921)
- Evaluation of the effects of the operation of Glen Canyon Dam on the discharge of the Colorado River in Grand Canyon National Park (37-year period from March 1963 through September 2000)
- Implications for sediment transport and storage in the reach between Lees Ferry and the Grand Canyon gaging station

Chief analyses

- Flow duration (with sediment transport implications)
- Sub-daily discharge variability
- Flood frequency

Main problem to overcome

Data were of differing precision during different time periods

- May 8, 1921 through June 12, 1921 not published
- June 13, 1921, through September 30, 1986 mean daily
- October 1, 1986, through May 31, 1998
 30 minutes
- After June 1, 199815 minutes

Retrieve and compile digitally all raw data collected by the USGS at the Lees Ferry and Grand Canyon gaging stations

4 years of work

Lees Ferry - May 1921 through September 1986

35 boxes of data in the Federal Records Center

Grand Canyon - November 1922 through September 1986

- -Construct a continuous record of instantaneous stage
 - -Enter staff gage data from May 8, 1921, through January 18, 1923
 - -Digitize strip-chart data from January 19, 1923, through September 30, 1986
 - -Enter digital-recorder data from February 2, 1967, through September 30, 1986
- -Compute a continuous record of instantaneous discharge using the appropriate rating curves and shifts
- -Quality control

Check and, if necessary, revise peak discharges of the largest pre-dam floods

Original value 1921 174,000 ft³/s

1939 revision 220,000 ft³/s

This study 170,000<u>+</u>20,000 ft³/s

1884 210,000-250,000 ft³/s

300,000 ft³/s

210,000<u>+</u>30,000 ft³/s

Largest flood within last 4,500 years occurred 1,200-1,600 years ago (O'Connor et al., 1994) ~ 300,000 ft³/s

EXPLANATION

- O 1921-1923 DATA
- LINEAR AND NONLINEAR REGRESSIONS FIT TO THE 1921-1923 DATA ABOVE A STAGE OF 16 FEET

EXPLANATION

- O 1921-1962 DATA
- LINEAR AND NONLINEAR REGRESSIONS FIT TO ALL THE 1921-1962 DATA ABOVE A STAGE OF 15 FEET
- ---- LINEAR AND NONLINEAR REGRESSIONS FIT TO ONLY THE 1921-1922 DATA ABOVE A STAGE OF 15 FEET

EXPLANATION O WATER-YEAR 1921-1922 DATA ——RATING CURVE RANGE OF UNCERTAINTY IN THE PEAK DISCHARGE OF THE 1884 FLOOD RANGE OF UNCERTAINTY IN THE PEAK DISCHARGE OF THE 1904 FLOOR

Ice effects

Errors

Example: 11-11-52 daily mean Stage incorrectly recorded as 7.29' instead of 7.19'

+6.0% discharge error

89 non-ice-effected days in the published daily mean discharge record were found to have errors in excess of 5%

Mean disagreement = +0.055%

EXPLANATION

MAY 8, 1921 - SEPTEMBER 30, 2000, CONTINUOUS RECORD OF INSTANTANEOUS DISCHARGE
 PEAK DISCHARGE OF THE 1884 FLOOD

—— PRE-DAM (May 8, 1921, through March 12, 1963)
----- POST-DAM (March 14, 1963, through September 30, 2000)

EXPLANATION —— 1920s (May 8, 1921, through December 31, 1930) —— 1930s (January 1, 1931, through December 31, 1940) —— 1940s (January 1, 1941, through December 31, 1950) —— 1950s-early 1960s (January 1, 1951, through March 12, 1963) —— POST-DAM (March 14, 1963, through September 30, 2000)

Sub-daily discharge variability

——— PRE-DAM (May 8, 1921, through March 12, 1963) ———— POST-DAM (March 14, 1963, through September 30, 2000)

EXPLANATION —— 1920s (May 8, 1921, through December 31, 1930) —— - 1930s (January 1, 1931, through December 31, 1940) —— 1940s (January 1, 1941, through December 31, 1950) —— - 1950s-early 1960s (January 1, 1951, through March 12, 1963) —— POST-DAM (March 14, 1963, through September 30, 2000)

EXPLANATION

PRE-DAM MONTHLY MEDIAN DAILY RANGE IN DISCHARGE
PRE-DAM MONTHLY MINIMUM DAILY RANGE IN DISCHARGE

- □- - PRE-DAM MONTHLY MAXIMUM DAILY RANGE IN DISCHARGE

PRE-DAM ALL (May 9, 1921, through March 12, 1963)

- PRE-DAM JULY THROUGH OCTOBER (summer thunderstorm season)

··· PRE-DAM NOVEMBER THROUGH JUNE

EXPLANATION

- PRE-DAM PARTIAL-DURATION FLOOD SERIES
 - POST-DAM PARTIAL-DURATION FLOOD SERIES

UPWARD EXTENSION OF PRE-DAM PARTIAL-DURATION FLOOD SERIES BASED ON THE PALEOFLOOD DATA COMPUTED FROM THE REVISED DISCHARGES AND ADJUSTED RETURN PERIODS FROM THIS STUDY

PRE-DAM

1 yr - $50,000 \text{ ft}^3/\text{s}$

 $2 \text{ yrs} - 85,000 \text{ ft}^3/\text{s}$

6 yrs - 120,000 ft³/s

POST-DAM

1 yr - $29,500 \text{ ft}^3/\text{s}$

2 yrs - 31,500 ft³/s

6 yrs - 52,800 ft³/s

PRE-DAM 20,000 ft³/s - 97 days POST-DAM 20,000 ft³/s - 3.6 days

4 LONGEST
PERIODS OF
SUSTAINED
HIGH DISCHARGE
OCCURRED
AFTER CLOSURE
OF THE DAM

Conclusions --- pre-dam

- Substantial natural variability existed in discharge and in the daily range in discharge over decadal timescales prior to construction of the dam
- Median discharge = 7,980 ft³/s
- Median daily range in discharge 542 = ft³/s
- Wettest decade---1920s---median discharge 10,700 ft³/s, median daily range in discharge 808 ft³/s
- Driest decade---1930s---median discharge 6,720 ft³/s, median daily range in discharge 516 ft³/s
- Flows conducive to sand accumulation occurred 55.7% of the time between 1921 and 1963, with the 1930s likely being the decade most dominated by sand accumulation
- Discharges in excess of 18,500 ft³/s occurred only 25% of the time predam
- Daily ranges in discharge exceeded 10,000 ft³/s only during 1% of all pre-dam days and exceeded 30,000 ft³/s during 1 day every 3 years
- On average, floods with peak discharges of 50,000 ft³/s occurred every year, floods with peak discharges of 85,000 ft³/s occurred every 2 years, and floods with peak discharges of 120,000 ft³/s occurred every 6 years

Conclusions --- post-dam

- Changes imposed on the hydrology by dam operations exceed anything in the quasi-natural pre-dam period of record; seasonality removed from both discharge and the daily range in discharge
- Median discharge -- $1960s = 9,490 \text{ ft}^3/\text{s} --- 1990s = 13,500 \text{ ft}^3/\text{s}$
- Dam operations have largely eliminated base flows; pre-dam minimum discharge = 483 ft³/s; pre-dam discharges < 5,000 ft³/s 32.7% of the time
- Median daily range in discharge has increased by a factor of 15.8 relative to predam; post-dam median daily range (8,580 ft³/s) exceeds pre-dam median discharge (7,980 ft³/s)
- Post-dam daily range in discharge exceeds pre-dam daily range in discharge except during 0.1% of all pre-dam days
- Flows conducive to sand accumulation have progressively disappeared; discharge exceeded 9,000 ft³/s --in 1960s, 52.7% of the time--in 1970s,62.2% of the time--in 1980s, 75.5% of the time--in 1990s, 82.6% of the time
- Dam operations have maintained the frequency of floods with peak discharges of 29,000 ft3/s, have decreased the frequency of floods with larger peak discharges, and have greatly increased the frequency of "smaller" floods
- Pre-dam 2-year flood = $85,000 \text{ ft}^3/\text{s}$; post-dam 2-year flood = $31,500 \text{ ft}^3/\text{s}$
- Recurrence interval of 20,000 ft³/s flood ----97 days pre-dam, 3.6 days post-dam (factor of 27 increase)
- Longest 4 periods of sustained high discharge all post-date the dam: 1984, 1997, 1983, 1985

More conclusions

- Largest flood in the 80-year period prior to 1963 would completely fill many arroyos
- Pre-dam floods with 6-year recurrence interval would deposit 4-5 m of sand in lower portions of arroyos
- Flood deposits are common up to stage of 1921 flood, some deposits 4,500 years old
- Flood deposits above stage of 1884 flood are rare; now have 4 likely occurrences of 1,200-1,600 year old ~300,000 ft³/s flood (RM 2, 70.5, 73, 88)