Historic Changes in Fine Sediment Storage Downstream from Lees Ferry

> John C. Schmidt David J. Topping Joseph E. Hazel Paul E. Grams Robert H. Webb

Water and Fine Sediment Fluxes

~60% decrease in flood magnitude Increase in base flow

85-95% reduction in fine sediment delivery

Lees Ferry gage

Changes in duration of low flows

10%: 1359 --> 708 50%: 227 --> 395 90%: 127 --> 125

DISCHARGE, IN CUBIC METERS PER SECOND

Annual fine-sediment load

- 57 --> 0.3 mmt (25 km blw dam)
- 83 --> 14 mmt (170 km blw dam)
- Pre-dam loads were 35-40% sand (Topping et al., 2000)

water

sediment

Sediment deficit reaches immediately downstream from dams

Sediment surplus reaches further downstream

The Valley of the Colorado River

Upper Marble Canyon

Lower Marble Canyon

Upper Grand Canyon

Table 1. Segment characteristics of the Colorado River in Marble and upper Grand Canyons

River Mile	Reach-average channel width at base flow (227 m ³ /s), in meters ¹	Reach-average channel width at flood stage (2746 m ³ /s), in meters ¹	Ratio of base flow channel to flood channel width	
Upper Marble Canyon (RM 1-40)	78.1	111.5	0.71	
Lower Marble Canyon (RM 40-61)	99.9	164.7	0.61	
5	Upper Gra	nd Canyon		
Tapeats Gorge and Big Bend (RM 61-77)	101.1	171.0	0.61	
Upper Granite Gorge (RM 77-87)	59.3	82.1	0.72	

¹ Reach-average width determined from maps of water's edge at indicated discharge. Water surface area at indicated discharge was divided by reach length to determine average width.

Fan-Eddy Complex (Schmidt and Rubin 1995)

QuickTime[™] and a Photo - JPEG decompressor are needed to see this picture.

Geomorphic features

Formative discharges

Eddy Deposition Zone (EDZ)

PERCENT SMALLER THAN INDICATED SIZE

		Lees Ferry	Redwall Gorge	Point Hansborough	Tapeats Gorge	Big Bend Reach
		Reach (RM 0.	Reach (RM 29-	Reach (RM 42-50)	Reach (RM	(RM 65- 72)
		(ICI) (1)	35)	(101 +2-50)	60-65)	12)
Reach length, in kilometers		14	10	10.8	8.0	12.1
Total number of EDZs	all	37	56	81	57	56
	>1000 m ²	31	33	41	44	34
EDZ frequency, in number per kilometer	all	2.6	5.6	7.5	7.1	4.6
	>1000 m ²	2.2	3.3	3.8	5.5	2.8
Total area of EDZs	all	287,400	167,100	453,460	406,930	414,630
	> 1000 m ²	284,430	157,450	437,120	402,230	407,410
Total EDZ area per kilometer	all	20,500	16,700	42,000	50,900	34,300
	>1000 m ²	20,300	15,700	40,500	50,300	33,700
Mean size	all	7800	3000	5600	7100	7400
	> 1000 m ²	9200	4800	10,700	9100	12,000
Median size	all	3900	1400	1000	3000	1500
	> 1000 m ²	5900	3500	3600	7400	7100
Notabley large EDZs		1.2R:		43.6L: 34,300	63.5L:	66.1L:
(location in River		67,000		44.5L: 34,400	33,300	34,500
Mile and size in				47.1R: 43,300	64.4L:	68.2L:
square meters)				47.6K: 45,000	34,300	52,800 71.21
						71.5L. 38.600
						71.7L
						33,500
	1					,

Back of the envelope calculations

183 EDZs > 1000 m² in Marble and upper Grand Canyons
~3 EDZ > per km in Marble Canyon
~300 EDZ in Marble Canyon
Total area of EDZ/km = 26,000 m²/km
~2,600,000 m² in Marble Canyon (20% of water surface at flood stage)

EDZ name	EDZ	Area	Area of	Void volume	Percent	Thickness
	area, in	surveyed	comparison,	between the	overlap	of void
	square	by NAU,	in square	stage of 100	between	volume, in
	meters	in square	meters	m^3/s and the	EDZ and	meters
		meters		minimum	area	
				elevations	surveyed by	
				surveyed by	NAU	
				NAU, in cubic		
				meters		
Cathedral	11658	8392	7124	25122	72	3.53
Fence	11479	9448	4954	8949	82	1.81
Fault						
South	10837	9536	4316	11877	88	2.75
Canyon						
Anasazi	25348	11318	4545	12412	45	2.73
Bridge						
Eminence	80259	30377	12884	34776	38	2.70
break						
Saddle	44977	29935	21831	92797	67	4.25
canyon						
Crash	20103	17816	14878	92787	89	6.24
Canyon						
Carbon	20253	18123	10971	24451	89	2.23
Tanner	11476	9422	4269	11822	82	2.77

More back of the envelope

Mean void volume thickness = 3.2 mPotential storage volume of eddies = $\sim 8,300,000 \text{ m}^3$ Potential storage mass of eddies = $\sim 13,100,000$ metric tons

Previous Studies of Fine-Storage Flux and Storage

An Early Sediment Budget (Dolan et al. 1974)

- "At Lees Ferry, the median suspended-sediment concentration has been reduced by a factor of about 200. Farther downstream, however, there is less reduction because of additional sediment from tributaries and from the continuing erosion of pre-dam terraces and of the channel bed; at the gauging station near Phantom Ranch the factor of reduction is about 3.5."
- "Quantification of erosion rates and of the balance between sediment losses and deposition is difficult. Base-line studies have not been made, and there is no systematic measurement program."

A Bleak Future Prognosis Based on a Sediment Budget (Laursen et al. 1976)

At present, the mean annual capacity of the river to carry beachbuilding material is about 12 million metric tons per year. The tributaries supply about 2.7 [million] metric tons of beach-building sediment per year. The difference of about 9 million metric tons per year must be obtained through scour of bed and/or banks."

"... the beaches ... could be in danger of being washed away since the transport capacity of the regulated river is in excess of the amount of beach-building material being supplied from the tributaries ... How long they will last cannot as yet be estimated; certainly more than 10 years, probably less than 1000 years; but how much more or less than 100 years is a matter for continued study."

An Optimistic Alternative Future Prognosis Based on a Sediment Budget (Howard and Dolan 1981)

"The sand-size and finer sediment transported by the Colorado River is the most important size range both in terms of the extent of deposits and its relative abundance in the sediment load. Furthermore, the fine-grain sizes are the most conspicuously affected by Glen Canyon Dam."

 $\Delta S = LF + LC + PR + M (LC + PR) - GC$

 Used monthly transport data, assumed that transport relations did not change with time, assumed that bed was the major repository of sand (~75% of bed covered by sand), assumed that only minor changes in banks and eddy bars were occurring.

Greatly reduced flood peaks since completion of Glen Canyon Dam have decreased the turbulence generated by rapids and hence transport capacity to the extent that an average of more than 1.5 m of sand has accumulated on the bed of the Upper Grand Canyon." (based on budget calculation and only calibrated by observations at the Lees Ferry and Grand Canyon gage cross-sections)

Continued Optimism: Fine Sediment Can Be Accumulated and Managed

"A three-fold decrease in mean annual peak water discharge, plus the large contribution of sediment by tributaries, results in a surplus rather than a deficit of sediment." (Andrews, 1990)

"... flow fluctuations and corresponding sand transport in the Colorado River can be managed to achieve a balance with long-term average annual sand inputs from the Paria River." (Smillie et al., 1993)

Final GCD EIS, 1995

A Conceptual Model of Sediment Storage Unconstrained by Data

A. High Steady Flow

B. Initial Response to Fluctuating Flow

C. Long-term Response to Fluctuating Flow

This model was proposed as consistent with the calculated budget surplus and consistent with field measurements of beach erosion and bed measurements at two gages

(GCES, 1989)

Changes in the Topography of the Main Channel Bed

Long-term (1922-1962) degradation of bed of pool = 1.6 cm/yr

Due to long-term decrease in sediment delivery (Topping et al. 2000)

Seasonal	Equivalent	Equivalent thickness, in meters, under three assumptions about					
sediment	volume, in	the relative proportion of fine sediment stored in eddies and in the					
accumulation,	cubic	main channel and two assumptions about the proportion of the					
in metric tons	meters ¹	channel that can store fine sediment ²					
		eddies	channel	eddies	channel	eddies	channel
proportion of			[0.9]		[0.9]		[0.9]
the channel			(0.3)		(0.3)		(0.3)
that can store							
fine sediment							
relative		0.1	0.9	0.5	0.5	0.9	0.1
proportion							
stored in							
eddies and the							
main channel							
1,000000	640,000	0.02	[0.04]	0.08	[0.02]	0.15	[0.00]
			(0.13)		(0.07)		(0.01)
7,000,000	4,460,000	0.11	[0.30]	0.57	[0.17]	1.03	[0.03]
			(0.91)		(0.51)		(0.10)
13,000,000	8,280,000	0.21	[0.56]	1.06	[0.31]	1.91	[0.06]
			(1.69)		(0.94)		(0.19)

¹ assumes bulk specific weight of fine sediment is 1570 kg/m³ ² assumes area of eddies is $3.9 \times 10^6 \text{ m}^2$, and area of channel is 14.7 x 10^6 m^2

Location	Average change in bed elevation	Average change in bed elevation		
	between 1950 and 2000, in meters	between 1998 and 2000, in meters		
RM 32.8A	0			
RM 32.8B	+0.1			
RM 39.5A	-0.9			
RM 39.5B	-1.0	- 0		
RM 39.5C	-1.0	0		
RM 39.5D	-0.4	+0.1		

Main channel pools offshore from eddies (NAU data)

No long-term aggradation

Flynn and Hornewer (2003) surveys 1992-1999 did not show any fine sediment accumulation

The Main Channel Bed

- Long-term slow loss of fine sediment in pre-dam period
- <30% of bed played significant role in seasonal accumulation
- Now, >90% of fine sediment is in eddies
- Multi-year accumulation only after local change in hydraulic controls

Now to the Eddies

History of Fine Sediment Storage at Specific Sites

The story of Badger Creek Rapids

ALONG CHANNEL CENTERLINE

52-67 m³/s

June 19, 1952

January 2, 1954

July 1956

August 1964

October 1968

August 21, 1972

October 4, 1991

January 12, 1989

July 8, 1973

January 11, 1986

October Changes in the Area of Fine-Grained Alluvial Deposits Determined by Aerial Photograph Analysis

1,2,3,4,5,6 gages

* - detailed survey sites

boxes - air photo analyses

Area of eddy bars is now smaller than in average pre-dam conditions.

	EDZ	mean	median		
	inventory				
Lees	Ferry				
All sand above water surface	-8%	-26%	-21%		
Pre-dam and post-dam flood zone	-4%	-9%	-17%		
Redwall Gorge					
All sand above water surface	+1%	-4%	$+10\%^{1}$		
Pre-dam and post-dam flood zone	-1%	-47%	-55%		
Point Hansborough					
All sand above water surface	-17%	-17%	$+5\%^{1}$		
Pre-dam and post-dam flood zone	-20%	-25%	-17%		
Tapeats Gorge					
All sand above water surface	-17%	-34%	-39%		
Pre-dam and post-dam flood zone	-17%	-45%	-50%		
Big Bend					
All sand above water surface	-12%	-17%	-4%		
Pre-dam and post-dam flood zone	-14%	-23%	-38%		

EDZ inventory = only consider EDZ where change > 1 SE of measurements

			All sand above water		Post-dam and pre-	
			surface		dam flood zone	
Location, in	Name of site	Eddy	Decrease	Increase	Decrease	Increase
river mile		deposition	in area,	in area,	in area,	in area, in
(EDZ		zone area, in	in square	in square	in square	square
number)		square meters	meters	meters	meters	meters
		Lees F	Ferry			
1.1R (4)	Below Paria	67,000	22,100		7,700	
	Riffle					
1.3L (5)		14,000	4,200			
2.4L (9)		7,000			500	
2.5L (10)	Above	11,800	500		600	
	Cathedral					
	Wash (NAU)					
2.8R (12)	Cathedral	8,800	600			
	Wash					
4.1L (19)	Four Mile	14,400	800			
	Wash					
5.9R (30)	Six Mile	14,900	1,500			
	Wash					
6.0L (31)	Six Mile	10,500	800			
	Wash					
6.6R (32)		13,800				300
7.0L (33)		20,900	1,600			
7.5L (34)		6,900		2,300		1,200
8.1R (36)	Badger	15,200	2,300		2,200	
8.1L (37)	Jackass	16,900	1,300		500	
	(NAU)					
			•	•	•	
Redwall Gorge						
29.8R (2)		8,200			200	
30.7R (8)	Fence Fault	11,500		100		
	(NAU)					
33.6R (34)		5,000			300	
34.2L (47)		6,800		300		100
34.6R (53)		1,700	100			

Point Hansborough						
43.3L (9)	Anasazi Bridge (NAU)	25,300	7,000		7,000	
43.5L (10)		34,000	8,500		4,600	
43.8L (14)		16,000				2,400
44.0L (16)	President Harding	23,500	6,300		1,400	
44.4L (21)	Eminence Break (NAU)	34,400	2,200		7,400	
44.8L (27)		28,300	1,000		2,500	
45.1L (31)		29,400	1,800		5,900	
46.8R (55)		7,400	100			
47.0R (58)	Triple Alcoves	43,300	$6,000^{1}$			6,000 ¹
47.5R (63)	Saddle Canyon	45,000	9,800		14,700	
48.5L (74)		14,500	700			
48.6L (77)		17,400		900		
48.6R (78)		14,600	700		2,000	
48.8R (79)		14,700	300		1,200	
				•		
		Tapeats	Gorge			
60.2L (2)	Below	23,900	6,900		5,800	
	Sixtymile Rapid					
60.4L (3)		13,600	4,500		3,000	
60.6R (5)		7,500	0		100	
60.6L (6)		4,500			100	
60.8L (7)		19,600	4,400		3,100	
61.3L (11)		10,600	1,200		1,200	
62.3L (25)		11,600	2,200		2,000	
62.4R (26)		9,100	100		1,000	
62.6R (28)		14,800			100	
62.9R (29)	Crash Canyon (NAU)	20,100	3,600		600	
63.5L (34)		33,200	3,500		3,200	
63.8R (38)		8,500	600			
64.0L (39)		15,200	700		800	
64.2L (40)		17,900	200			
64.3L (43)		33,300	500		1,400	
64.6L (45)		18,800	2,500		1,600	
64.7R (46)		8,300	100		800	

Sand in the post-dam flood zone

All emergent sand

Now to the last decade

The NAU data set

Post-dam flood zone

Fluctuating flow zone

AREA, IN SQUARE METERS

median

В

mean

AREA, IN SQUARE METERS

So

- All evidence points to smaller deposits, and decrease is not entirely due to tamarisk
- Post-dam flood zone area is ~ 25% less than average pre-dam
- Sand is less since 1984
- Sand is less than 1990
- Sand is less at low elevation as well as at high elevation