The larger-scale context of Grand Canyon's Holocene record

meaning and fate of Holocene record?
alluvial vs bedrock river and the long profile

Schumm and Lichty, 1965, Time, Space, and Casuality in Geomorphology

Desirone basin veriables	Status of variables during designated time spans			
Dramage basin variables	Cyclic	Graded St	teady	
1. Time	Independent	Not relevant Not	relevant	
2. Initial relief	Independent	Not relevant Not	relevant	
3. Geology (lithology, structure)	Independent	Independent Inde	ependent	
4. Climate	Independent	Independent Inde	ependent	
5. Vegetation (type and density)	Dependent	Independent of Inde	ependent	
6. Relief or volume of system above base level	Dependent	Independent Inde	ependent	
7. Hydrology (runoff and sediment yield per unit area within system)	Dependent	Independent Inde	ependent	
8. Drainage network morphology	Dependent	Dependent \setminus Inde	ependent	
9. Hillslope morphology	Dependent	Dependent \Inde	ependent	
10. Hydrology (discharge of water and sediment from system)	Dependent イ	Dependent of Dep	endent	

The status of drainage basin variables during time spans of decreasing duration

Michael Church, 1999, *in* The Scientific Nature of Geomorphology

"...scientific theories are essentially constrained by their associated scales of space and time, and different kinds of theories are appropriate to describe phenomena at different scales."

Middle Cenozoic (~30 Ma)

6 Ma, Colorado River integration

students: Matt Anders Scott Cragun Ben DeJong

collaborators: OSL – Tammy Rittenhour U-series – Warren Sharp Cosmogenic – John Gosse

funding: NSF, USU, GSA

post-M4 hillslope deposits

upper M4 sand and travertine 118 ± 3 ka

travertine

talus

151 ± 5 ka travertine

M4 gravel and sand

M4 strath ~ river level

34.00 1 m

where is the LGM deposit?

OSL 50 ± 8 ka -

nin padus

Sample Number

INCISION RATES

Where do the Holocene deposits fit in this context?

MAINSTEM STRATIGRAPHY

Where do the Holocene deposits fit in this context?

Relating Rock Strength to Large-scale Variations in the Colorado River's Profile

Is the Colorado River an alluvial or bedrock stream?

18 bedrock reaches

Outcrop-scale measurements:

- Schmidt hammer for *in situ* compressive strength; n = 3,670
- 2) Fracture spacing; n = 4,147
- Selby rock mass strength (1980); n = 84

Laboratory:

Brazilian splitting tests for tensile strength

Correlation Matrix (Spearman correlation coefficient; $\alpha = 0.05$):							
	compressive						
	strength						
fracture spacing	-0.05	fracture					
		spacing					
RMS	0.87	0.25	RMS				
gradient	0.72	-0.19	0.44	gradient			
width	-0.51	0.48	-0.12	-0.74	width		
unit stream	0.60	-0.30	0.35	0.95	-0.86		
power	0.09			0.95	-0.00		

Take-home points

Timescale of control tracks spatial scale of process: gullies vs. terraces vs. canyon cutting

Take-home points

Timescale of control tracks spatial scale of process: gullies vs. terraces vs. canyon cutting

LGM deposit hypothetically below grade: -river at start of incision episode -channel geometry and function = temporary state w/i longer oscillation