Fermilab Feasibility Study on a Neutrino Source Based on a Muon Storage Ring

Muon Collider / Neutrino Factory Collaboration Meeting

David Finley

D. Finley MCNF LBNL Dec. 14, 1999

Witherell Letter

• Insert Witherell 9/22/99 letter to Holtkamp ... 2 slides

Witherell 9/22/99 Charge to the Study Group

- Design concept ... reasonable assurance ... neutrino based research program
- Likely cost drivers
- R&D program
- Specific ESH issues
- Work closely with the Collaboration

Overall Status

- Parameters are: 2E20 50GeV-muon decays per year aimed at "West Coast" and be able to flip sign of muons once a week or so
- Physics study (Geer, Schellman) in parallel

The Muon Collider Collaboration and Contributing Institutions

ан С

- Argonne National Laboratory
- Budker Inst. Of Nuclear Physics
- Brookhaven National Laboratory
- UC Berkeley
- UC Davis
- UCLA
- UC Riverside
- CERN, Geneva, Switzerland
- Cornell University
- ETH Zuerich
- Fairfield University
- Fermi National Accelerator Laboratory
- Indiana University
- Illinois Inst. of Technology, IIT
- University of Iowa
- Jefferson Lab.
- Kansas State University
- Research Center Karlsruhe
- KEK
- Lawrence Berkeley National Lab.
- Inst. of Mathematics, Novosibirsk
- Michigan State University
- University of Minnesota

- University of Mississippi
- Nat. High Magnetic Field Lab.
- Northern Illinois Univ.
- SUNY, Stony Brook
- Northwestern University
- Oak Ridge National Lab.
- Princeton University
- Rutherford A. Lab.
- Rockefeller University
- Tel-Aviv University, Israel
- University of Texas Pan American
- University Voctoria
- University Wisconsin

An Artist's View of a Muon Collider

Title:

Creator: xpdf 0.5 Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

Elements of a Neutrino Source

Title: nupict.dvi Creator: dvipsk 5.58f Copyright 1986, 1994 Radical Eye Software Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

Consider a Lepton Collider

 $L = \frac{N^2 \cdot f_c}{4\boldsymbol{p} \cdot \boldsymbol{s}_x^* \boldsymbol{s}_y^*} \propto \underbrace{P_{beam}}_{E_{cms}} \times \underbrace{\frac{N_e}{4\boldsymbol{p} \boldsymbol{s}_x^* \boldsymbol{s}_y^*}}_{W_D} \times H_D$

	(Gain I	oy: N	$N_e \rightarrow 1$	N _u x	f _{rev} N
	1	lose by: σ 's				
cms Energy	GeV	3000	400	100		
Proton energy Protons/bunch	GeV 10 ¹³	16 2.5	16 2.5	16 5		
bunches/pulse		4	4	2		
rep rate	Hz	15	15	15		
beam power	MW	4	4	4		
? / bunch	10 ¹²	2	2	4		
? beam power	MW	28	4	1		
collider circ.	m	6000	1000	300		
~depth	m	500	50	5		
rms dp/p	%	.16	.14	.12	.003	
6D emittance $(? \text{ m rad})^3$	10 ⁻¹²	170	170	170		
transv. Emitt. (? m rad)	10 ⁻⁶	50	50	85	290	
?*	cm	0.3	2.3	4	14.1	
? _r at spot	? m	3.2	24	82	294	
Luminosity 10 ³⁴	cm ⁻² sec ⁻¹	5	0.1	0.012	0.001	
	1.00	•	•			J

This is very different in a neutrino source

Proton Driver Study I

Proton Driver Study II

Pion Source and Muon Production

- 16 GeV protons at 5×10^{13}
- 2 bunches per pulse
- 0.6 p+ per proton
- $p_z \sim p_t 200 \text{ MeV/c}$ with $s_E \sim 100 \%$

Target

÷...

• Choices

- Use solid for 1.5 MWatt
- Building to support 4 Mwatt
- Solid not likely for 4 Mwatt
- other talk

Cooling

- ²⁰-20

• Pions are emitted in a very diffuse phase space

Title:

/home/room1/holtkamp/postscripts/targetexp1.ps Creator: XV Version 3.10a Rev: 12/29/94 - by John Bradley Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

Cooling Principle

Cooling Channel for Muon Collider

÷.

BNL/ITT/ FNAL/FSU design approach for an integrated cooling channel

- 42 cm Liquid hydrogen target (D. Kaplan, E. Black)
- 15 T alternating solenoid channel (P. Lebrun, B. Palmer, J. Miller)
- 0.96 m x 27 MV/m accelerating structure

Neutrino Source

typical decay angle of $\mu = 1/\gamma$	mrad	2.0
Beam angle $(\sqrt{\epsilon}/\beta_0) = (\sqrt{\epsilon} \gamma)$	mrad	0.2
Lifetime c*y*t	m	$3x10^{5}$

$$\gamma = (1 - \alpha^2)/\beta$$

D. Finley MCNF LBNL Dec. 14, 1999

Neutrino Source Study @ FERMI

- Application of a "Generic Neutrino Source" to specific site
- Base the study on specific set of Parameters
- 6 month period of time to define the R&D program and develop a layout to investigate the scope of such a complex

Title: nuplict.dvi Creator: dvipsk.581 Copyright 1986, 1994 Radical Eye Software Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

necessary or useful"

Physics Study in parallel H. Schellmann / S. Geer

L/E and Other Physics Guidance

D. Finley MCNF LBNL Dec. 14, 1999

Parameter Choices for Study

Chose a Target for the Neutrino Factory

- Comparable Targets
 - RAL: Spallation neutron sources
 - CERN/ FNAL: p-Bar production
 - new developments for Muon sources

• SNS Oak Ridge

•Target Experiment

Figure 1.16: Perspective view of the target design.

D. Finley MCNF LBNL Dec. 14, 1999

Target Choice for Study

- 1 1.5 MW target
- Reduce power in the target -> low Z
- Solid Target

Title: Window .canvas_field Creator: Tk Canvas Widget Preview: This EPS picture was not saved with a preview included in it. Comment: This EPS picture will print to a PostScript printer, but not to other types of printers.

What changes compared to MC

- Proton driver
 - four bunches (and hopefully induction linac)
 - longer bunch (because no polarization)
- Target
 - maybe solid graphite if only 1 MWatt

- 16 GeV protons at 2.5x10¹³
- 4 bunches per pulse on target
- solid graphite target (a la NuMI)
- 0.6 π + per proton
- $p_z \sim p_t 200 \text{ MeV/c with } \sigma_E \sim 100 \%$

The Induction Linac

Core Scaling (LBL)

- Requirements
 - 2MV quasi-linear ramp for 100 ns => Vτ = 140 mV-s
 - 20 cm bore radius & 25 cm for B_Z magnet & Insulator => R_{inner} = 45 cm
 - < 1.0 MW for 4 pulse burst @ 15 Hz
- Metglass 2605SC
 - $3.3e-2 \text{ m}^2 = A_{\text{Met}}, 6.7e-2 \text{ m}^2 = A_{\text{core}}$
 - 8100 J/m³ = E_{core}
 - 9.2e-2 $m^3 = V_{met} =>746 J per shot = E(2Mev)$
 - 4.5 MW system exceeds 1.0 MW allowance
- Metglass 2714A
 - 0.16 m² = A_{Met} , 0.35 m² = A_{core} , $PF_r = 0.7$, $PF_a = 0.64 => R_{outer} = 83$ cm
 - $188 \text{ J/m}^3 = \text{E}_{\text{core}}$, 0.9 T out of 1.1 T for I up factor of 2 => H = 219 A/m
 - Rmean = 64 cm => $0.9 \text{ kA} = I_{\text{core}}$
 - Use $I_{cell} = 1.5 \text{ kA} => 210 \text{ J / pulse} = E(2\text{MeV})$
 - **1.3 MW** Einley MCNF LBNL Dec. 14, 1999

Induction Linac Layout

Induction Linacs and Long Solenoidal Channels

50 m drift before ϕ rotation

For carbon target:

- 0.10 μ/p between 225 240 MeV
- 0.13 µ/p between 220 250 MeV
- 0.18 µ/p between 200 270 MeV

Trade off:

Energy Spread after rotation⇔ drift channel length [loss]

D. Finley MCNF LBNL Dec. 14, 1999

26

Particle canture Alenoth (voltage) in induction linac

Skip Longitudinal Cooling (. ! ?)

A Cooling Channel for the Study

Cooling Simulation Effort led by LBNL

- "From the Target through the Cooling"
 - Participants: BNL, CERN, Fermilab, LBNL
 - Web page : "http://www-afrd.lbl.gov/neutrino/"
 - Target:MARS, ARC, FLUKA
 - Cooling and Beam Tracking: DP-GEANT, ICOOL, Parmela?
 - Different Lattice types

Cooling Simulations Workshop

D. Finley MCNF LBNL Dec. 14, 1999

200 MHz Cavity + Power Source

- Engineering Layout required for the study
- Want to build and test it, once study is done

1/8th of the full accelerating cell

 $\sim 0.65 \text{ m}$

Enhance the E Field on Axis by using a grid

Goal: 15 MV/m nc cavities

D. Finley MCNF LBNL Dec. 14, 1999

Cooling Channel for a Neutrino Factory

*...

- IIT, BNL, LBNL, Fermilab: go through an engineering design
- Goal: Do all the cooling with one set of hardware

PRELIMINARY DESIGN

Acceleration

700 m rf, 7.5 MV/m average, > 10 MV/m in the cavity

Acceleration of the Muon Beam II

÷.

Based on cooling assumption						
incoming norm.emittance $\epsilon_{x,v}$	π mm rad	1.5				
outgoing emittance at 30 GeV	π mm rad	3.2				
energy spread at 50 GeV (95%)	%	+/- 2				
incoming momentum	MeV/c	190				
incoming norm. emittance ϵ_{long}	πmm	28				
bunch length	mm	120				
momentum spread (rms)	%	11				
$\beta\gamma$ at start	~	2				
pulse length	~	150 nsec (4x(150+250))				
number of bunches in one pulse	~	30 (4x30)				
number muons per pulse	10 ¹²	2.5				
repetition rate	Hz	15				
acceleration I (linac)	GeV	2 or more				
RLA_1 + RLA_2	GeV	50				

Acceleration based on RLA

÷.

- Why not nc?
 - Peak power limited already
 - in normal conducting cavity: too much power required to build up the gradient
 - gradient is not a free parameter for optimization:
 - muon decay +longitudinal acceptance
- SC structures at 200 MHz (100 MHz) and 10 MV/m (7,5 MV/m real estate)
 - almost no power to build up gradient --> beam
 - loaded Q's are similar to nc structures ->fill time short but coupler ? -> <u>comparatively efficient</u> !
 - 4 x 30 bunches per RLA, 2.5×10^{12} total
 - $P_{\text{linac}} \sim 6 \text{ MW}, P_{\text{RLA1}} \sim 2 \text{ MW}, P_{\text{RLA2}} \sim 12 \text{ MW}$
 - ~20 MW power for RF acceleration at ~25 % overall efficiency (AC \rightarrow RF)
 - Problem is the required peak power not average power !

RLA Energy	L _{tot} m	L _{linac} M	I _{beam} mA	R _{loaded} M W /m	$\mathbf{Q}_{\mathbf{loaded}}$	Nr of turns	$T_{pulse} = T_{fill} + T_{acc} / ms$	Peak Power MW/m
2-10	800	2x135	120	83	80 x10 ³	4	132+10	1.2
10-50	2400	2x700	40	252	$240 \text{ x} 10^3$	4	400+32	0.4

D. Finley MCNF LBNL Dec. 14, 1999

Limits for Peak Power and Frequency

*....

• What determines the physical size of a klystron? ideal situation with no space charge:

$$z_{opt} = 1.84 \cdot \frac{u_o(V)}{2\boldsymbol{p} \cdot f} \cdot \frac{2}{\boldsymbol{a} \cdot \boldsymbol{b}}$$

 $u_o :=$ velocity of electrons $= \beta * c = (1-1/\gamma^2)^{0.5} * c$ $\alpha :=$ modulation gap voltage/beam voltage $\beta :=$ transit time

f=200 MHz, $U_{gun}=175kV$, $uP{=}1.2$, 15 MW Beam power -> 10 MW rf power,

z_{opt} := 10 meter only for the rf part

+ gun + collector ---> easily a 11-12 meter long klystron with a standard approach.

- scaling shows : $z_{opt} \sim 1/f$ klystron becomes longer
- infrastructure in industry can not mechanically accommodate this easily
- test stands are not available

Klystrons as high peak power sources are only feasible below 200 MHz if multi beam tube is used SLAC and CPI: preliminary discussion going on

A Neutrino Source

Parameters for the Muon Storage Ring					
Energy	GeV	50			
decay ratio	%	>40			
inv. Emittance	m*rad	0.0032			
β in straight	m	160			
$N_{\mu}/pulse$	10^{12}	6			
typical decay angle of $\mu = 1/\gamma$	mrad	2.0			
Beam angle $(\sqrt{\epsilon}/\beta_o) = (\sqrt{\epsilon} \gamma)$	mrad	0.2			
Lifetime c*γ*τ	m	3x10 ⁵			

$$\gamma = (1 - \alpha^2)/\beta$$

Optimization of the Storage Ring

÷ ÷

- Rule: The cheapest way to produce muons decaying in the straight section is to make the straight sections as long as possible compared to the circumference.
- Efficiency = straight section / circumference
- = Length of straight / $(2 \pi \rho + 2 x \text{ Length of straight})$

50-GeV Muon Storage Ring (recetrack, 2 km circumference)

D. Finley MCNF LBNL Dec. 14, 1999

Storage Ring Lattice: First Shot I

а С

Injection Straight + "short baseline"

Storage Ring Lattice: First shot II

- ÷.,
 - Neutrino Production Straight "long baseline"

Upgoing Neutrino Radiation II

D. Finley MCNF LBNL Dec. 14, 1999

41

MuSR Status

• Insert Finley's 11/11/99 talk with 6 slides

How Steep is 22%?

•17 % into a quarry

•there is water !

•incremental cost small compared making more v

•extend the ring up to the surface

Further down the ramp

Use vehicles

D. Finley MCNF LBNL Dec. 14, 1999

Storage Ring Layout

- Site layout for the Storage Ring and the Arcs
- Experimental beam lines and halls
- Cryo space requirement

Strategy of Study

"Six Month Study" Overview

÷....

- "6 Month study Goals"
 - Text
 - 10 pages per subsystem
 - + 1 page R&D program / schedule
 - + 1 page cost drivers
 - + 1 page ESH issues for Director
 - Milestones
 - Internal Review Mid January to align the different contributions (might not make it)
 - Documents in by mid February
 - Report to Witherell by March 1, 2000
- Collaborate as much as possible
- Develop Alternatives for the most risky parts
 - induction linac
 - cooling channel design and performance
 - acceleration: (\rightarrow probably largest cost driver)
 - Jefferson Lab \Leftrightarrow Cornell \Leftrightarrow Fermilab

Timeline for Study

*...

- Accelerator Physics Design
 - Conceptual design has started for all of the subsystems, and iterated for some
 - Preliminary designs ready by mid-December (?)
 - Specifications on web for all subsystems
- Engineering designs
 - Have started for all of the subsystems
 - Should fully start over the period from now to mid December (learning curve)
 - ready by mid end January
- Pre Review (internal) within this group end of January
- 10 pages per subsystem written by mid-February
- Aiming for: Report to Witherell by March 1, 2000.

Questions (aka Blood Pressure Check)

- Then: (BP should go down and ...)
 - Define the Neutrino Factory R&D program:
 - MCNF: Leading role for the Muon Cooling experiment
 - MCNF: Develop efficient and cost effective accelerating systems at low frequency
 - Fermilab: Continue participation in the ongoing site study
 - HEP: Continue advancing the particle physics studies

D. Finley MCNF LBNL Dec. 14, 1999

Director's Office

How to get more information?

*....

- Web Page:
 - http://www.fnal.gov/projects/muon_collider/nu-factory/nu-factory.html
 - Holtkamp talk at: /afs/fnal.gov/files/wwwdocs/projects/muon_collider/nu_factor y/holtkamp
 - web master = T. Jurgens (tjurgens@fnal.gov)
- Information Available:
 - Subsystem Specifications (Postscript)
 - Drawings, pictures, sketches, specs, tables, (nearly) everything you can think of
 - Nothing is final, all is preliminary.
 - Growing weekly

Summary I: My Own Worries and Opinions

÷.

- Conceptual Feasibility:
 - Cooling channel design
 - Phase rotation scheme
 - Credible acceleration scenario and simulation
- Technical Feasibility:
 - induction linac
 - power sources
 - high gradient and low frequency
- What does such a complex look like?
- There is plenty of further R&D needed
- Note: Not worried AS MUCH about the ring
- Travel restrictions have prevented most Fermilab collaboration members from presenting their own work to this collaboration meeting. But same for NLC.

Summary II: Status of Witherell 9/22/99 Charge to the Study Group

÷.

- Design concept ... reasonable assurance ... neutrino based research program
 - Is it an intense enough muon / neutrino beam?
 - Probably will estimate scaling of costs with energy and intensity
 - (Remember ... no polarization)
- Likely cost driver
 - Acceleration of muon beam to 50 GeV
- R&D program (includes ... no surprise ...)
 - Make an intense muon beam
 - Accelerate to 2 GeV ... and beyond to higher and higher GeV
 - Revive longitudinal cooling?
- Specific ESH issues
 - Target station (even at 1 Mwatt, an issue for Fermilab)
 - Neutrino radiation: Fermilab or Federal limit?
- Work closely with the Collaboration
 - Ongoing and going and going and going ...